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Editor’s Space

The Jubilee 20th International Congress on Sound
and Vibration (ICSV20)

Dear Colleagues,
It is our great pleasure to invite you, together with accompa-

nying persons, to participate in the Jubilee 20th International
Congress on Sound and Vibration (ICSV20) to be held from 7
to 11 July 2013 at the Imperial Queen’s Park Hotel, Bangkok,
Thailand. The ICSV20 is the 20th congress in the series, and
several celebratory events are being planned.

Almost 750 abstracts in the fields of acoustics, noise, sound,
and vibration from 55 countries have been accepted for presen-
tation. About half of the participants are coming from Asia, in-
cluding China, Hong Kong, India, Indonesia, Japan, South Ko-
rea, Taiwan, Thailand and Vietnam and the rest from Australa-
sia, Europe, Latin America, and North America. Exchange of
new findings and ideas is what we anticipate all participants
will experience at the ICSV20. This should lead to an expan-
sion of research networks and ultimately strong collaborations
between scientists and engineers around the world.

The ICSV20 Scientific Programme will include invited and
contributed papers and the following keynote lectures: “Hear-
ing Loss Prevention and Auditory Awareness in the Noisy
Workplace” Christian Giguère, Ottawa, Ontario, Canada; “Nu-
merical Prediction of the Signature of Maritime Platforms”
Nicole Kessissoglou, Sydney, Australia; “Saving Campbell
Diagram for Dynamic Analysis of Complex Rotor Systems”
Chong-Won Lee, Taejon, South Korea; “Urban Noise Man-
agement and its Practical Implementation” Sergio Luzzi, Flo-
rence, Italy; “Statistical Energy Analysis (SEA) Applications
in Vibration and Noise” Dhanesh N. Manik, Powai, Mum-
bai, India; “Applications of the Acoustical Boundary Ele-
ment Method (BEM) and Related Green’s Functions” Mar-
tin Ochmann, Berlin, Germany; “Bionic Design of Acoustic
Localization System Based on Auditory Orientation Mecha-
nisms” Zhushi Rao, Shanghai, China.

The ICSV20 is sponsored by the International Institute of
Acoustics and Vibration (IIAV); the Faculty of Science, Chu-
lalongkorn University; the Acoustical Society of Thailand; and
the Science Society of Thailand. The ICSV20 is currently or-
ganized in cooperation with the Australian Acoustical Society;
the Acoustical Society of China; the Chinese Society of Vi-
bration Engineering; the Hong Kong Institute of Acoustics;
the Korean Society for Noise and Vibration Engineering; the
Acoustical Society of Singapore; School of Science, Walailak
University; and the Pollution Control Department of Thailand.

A special room rates single or double occupancy at the Im-
perial Queen’s Park Hotel, the ICSV20 venue, has been ne-
gotiated as follows: Delegate Rates: 90 USD for Deluxe and
107 USD for Premier: Students Rooms single or double Oc-
cupancy for only 67 USD. These room rates include all taxes,
daily breakfast, and free internet access.

The Star Alliance and its members—Adria Airways, Aegean

Airlines, Air Canada, Air China, Air New Zealand, ANA,
Asiana Airlines, Austrian Airlines, Brussels Airlines, Croatia
Airlines, EgyptAir, Ethiopian Airlines, LOT Polish Airlines,
Lufthansa, Scandinavian Airlines, Singapore Airlines, South
African Airways, SWISS International Air Lines, TAP Portu-
gal, THAI, Turkish Airlines, United, and US Airways—have
been appointed as the official airline network for the ICSV20.

Eighteen exhibitors and sponsors have taken 21 booths:
01dB-Metravib, ACOEM, AM Acoustics, BSWA, DataKustik,
ETS Solutions: Larson Davis, G.R.A.S. Sound & Vibration
A/S, Geonoise, LEGA, LMS, Measuretronix Ltd, Bruel &
Kjaer, Microflown Technologies, Norsonic, Polytec, RION,
SVANTEK, and Vibration Research Corporation.

Bangkok is a home to numerous conventions and event fa-
cilities as well as various kinds of cultural experiences. Having
won many international awards, Bangkok is an ideal venue for
successful conventions. We are certain that you will enjoy not
only the first-rate scientific programme, but also the pleasant
environment that Bangkok offers.

The ICSV20 is being held in the exciting country of Thai-
land, which has a very vibrant culture. A great place to
visit, Thailand is one of the world’s favourite tourist desti-
nations. This should come as no surprise as Thailand has
pristine beaches, coral-fringed islands, world heritage sites,
cool mountains, verdant rain forests, fabulous shopping rang-
ing from air-conditioned complexes to the world’s largest “flea
market,” fascinating culture, and typical Thai hospitality. Del-
egates can experience a variety of unforgettable holiday vis-
its on pre- and post-congress tours in Thailand. You can also
visit a number of other countries in Southeast Asia, which
are located close to Thailand, such as Cambodia, India, Laos,
Malaysia, Myanmar, Nepal, Singapore, and Vietnam. In addi-
tion, citizens of most countries do not need a visa, or they can
obtain one on arrival.

It is our pleasure to thank Prof. Dr. Supot Han-
nongbua, General Chair ICSV20, Dean of Faculty of Sci-
ence, Chulalongkorn University, Bangkok, Thailand; Prof.
Boonchoat Paosawatyanyong and Prof. Worawan Bhan-
thumnavin, Co-Chairs, ICSV20 Local Organising Commit-
tee, Chulalongkorn University; Prof. Sorasak Danworaphong,
Chair, ICSV20 Technical Programme, Walailak University;
and Michel Rosmolen, ICSV20 Exhibition Manager, CEO,
Geonoise, Bangkok.

Malcolm J. Crocker
Chair, ICSV20 International Organising Committee
Executive Director, International Institute of Acoustics and
Vibration (IIAV)
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Numerical and Experimental Studies on the
Structure-Borne Noise Control on a Residential
Kitchen Hood
Sinem Öztürk and Haluk Erol
Istanbul Technical University, Mechanical Engineering Faculty, Gümüşsuyu, 34439, Istanbul, Turkey.

(Received 2 May 2011, revised 27 September 2012, accepted 28 November 2012)

The growing demand for highly efficient household appliances has driven the need for tools to predict, evaluate,
and optimize both existing and new designs. Improving the design of the residential kitchen hood requires in-depth
knowledge of the structure. In particular, the dynamic behaviour of the structure during the working period needs to
be studied carefully during the design stage. A tool for predicting the structure-borne noise behaviour would save a
considerable amount of time, reduce the number of prototypes that need to be built, and decrease the development
costs. This paper concentrates on reducing the noise generated from the vibrating structure of a residential kitchen
hood by using both numerical and experimental methods. Normal modes of the structure were identified, and the
results agree well with the finite-element model. To validate the finite element model, an operational deflection-
shape analysis of the structure was performed by using the laser Doppler vibrometry method. This study presents
the finite element model and the experimental results of a kitchen hood. This study shows that the contribution of
structure-borne noise from the vibrating panels to the overall kitchen hood noise levels is significant, especially at
low frequencies. Thus, panel vibration is a critical design consideration for end users because of its relationship to
noise and comfort.

1. INTRODUCTION

Residential kitchen ventilation is generally used on an in-
termittent basis. High levels of various contaminants accrue
during cooking over a relatively short period of time. The con-
taminants must be removed quickly and completely, if possi-
ble. Kitchen range hoods have been introduced as a solution
to these problems. The main function of a typical residential
kitchen hood is ventilation. There is an increasing demand for
highly efficient, reliable, stylish, and inexpensive range hoods
due to the availability of new cooking appliances, and because
occupants are increasingly sensitive regarding the issue of in-
door air quality. In recent years, the kitchen hood market has
become more competitive and requires quick release times for
new designs. New designs are expected to be cheaper and to
meet higher quality standards with respect to comfort and noise
levels. Thus, engineers are required to find alternative design
methods to satisfy the market. Once serial manufacturing has
started, it is very expensive and difficult to change the design.
Design changes can reach the customer within a time period
of four months to two years, depending on the magnitude of
the changes. Therefore, new methods are required so that the
new designs can quickly respond to market conditions. These
methods should reduce the engineering costs and must be reli-
able.

Computer-aided engineering has been widely used as a cost-
effective solution for testing new designs. However, the re-
sults from the computer-aided engineering software should be
validated by using experimental studies. Failing to validate
the computational methods can result in serious design errors.
For this reason, computer-aided engineering studies should be
conducted in parallel with experimental studies. Furthermore,
in recent years, the capture efficiency of range hoods has in-
creased. The capacity of the kitchen hood can be improved
by increasing the drive unit, preferably without changing the
standard external body dimensions. The main source of noise

in kitchen hoods is the vibration that is generated by the drive
unit, which consists of a variable speed electric motor and a
fan, and by the air flow through the stationary duct. The vi-
bration generated by the drive unit is transmitted to the house
through connections. The connections have a complex vibro-
acoustical behaviour that is influenced by the various interac-
tion mechanisms. An estimation of the noise produced from a
vibrating structure is an important step in the design and devel-
opment of high-quality kitchen hoods. It is very important to
understand the dynamics of a kitchen hood before its construc-
tion begins. The most significant challenge that is encountered
in noise and vibration control studies of residential kitchen
hoods is that generalizing the results is impossible because of
the large number of designs of residential kitchen hoods that
are used in practice.

A literature review, however, reveals that most research on
kitchen hood noise control has been performed by the manu-
facturers themselves. As a result, the number of publications
on this topic is quite limited and may be biased. The first
openly available study on the noise control of kitchen hoods
was performed by Maggiorana et al.1 In the study, a combined
experimental and theoretical methodology is proposed to ad-
dress the problem of noise reduction of range hoods. The ex-
perimental approach is based on the use of simple microphones
and accelerometers to generate a brief characterisation of the
noise spectrum and the vibrational characteristics of different
models of the product. The second phase of the study is based
on theoretical modelling of the structural vibrations and flows
by FEM and CFD codes to better understand and identify the
primary sources of noise. Once the main problems were iden-
tified, some working prototypes of range hoods were created
and the possibility of noise reduction was quantified by sound
power estimation by using acoustical intensity measurement
techniques.

In this study, the noise and the structural vibration behaviour
of a residential kitchen hood was analysed by using numeri-
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Figure 1. Solid model of the residential kitchen hood and its components.

cal and experimental methods. First, to understand the noise
behaviour of the kitchen hood, sound intensity measurements
were performed. Then, operational deflection shape measure-
ments were made by using a scanning laser vibrometer. The
measurements show that the contribution of structure-borne
noise from the vibrating panels to the overall kitchen hood
noise levels is significant, especially at low frequencies. Thus,
panel vibration is a critical design consideration for end users
because of its relationship to comfort and noise. After the
initial measurements were made, a numerical model of the
kitchen hood was created by using the MSC/Nastran com-
mercial finite-element simulation software. In the numerical
model, the panels were modelled as flexible components. The
numerical model used in this study has been validated with ex-
perimental modal analysis measurements. As a result, an ex-
perimentally validated numerical model for a kitchen hood was
produced. This model was used to conduct parametric studies
for reducing the contribution of structure-borne noise from the
vibrating panels to the overall kitchen hood noise levels. A
solid model of the residential kitchen hood and its components
are shown in Fig. (1).

2. THEORETICAL BACKGROUND

Noise that is produced by vibrating structures such as res-
idential kitchen hoods is often the result of forces and mo-
tion that are generated by internal components and transmitted
through joints to the structure housing and other supporting
structures, which then vibrate and radiate noise into the sur-
rounding areas. To predict the noise radiation with some con-
fidence, the vibration amplitude must be known as a function
of its frequency and spatial distribution. Thus, a considerable
amount of detail is required for the evaluation of the airborne
noise that results from structural vibration.

The radiation ratio, σ, of an arbitrary structure is defined
as the sound power radiated by the structure into half space
divided by the sound power radiated by a large piston with
the same surface area and vibrating with the same root mean

square (RMS) velocity as the structure. The radiation ratio
describes the efficiency at which the structure radiates sound
compared to a piston of the same surface area. Therefore, for
an arbitrary structure with a space-averaged mean-square vi-
bration velocity, ν2, the radiated sound power is

Π = %0cSσ
〈
ν2

〉
, (1)

where S is the radiating surface area of the structure, %0 is the
density of the fluid medium into which the structure radiates,
〈 〉 represents a time average, represents a spatial average,
and c is the speed of sound in the fluid medium. It should
be noted that the mean-square spatially averaged and time-
averaged vibrational velocity is, in fact, the average normal
surface velocity. The radiation ratio, σ, provides a powerful
relationship between the structural vibrations and the associ-
ated radiated sound power. The radiation ratio can be either
greater than or less than unity; therefore, it is more appropri-
ate to use the term “ratio,” rather than the term “efficiency,”
which is sometimes used in the literature. If the values or re-
lationships for radiation ratios of different types of structural
elements can be established, then the estimation of the noise
radiation and any subsequent noise control is a relatively easiy
process—i.e., the radiated sound power can be established di-
rectly from the surface vibration levels, which can be obtained
either theoretically or experimentally.2

In this study, the structure-borne noise that radiates from the
kitchen hood was evaluated using numerically obtained surface
vibration levels. To validate the numerical model, an opera-
tional deflection shape analysis of the structure was performed
by using the laser Doppler vibrometer.

3. NUMERICAL INVESTIGATIONS

To analyse the dynamic behaviour of a residential kitchen
hood, a finite-element analysis was conducted by us-
ing the general purpose finite-element analysis software,
MSC/Nastran. Two types of analyses were performed. Ini-
tially, a modal analysis was used to identify the natural fre-
quencies and mode shapes of the structure. Then, a harmonic
analysis for three operating speeds was conducted to determine
the steady-state response of the residential kitchen hood with
a load simulating a variable-speed electric motor that varies
sinusoidally with time.

The finite-element model consists of 7 560 elements and
12 072 nodes. The complete numerical model of the kitchen
hood can be seen in our webpage.3 The kitchen hood pri-
marily consists of a formed stainless-steel chassis and a lam-
inated glass front panel. The thickness of the main chassis is
0.60 mm.

It has been shown that the sound power radiated by the struc-
ture into half space (i.e., one side of the structure) is propor-
tional to the normal surface velocity.2 Therefore, to analyse
the structure-borne noise radiated by the kitchen hood surfaces,
the normal surface velocity is considered in this study.

4. EXPERIMENTAL STUDIES AND
VALIDATION

4.1. Sound Intensity Measurements
Initially, sound intensity measurements were taken for the

kitchen hood at three different operating speeds. Sound in-
tensity measurements were performed in accordance with ISO
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Table 1. Sound power levels [A-weighted dB].
(1) Speed [18 Hz] (2) Speed [24 Hz] (3) Speed [34 Hz]

Left side 61 68 71
Front 58 64 69
Right side 58 65 68
Total 64 71 74

Table 2. First nine natural frequencies of the kitchen hood.
Experimental [Hz] Numerical [Hz]

4.40 4.16
4.91 5.92
8.46 8.85

10.11 10.57
13.56 13.60
30.47 29.07
43.56 44.76
48.83 48.83
53.15 52.25

9614. To determine the sound power level, the sound inten-
sity measurements were performed at 88 discrete points on a
surface in the form of a rectangular prism. A sound intensity
probe (Brüel & Kjær Type 3599), a portable two-channel data
acquisition unit, and measurement software (Brüel & Kjær
Pulse Type 3560C) were used to conduct the experimental
modal analysis. The results from the sound power measure-
ments are summarized in Table 1. The sound intensity map-
pings on each side of the kitchen hood for the three operating
speeds can be seen on our webpage.3 The measurement results
indicate that the most significant amount of noise is generated
by the shell structure.

Additionally, the new numerical model was solved by using
the specified operating conditions, and the results were com-
pared to the measurements of the kitchen hood that was tested
under the same conditions. These tests were used to validate
the numerical model. The results that were obtained in this
study will be used to provide recommendations for the proper
use of the numerical model in future studies. To validate the
numerical model, two studies were performed on the kitchen
hood. First an experimental modal analysis was performed.
Then, laser Doppler vibrometry was used to take operational
deflection shape measurements for the three operating speeds.

4.2. Modal Analysis
An experimental modal analysis was performed on the

kitchen hood. Accelerometers (Brüel & Kjær Type 4507B), a
modal hammer (Endevco Type 2302), a portable four-channel
data acquisition unit, and general purpose measurement soft-
ware (Brüel & Kjær Pulse Type 3560D) were used to con-
duct the experimental modal analysis. First, the measure-
ment points were identified for the experimental modal analy-
sis. Then, to identify the most suitable experimental measure-
ments, preliminary tests were conducted on the experimental
models. In each experimental model, the kitchen hood was
driven at various points by using the modal hammer to find the
most appropriate drive points. Additionally, several suspen-
sion positions were tested to determine the most appropriate
suspension point.

During the data collection, the measurement period was ex-
tended to avoid windowing of the signals. With this extended
measurement period, the acceleration measurements converge
to zero, which prevents an illusion of leakage. The natural
frequencies that resulted from the experimental and numeri-
cal modal analysis are shown in Table 2. Table 2 shows that
the natural frequencies that were calculated from the numerical
model are very close to the natural frequencies that were ob-
tained from the experimental studies. A comparison of the first
nine natural frequencies of the housing demonstrates that the

Figure 2. Natural frequencies, MAC table, and FRF obtained from experi-
mental and numerical results for the same point on the kitchen hood.

numerical model successfully represents a real system. Fig-
ure (2) presents a comparison of the natural frequencies, MAC
(Modal Assurance Criterion) table, and the FRF (Frequency
Response Function) data that were obtained from the experi-
mental and numerical results for the same point on the hous-
ing. In Fig. (2) and Table 2, the natural frequencies that were
obtained experimentally are indicated on the horizontal axis,
while the natural frequencies that were calculated from the nu-
merical model are indicated on the vertical axis. The natural
frequencies are matched according to their order, and a line is
drawn through the matching points. The angle of the line is
expected to be 45 degrees, and the results show good agree-
ment. Thus, the natural frequencies that were obtained from
the numerical and experimental studies are quite consistent.
The MAC table shows that the first four mode shapes overlap
between 80% and 100%. Higher mode shapes are also con-
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Table 3. Calculated overall surface vibration levels according to the existing
reference design.

Operating Speed
18 Hz 24 Hz 34 Hz
Overall surface vibration level [dB]

Existing design L18 L24 L34

Case I L18 - 2.7 L24 - 1.8 L34- 2.8
Case II L18 - 8.7 L24 - 9.8 L34- 7.2
Case III L18 - 16.5 L24 - 17.5 L34- 14.9

sistent with high overlap ratios. Figure (2) also shows the FRF
data that were obtained at the same point from the experimental
and numerical tests. The amplitude and the frequency charac-
teristics are reasonably close for the two data sets.

4.3. Operational Deflection Shape Measure-
ments

Operational deflection shapes (ODS) define the dynamic re-
sponse that the structure exhibits under normal operating con-
ditions. When the residential kitchen hood is operating un-
der steady-state conditions, numerous input forces act on the
structure. The potential inputs include, but are not limited
to, multi-axial motor vibration, blade imbalance, and airborne
noise created from the moving parts. All of these inputs pro-
duce responses across the entire structure. The ODS analysis
characterizes these responses at selected points throughout the
structure with respect to a reference point. Animations of the
vibrational response can be generated by using the data that is
collected at these points. These animations assist in highlight-
ing areas where the response is large at frequencies of inter-
est, such as the operating frequency and its harmonics. The
areas of large response can be correlated to assist in the iso-
lation of particular structure-borne noise components. For the
ODS test, the residential kitchen hood was set up normally.
The ODS measurements were taken on the kitchen hood for
the three operating speeds of 18 Hz, 24 Hz and 34 Hz. Mea-
surements were taken using a Polytec PSV-400 scanning laser
Doppler vibrometer. Data acquisition began once the kitchen
hood reached its steady-state operating speed. The ODS mea-
surement results for the three operating speeds can be seen
on our webpage.3 Along with these results, a distribution of
the surface vibrations that were calculated from the numerical
model is also presented on our webpage.3 Reasonable agree-
ment was found between the numerical results and the experi-
mentally measured operational deflection shapes.

5. RESULTS AND DISCUSSION

The numerical model can be used to predict the effects that
design changes will have on the dynamics of a kitchen hood.
In this section, the thickness, shell form, and patterns on the
surface of the formed stainless-steel main chassis that had a
significant effect on the structure-borne noise behaviour of the
kitchen hood are examined. In Case I, the material thickness
of a formed stainless-steel main chassis is increased to 1.2 mm.
The structural vibration behaviour of the kitchen hood that has
an increased thickness compared to the existing hood can be
seen on our webpage.3 In this case, the calculated total levels
of the surface vibration are less than the existing kitchen hood
for each of the three operating speeds. The calculated results
are summarized in Table 3.

In Case II, an elliptically shaped kitchen hood is examined
by using the numerical model as shown in Fig. 3a). The struc-
tural vibration behaviour of the kitchen hood for this case can
be seen on our webpage.3 In this case, the calculated total

a) b)

Figure 3. At a) elliptically designed kitchen hood; at b) kitchen hood with
patterns on the surface.

levels of the surface vibration are much smaller than the ex-
isting kitchen hood for each of the three operating speeds as
presented in Table 3.

In the Case III, the kitchen hood with patterns on the surface
is examined by using the numerical model as shown in Fig. 3b).
The structural vibration behaviour of the kitchen hood for this
case can be seen on our webpage.3 In this case, the calculated
total levels of the surface vibration are smaller than the existing
kitchen hood for the three operating speeds as summarized in
Table 3. Of the three case studies, Case III exhibits the largest
reduction of the calculated total levels of the surface vibration.

6. CONCLUSIONS
The goal of this study was to construct an engineering design

tool that provides a quick and relatively accurate method for
determining the structure-borne noise of a residential kitchen
hood. To accomplish this goal, a numerical model was devel-
oped that uses MSC/Nastran as the FEM simulation software.
A good numerical model is beneficial by shortening the prod-
uct development process and by significantly reducing the cost
of prototype development. The software is useful for consid-
ering how multiple design variables affect the structure-borne
noise of a kitchen hood.

Our numerical method was applied to an existing kitchen
hood configuration to compare our numerical predictions with
the results that were obtained from experimental measure-
ments. Overall, we found that the experimental and numerical
results show acceptable levels of agreement.

This study shows that the contribution of structure-borne
noise from the vibrating panels to the overall kitchen hood
noise levels is significant, especially at low frequencies. Thus,
panel vibration is a critical design consideration for end users
because of its relationship to comfort and noise. The para-
metric studies show that the best design, in terms of structure-
borne noise, is the final case study (Case III).
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Base isolation has long been established as an effective tool for improving the seismic performance of structures.
The effect of parameter uncertainty on the performance of base isolated structure is investigated in the present
study. With the aid of the matrix perturbation theory and first-order Taylor series expansion, the total probability
concept is used to evaluate the unconditional response of the system under parameter uncertainty. To do so,
the conditional second-order information of responses are obtained by time domain nonlinear random vibration
analysis through stochastic linearization. The implications of parametric uncertainty are illustrated in terms of
the responses of interest in design applications. The lead rubber bearing isolator, isolating a multistoried building
frame, is considered for numerical elucidation. It is observed that, although the randomness in a seismic event
dominates, the uncertainty in the system parameters also affects the stochastic responses of the system. Particularly,
the variance of the stochastic responses due to parameter uncertainty is notable.

1. INTRODUCTION

Vibration control technologies are widely acclaimed
amongst researchers and practicing engineers as a viable alter-
native to traditional seismic design, which relies on energy dis-
sipation through inelastic deformations of structural elements
under earthquake-induced vibrations. In contrast to the tradi-
tional design, passive/active vibration control strategies sub-
stantially reduce the structural responses to ensure minimal
damage to structures. A reduction of response is achieved
through control systems, using base isolation (BI), tuned mass
dampers, liquid column vibration absorbers, etc. Among these,
BI systems have been used and globally accepted as an effec-
tive technology to reduce the seismic effects on strategically
important structures as well as in retrofitting. In a BI system,
the building rests on a system of isolators uncoupling the build-
ing from the horizontal component of the ground motion to ef-
fectively reduce the seismic load transmission to the structure.
Various BI devices, such as rubber bearings (RB), lead rub-
ber bearings (LRB), high-damping rubber bearings (HDRB),
friction pendulums (FP), and resilient friction bearing isola-
tors (R-FBI), are conventionally adopted for seismic protec-
tion of buildings, bridges, and other infrastructural facilities.
These devices use different materials and design strategies to
disconnect the superstructure motion from the ground. The
effectiveness of BI systems and their performances has been
extensively studied.1–4 Several studies on stochastic response
of base-isolated structures under random earthquakes are also
notable.5–7 These studies provide important insight into the

behaviour of structures with BI systems. It is well established
that the response of BI systems largely depends on the char-
acteristics of the isolator, such as the yield strength for the
LRB and RB types of isolator, optimal damping for R-FBI,
and so on. Earlier studies have also provided parameters to
ensure optimal performances.7–9 In fact, studies on the opti-
mum design of such systems are well known.8–10 However,
most of these works are based on deterministic descriptions
of the parameters, characterizing the mechanical model of the
superstructure-BI system as well as the stochastic load model
for the earthquake. A major limitation of the deterministic ap-
proach is that the uncertainties in the performance-related de-
cision variables cannot be included in the parameters for the
process of optimization. Yet, the efficiency of such a system
may be drastically reduced if the parameters are off tuned to
the vibrating mode for which it is designed to suppress be-
cause of the unavoidable presence of uncertainty in the system
parameters. Therefore, the passive vibration control of struc-
tures using BI system with uncertain parameters has attracted
the interest of the vibration control community.

The developments in the field of passive vibration control by
using various passive devices and considering system parame-
ter uncertainty have been improved by many researchers.11–18

However, this is not the case for BI systems. Studies on the
performance of BI systems in connection with passive vibra-
tion control strategy are very limited. Benfratello et al. indi-
cated that the effect of uncertainty on the response of structure
with regard to base isolators and the ground motion filter pa-
rameters cannot be ignored.19 Kawano et al. studied the effect
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of uncertain parameters on the nonlinear dynamic response of
the BI structure in the framework of Monte Carlo simulation
methods.20 It has been demonstrated that uncertain parame-
ters play a significant role on the maximum responses of the
BI system. Scruggs et al. proposed a probability-based ac-
tive control synthesis for seismic isolation of an eight storey
base-isolated benchmark structure using uncertain model pa-
rameters.21 Zhou, Wen, and Cai22 and Zhou and Wen23 pre-
sented two adaptive back-stepping control algorithms for the
active seismic protection of building structures using an uncer-
tain hysteretic system. Though studies on the performance of
BI systems supplemented by the active vibration control strate-
gies are extensive, the effect of uncertain parameters on the re-
sponses and performance of BI systems with passive vibration
control is limited.

Thus, in the present study, the effect of system parameter un-
certainty on the performance of BI systems is evaluated under
a stochastic earthquake load. The response evaluation involves
consideration of uncertainty in the properties of the isolated su-
perstructure, isolator, and ground motion characteristics. With
the aid of the matrix perturbation theory using first-order Tay-
lor series expansion, the total probability concept is used to
evaluate the unconditional response of structures under param-
eter uncertainty.24 For this, the conditional second-order in-
formation of responses are obtained using time domain anal-
ysis of nonlinear random vibration by stochastic linearization.
Subsequently, the root mean square (RMS) of the top-floor dis-
placement and acceleration (considered to be the performance
index) are obtained to study the effect of system parameter un-
certainty. Numerical analysis elucidates the effects of param-
eter uncertainty on the stochastic responses of interest. The
implication of the parametric uncertainty is demonstrated in
terms of the disparity between the conditional and uncondi-
tional stochastic responses and their associated variances.

2. FORMULATIONS

2.1. Response of a Base-Isolated Structure
under a Random Earthquake

The structure considered in the present study is idealized as
a shear frame isolated by an LRB type of isolator. The ideal-
ization of the structure and the LRB is shown in Figs. 1(a) and
(b), respectively. Since the BI system substantially reduces the
structural response, the isolated structure can reasonably be as-
sumed to behave linearly. The damping of the superstructure
is assumed to be the viscous type. The energy is dissipated
through the hysteresis of LRB by large shear deformation and
by yielding of the lead core. Therefore, the force-deformation
behaviour of the LRB is highly nonlinear and is idealized as bi-
linear (Fig. 1(c))25–27 with associated parameters such as yield
displacement (q), yield strength (FY ), pre-yield (kb), and post-
yield stiffness (αkb). The structure is considered to be excited
by the horizontal component of the ground motion only.

The equation of motion for an n-storied superstructure can
be expressed as

Mẍ + Cẋ + Kx = −Mr(ẍg + ẍb); (1)

in which M, K, and C are the mass, stiffness*, and damp-
ing matrices of the structure, respectively, of order n × n;
x = [x1 x2 . . . xn]T is the displacement vector of the
superstructure containing the lateral displacement of any floor
relative to the isolator, shown in Fig. 1(a). The symbol r is
the influence coefficient vector implying the pseudo-elastic de-
formation of the respective floor due to a unit deformation of
the ground. The symbol ẍb is the acceleration of the isolator
with respect to the ground and ẍg is the earthquake ground ac-
celeration. The details of these matrices are presented in the
appendix.

The governing equation of motion for the isolator mass
(Fig. 1(b)) can be written as

mbẍb + cbẋb + Fb − c1ẋ1 − k1x1 = −mbẍg; (2)

where mb is the mass of the base, Fb is the restoring force of
the isolator, cb is the viscous damping in the rubber of the LRB,
and k1 and c1 are the stiffness and damping of the first storey
of the superstructure, respectively.

The bilinear force-deformation behaviour is adopted in this
study to model the LRB in which the force-deformation be-
haviour is expressed by the differential Bouc-Wen model.25, 26

Following this, the isolator restoring force can be expressed as

Fb(xb, ẋb, Z) = αkbxb + (1−α)FyZ; (3)

where kb is the initial elastic stiffness, xb and ẋb are the relative
displacement and velocity, α is the ratio of post- to pre-yield
stiffness (referred as rigidity ratio), and Fy is the yield strength
of the LRB. The variable Z is a variable quantifying the hys-
teretic behaviour of the isolator. Substituting Eq. (3) in Eq. (2)
and dividing by mb, the equation reduces to

ẍb+
cb
mb

ẋb+α
kb
mb

xb+
(1−α)Fy

mb
Z− c1

mb
ẋ1−

k1
mb

x1 = −ẍg.
(4)

The variable Z is governed by the differential equation

qŻ = −γ|ẋb|Z|Z|η−1 − βẋb|Z|η + δẋb; (5)

where q is the yield displacement of the isolator. The five pa-
rameters β, γ, η, α, and δ in Eq. (5) control the shape of the
hysteresis loop. The variable η controls the transition from the
elastic to plastic phase; when η →∞ (infinity), the model be-
comes elasto-plastic. The nature of the hysteretic behaviour is
controlled by β; β > 0 implies hardening and β < 0 results in
softening. Presently, the parameters are adopted as α = 0.05,
β = γ = 0.5, δ = 1, and η = 1 to correspond the bilinear
behaviour. However, such choices lead to smooth transition
from the elastic to plastic state, which is adequately taken to
be close enough to sharp bilinear behaviour.

The post-yield stiffness of the LRB (αkb) is selected to pro-
vide the specific time period of isolation (Tb), given by

Tb = 2π

√
M

αkb
; (6)

where M =
∑n
i=1mi + mb is the total mass of the isolation-

superstructure system, which is the sum of all the floor mass

8 International Journal of Acoustics and Vibration, Vol. 18, No. 1, 2013



S. K. Mishra, et al.: PERFORMANCE OF A BASE-ISOLATED BUILDING WITH SYSTEM PARAMETER UNCERTAINTY. . .

Figure 1. (a) Schematic of the base-isolated structure; (b) Mechanical model of the LRB; and (c) Idealized bilinear hysteresis of the LRB under cyclic loading.

(mi) and the isolator mass (mb). The viscous damping (cb) in
the rubber of the LRB is written as

cb = 2ξbMωb; (7)

where ξb is the damping ratio and ωb is the frequency (ωb =

2π/Tb) of the isolator. The variable q is the displacement cor-
responding to the yield strength, conveniently normalized (F0)
with respect to the weight (W = Mg) of the isolation-structure
system:

F0 =
FY
W

; (8)

g is the gravitational acceleration. The characteristic parame-
ters of the isolator are, therefore, the time period of isolation
(Tb), viscous damping (ξb), and the normalized yield strength
(F0). These parameters dictate the performance of isolation in
seismic vibration mitigation. The response quantities of the BI
system varies monotonically with respect to the isolator time
period (i.e., increasing time period reduces the response and
vice versa).7, 8 The response also reduces monotonically with
increasing damping for the LRB.7, 8 However, depending on
the type of BI system (e.g., R-FBI), this trend might not be the
same, and instead, the optimal value of damping minimizes
the response.7, 8 In the present study, the isolator time period is
fixed at 2 s, and the viscous damping in the isolator is taken as
10%.

The nonlinear force-deformation characteristic in Eq. (5)
of the LRB is too complicated to be readily incorporated in
the state-space formulation for the evaluation of the stochas-
tic responses and the associated sensitivity statistics. This has

been facilitated through stochastic linearization by writing a
stochastically equivalent linear form of the nonlinear Eq. (5)
as27, 28

qŻ + Ceẋb +KeZ = 0; (9)

where Ce and Ke are the equivalent damping and stiff-
ness values obtained from the least-square error minimization
among the nonlinear equation (Eq. (5)) and the linear equation
(Eq. (9)). Presently, for η = 1, the closed form expressions of
the equivalent linear damping and stiffness values are adopted
as27

Ce =

√
2

π

{
γ

E[ẋbZ]√
E[ẋ2b ]

+ β
√

E[Z2]

}
− δ; (10a)

Ke =

√
2

π

{
γ
√

E[ẋ2b ] + β
E[ẋbZ]√

E[Z2]

}
; (10b)

in which E[ ] is the expectation operator. In stochastic lin-
earization, the responses (xb, ẋb) of the system are assumed
to be jointly Gaussian. This assumption might not be correct,
given that the system is nonlinear in the presence of bilinear
hysteresis. However, it is demonstrated that this assumption
does not result in serious error so far as the stochastic response
evaluation is concerned.27, 28

In evaluation of the stochastic response of a structure un-
der a random earthquake, unlike the deterministic time histo-
ries, stochastic models are employed to describe the under-
lying stochastic process. Presently, the well-known Kanai-
Tajimi model is considered;29, 30 the power spectral density of
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the ground motion, Sẍg
(ω), in this model is expressed as

Sẍg
(ω) = S0

(
1 + 4ξ2g(ω/ωg)

2

[1− (ω/ωg)2]
2

+ 4ξ2g(ω/ωg)2

)
; (11)

where S0 is the white-noise intensity of the rock bed excitation
responsible for the seismic event; ωg and ξg are the characteris-
tic frequency and damping of the soil media over the rock bed
and underlying the building. The variable ω is the frequency
component of the ground motion. The parameter S0 is related
to the RMS ground acceleration (ügmax) of the earthquake as31

S0 =
2ξgügmax

π(1 + 4ξ2g)ωg
. (12)

The state-space formulation can include the white-noise type
of ground excitation directly in the formulation, whereas
the coloured-noise type of excitation (as in the Kanai-Tajimi
model) can be included in the formulation by incorporating the
equations for the Kanai-Tajimi filter within the dynamic equa-
tions of motion for the superstructure and the isolator. These
equations convert the rock bed white noise to colour while
passing through the filter. The equations for the Kanai-Tajimi
filter can be expressed as

ẍg = ẍf + ẅ; (13a)

ẍf + 2ξgωgẋf + ω2
gxf = −ẅ. (13b)

Substituting Eq. (13b) in Eq. (13a),

ẍg = −2ξgωgẋf − ω2
gxf ; (14)

in which ẅ is the white-noise intensity at the rock bed with
power spectral density of S0. The variables ẍf , ẋf , and xf are
the response of the Kanai-Tajimi filter. The seismic motion,
thus, is introduced in the formulation through incorporating
Eq. (13b) and substituting the expression ẍg from Eq. (14) in
the rest of the equations.

The above equations are now rearranged to represent the
state-space form. Multiplying both sides of Eq. (1) with M−1

and substituting the expression with (ẍg + ẍb) from Eq. (4),
Eq. (1) can be rewritten as

ẍ = −M−1Cẋ−M−1Kx+

r

(
cb
mb

ẋb + α
kb
mb

xb +
(1−α)FY

mb
Z − c1

mb
ẋ1 −

k1
mb

x1

)
.

(15)

Similarly, Eq. (2) for the base mass/isolator can be rewritten
by dividing both sides by base mass mb and substituting the
expression ẍg from the filter Eq. (14) as

ẍb = − cb
mb

ẋb − α
kb
mb

xb −
(1−α)FY

mb
Z +

c1
mb

ẋ1 +
k1
mb

x1+

2ξgωgẋf + ω2
gxf . (16)

Equation (9) for Z can be rewritten as

Ż = −Ce
q
ẋb −

Ke

q
Z. (17)

Also, the filter equations from Eq. (13b) can be expressed as

ẍf = −2ξgωgẋf − ω2
gxf − ẅ. (18)

The state variables are introduced in a state vector as

Y =
[
xT xb Z xf ẋT ẋb ẋf

]T
. (19)

Equations (15)–(18) can be expressed in state-space form as

d

dt
Y = AY + w; (20)

where A is the augmented system matrix and

w =
[
0 0 0 0 0 0 −ẅ

]T
. (21)

In the equations above, the vector x has a dimension equal to
the number of structural degrees of freedom (n), and Y has a
size of (2n+5). The structure of the augmented system matrix
A is provided in the Appendix.

The response of the system can be evaluated by solving
Eq. (20). In stochastic dynamic analysis, the statistics, such
as covariance of responses, are of interest. It can be shown that
the covariance matrix CYY of the response vector Y (assumed
as Markovian) evolves following an equation of the form32

d

dt
CYY = ACYY

T+ CYYAT+ Sww. (22)

CYY has dimensions of (2n+ 5, 2n+ 5) with its terms as

CYiYj = E[YiYj ]. (23)

The matrix Sww contains a term that quantifies the intensity
of the white-noise excitation at the rock bed, denoted as S0.
Following the structure of w, matrix Sww has all terms that
equal zero, except the last diagonal, which is 2πS0.

The covariance of responses can be obtained by solving
Eq. (22). It should be noted that even though the stochastic
linearization is adopted for the nonlinear isolator behaviour,
the system still shows the nonlinear characteristics because the
equivalent linear stiffness and damping are still functions of
the responses

Ce = f(ẋb, Z); Ke = g(ẋb, Z); (24)

where f and g refer to the nonlinear functions of the response
quantities ẋb and Z, the isolator velocity, and hysteretic dis-
placement, respectively (as in Eq. (10a) and (10b)). In solving
Eq. (22), these terms are modified in each iteration, following
the response statistics of the previous steps. Iterations stops
(converges) when the response from two successive steps are
practically identical.

The equations for response statistics of their derivative pro-
cess (such as acceleration ẍ, ẍb) are obtained as

CẎẎ = ACYYAT+ Sww. (25)

The RMS responses are obtained from their covariance:

σYi
=
√
CYiYi

. (26)
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The absolute top-floor acceleration (ün) and the relative top-
floor displacement (xn) are two important design parameters
for a BI system. The RMS of the top-floor displacement re-
sponse is given by

σxn
=
√
CY Y (n, n); (27)

and the top-floor acceleration (ün) is obtained by summing up
the relative top-floor (ẍn), isolator-base (ẍb), and the ground
acceleration (ẍg) as

ün = ẍg + ẍb + ẍn. (28)

Then, the RMS top-floor acceleration can be written as

σünün
=
√
CẎ Ẏ (2n+3, 2n+3) + CẎ Ẏ (2n+4, 2n+4)+

CẎ Ẏ (2n+5, 2n+5) ; (29)

where σ2
ẍg

= CẎ Ẏ (2n+3, 2n+3), σ2
ẍb

= CẎ Ẏ (2n+4, 2n+4),
and σ2

ẍn
= CẎ Ẏ (2n+5, 2n+5) are the variance of ground

acceleration, acceleration of the isolator, and top-floor acceler-
ation, respectively.

Subsequently, whenever they are discussed, the displace-
ment and accelerations represent the motion of the top floor in
the superstructure. The stochastic dynamic analysis, presented
herein, is based on an earthquake load modelled as a stationary
stochastic process. Extending this analysis to a non-stationary
earthquake model will be straight forward. However, doing so
will involve evaluating the time-dependent response statistics.

2.2. Sensitivity of Stochastic Response
under Parametric Uncertainty

The stochastic response evaluation presented above assumes
that the system parameters are deterministic.33 However, un-
certainties in the system parameters may lead to large and un-
expected excursion of responses, causing drastic reduction in
accuracy and precision of safety evaluation.34 In design of
such a system, apart from the stochastic nature of earthquake
loading, the uncertainties with regard to these parameters are
expected to be influential. The sensitivities of the stochastic
responses with respect to the uncertain parameters are essen-
tial in considering the effects of parametric uncertainty. The
formulation to obtain the sensitivities is presented.

The random variability is reasonably assigned to the param-
eters of the isolator, the structure, and in the earthquake load,
denoted by

θ =
[
k c kb cb FY ξg ωg S0

]T
; (30)

where θ is the vector of random design parameters, k is the uni-
form storey stiffness, c is the uniform damping of each storey,
and the other parameters are defined earlier. For simplicity
of presentation, uniform storey stiffness and damping are con-
sidered herein. However, the proposed formulation is not re-
stricted to such an assumption and can easily be applied for
varying values of k and c along different stories. First-order
sensitivity of the base of Eq. (22) with respect to the i-th pa-
rameter θi is written as

d

dt

∂CYY

∂θi
= A

∂CYY

∂θi

T

+
∂CYY

∂θi
AT+ B; (31)

in which ∂CYY

∂θi
is the sensitivity of response covariance

(CYY) with respect to the parameter θi, and B is defined by

B =
∂A

∂θi
CYY

T+ CYY
∂A

∂θi

T

+
∂Sww

∂θi
. (32)

It should be noted that Eq. (31) has the same form as Eq. (22)
and can be solved similarly. The sensitivity of the time deriva-
tive processes (i.e., acceleration) can be obtained with

∂CẎẎ

∂θi
= A

∂CYY

∂θi
AT+ B1; (33)

where

B1 = ACYY
∂A

∂θi

T

+
∂A

∂θi
CYYAT+

∂Sww

∂θi
. (34)

The second-order sensitivity is obtained by further differenti-
ating Eq. (33) with respect to the parameter θj . After rear-
ranging the terms, the equation for the second-order sensitivity
becomes

d

dt

∂2CYY

∂θi∂θj
= A

∂2CYY

∂θi∂θj

T

+
∂2CYY

∂θi∂θj
AT+ C; (35)

where C is given as

C =
∂A

∂θj

∂CYY

∂θi

T

+
∂CYY

∂θi

∂A

∂θj

T

+
∂2A

∂θi∂θj
CYY

T+

∂A

∂θi

∂CYY

∂θj

T

+ CYY
∂2A

∂θi∂θj

T

+
∂CYY

∂θj

∂A

∂θi

T

+
∂2Sww

∂θi∂θj
.

(36)

The statistics for the respective time derivative processes are
also expressed as

∂2CẎẎ

∂θi∂θj
= A

∂2CẎẎ

∂θi∂θj
AT + C1; (37)

where C1 is given by

C1 = A
∂CYY

∂θi

∂A

∂θj

T

+
∂A

∂θj

∂CYY

∂θi
AT+

∂A

∂θj
CYY

∂A

∂θi

T

+

A
∂CYY

∂θj

∂A

∂θi

T

+ ACYY
∂2A

∂θi∂θj

T

+
∂2A

∂θi∂θj
CYYAT+

∂A

∂θi
CYY

∂A

∂θj

T

+
∂A

∂θi

∂CYY

∂θj
AT+

∂2Sww

∂θi∂θj
. (38)

Equations (31) and (35) can be solved similarly for first- and
second-order sensitivity, respectively. It should be mentioned
that some of the matrices involved in Eq. (35) for evaluating C

are null. This is because A and Sww have zero-th/first-order
terms, which are a function of random variables θi, which van-
ishes after first-/second-order differentiation with respect to θi.

The sensitivities of the RMS responses are obtained by dif-
ferentiating Eq. (26) with respect to the i-th random parameter
as

∂σYm

∂θi
=

1

2

1√
CYmYm

∂CYmYm

∂θi
;

∂2σYm

∂θi∂θj
=

1

2

1√
CYmYm

[
∂2CYmYm

∂θi∂θj
− 1

2

1

CYmYm

(
∂CYmYm

∂θi

)2]
.

(39)
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In the above equation, Ym is the response; σYm
is the RMS re-

sponse of Ym. The terms ∂σYm

∂θi
and ∂2σYm

∂θi∂θj
represent the first-

and second-order sensitivity with respect to the parameters θi
and θj , respectively.

It should be mentioned here that the system parameter ma-
trix A, defined in the Appendix, is an explicit function of un-
certain model parameters, θ. Thus, the derivatives can be di-
rectly obtained by differentiating with respect to each parame-
ter. However, the formulation does not impose any limit to the
number of elements or degrees of freedom used in the anal-
ysis. But with an increasing number of elements, the matri-
ces will be bigger to accommodate the computational demand.
For more complex super-structural systems, involving finite el-
ement modelling for response evaluation, the matrix A cannot
be obtained explicitly. For implicitly generated element mass,
stiffness, and the damping matrix of the system, the differenti-
ation can be carried out through a sequence of calculations or,
alternatively, by finite difference approximation and can sub-
sequently be used to obtain the partial derivative of A. There
are important practical considerations for computing deriva-
tives that are required in structural sensitivity analysis.34, 35

2.3. Parameter Uncertainty and
Unconditional Stochastic Response

The stochastic response of a structure under earthquake
loading depends on the system parameters and can be ex-
panded around the mean value of the uncertain parameters
(with the assumption that the random variability is small) us-
ing the Taylor series. The random system parameter (θi) can be
viewed as the superposition of the deterministic mean compo-
nent (θi) with a zero mean deviatoric component (∆θi). Thus,
the Taylor series expansion of the RMS response at the mean
value of the random parameters can be written as

σYm = σYm(θi)+

nv∑
i=1

∂σYm

∂θi
∆θi+

1

2

nv∑
i=1

nv∑
i=1

∂2σYm

∂θi∂θj
∆θi∆θj ;

(40)
in which nv is the total number of random variables involved,
and the derivative of the respective response quantities are the
sensitivity terms addressed in the previous section. Assum-
ing that the uncertain random variables are uncorrelated, the
quadratic approximation provides the expected value of the un-
conditional RMS response as

σYm = σYm(θi) +
1

2

nv∑
i=1

∂2CYmYm

∂θ2i
σ2
θi ; (41)

where σ2
θi

is the standard deviation of the i-th random param-
eter. The linear approximation of the Taylor series expansion
furnishes the variance of the RMS response:

var [σYm ] = σ2
σYm

=

nv∑
i=1

(
∂σYm

∂θi

)2

σ2
θi . (42)

Such responses are referred to as unconditional because the
condition that the structural parameters to be deterministic has
been relaxed while estimating such responses.33

Table 1. Statistical properties of the random system parameters.

Parameters Mean
Coefficient Distribu-
of variation tion

storey stiffness (k) 5830 kN/m normal
storey damping (c) 264499.5 kNs/m normal

isolator stiffness (kb) 56791296 kN/m normal
isolator damping (cb) 10% normal

isolator yield- 5% of total 5%–15%
normal

strength (FY ) weight (W )
ground damping (ξg) 60% normal

ground frequency (ωg) 5 rad/s normal
seismic intensity (S0) 0.05 m/s2 normal

Figure 2. The normalized (a) second-order and (b) first-order terms dictating
the contribution of individual stochastic parameters in affecting the uncondi-
tional response and their variances.

3. NUMERICAL ILLUSTRATIONS

A five-storied shear building (n = 5) is studied to investigate
the effects of parametric uncertainty on the performance of a
BI system subject to stochastic earthquake. The mass, stiff-
ness, and damping (mi, ki, ξi) of each floor are assumed to be
identical. The values of stiffness and mass for each storey are
assigned to provide the desired value of time period (T ) to the
superstructure (varying from 0.1 s to 1 s) employed for para-
metric study. The uniform viscous damping ratio (ξ) is taken
as 2%, unless specifically mentioned. The LRB is character-
ized with a mass ratio (mb/m) of 1, the viscous damping ratio
(ξb) of 10%, and the normalized yield strength (F0) of 0.05,
unless otherwise specified. The parameters characterizing the
random earthquakes are ωg , ξg , and S0. All random param-
eters in the study are assumed to be statistically independent,
normally distributed, and the properties are listed in Table 1.

In prior to present the response of the BI system under pa-
rameter uncertainty, the relative importance of the random sys-
tem parameters are studied through a bar chart sensitivity anal-
ysis (see Figs. 2(a) and 2(b)) in order to assess the contribution
of the individual random variable in affecting the responses
(shown in Eqs. (41) and (42)). In these figures, the first- and
second-order sensitivity terms are multiplied by the variance
of the respective random variables. While plotting, the terms
are normalized with respect to the square root of sum of all
squared terms. For first-order terms (governing the variance of
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Figure 3. Conditional and unconditional RMS top-floor (a) displacement and (b) acceleration, and coefficient of variation of top-floor (c) displacement and
(d) acceleration with varied superstructure flexibilities and different degrees of uncertainty.

Figure 4. Conditional and unconditional RMS top-floor (a) displacement and (b) acceleration, and coefficient of variation of top-floor (c) displacement and
(d) acceleration with varied superstructure damping for different degrees of uncertainty.
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Figure 5. Conditional and unconditional RMS top-floor (a) displacement and (b) acceleration, and coefficient of variation of top-floor (c) displacement and
(d) acceleration with varied isolation time period and different degrees of uncertainty.

Figure 6. Conditional and unconditional RMS top-floor (a) displacement and (b) acceleration, and coefficient of variation of top-floor (c) displacement and
(d) acceleration with varied isolation damping and different degrees of uncertainty.
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Figure 7. Conditional and unconditional RMS top-floor (a) displacement and (b) acceleration, and coefficient of variation of top-floor (c) displacement and
(d) acceleration with varied yield strength of isolator and different degrees of uncertainty.

Figure 8. Conditional and unconditional RMS top-floor (a) displacement and (b) acceleration, and coefficient of variation of top-floor (c) displacement and
(d) acceleration with varied seismic intensity and different degrees of uncertainty.
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unconditional response), this is expressed as

(∂f/∂xi)σxi√∑nv
i=1(∂f/∂xi)2σ2

xi

; (43)

and a similar expression is used for contribution of the second-
order terms (governing the unconditional response). Figure 2
clearly indicates that the superstructure stiffness is the most
important parameter as far as the top-floor displacement re-
sponses are concerned, whereas the top-floor acceleration re-
sponse is primarily affected by the uncertainty in the ground
frequency (ωg) and intensity of the earthquake (S0). The
second-order sensitivity of both the responses with respect to
the seismic intensity is negative. It is noteworthy that the first-
order sensitivity of top-floor acceleration with respect to the
ground frequency is much higher than the ground damping,
whereas for the second-order sensitivity, the trend is the oppo-
site. These observations conform to the fact that the displace-
ment response is governed by the system stiffness, whereas
the floor acceleration, being a measure of the amount of seis-
mic force transmitted to the structure, is dictated by the seismic
ground motion.

Though the uncertainty in the excitation process dominates
the performance of the BI system, the uncertainties in the
system parameters, in particular, the superstructure stiffness,
damping, and yield strength of the LRB have noticeable in-
fluence and cannot be neglected. With this nature of the para-
metric randomness and the relative importance, the conditional
and unconditional response of the system and the associated
coefficient of variation are studied subsequently.

The conditional and the unconditional responses of the BI
system are presented for varied superstructure flexibilities in
Figs. 3(a) and 3(b). The superstructure flexibilities are ex-
pressed in terms of the time period of the superstructure. The
parametric uncertainty increases the RMS displacement and
acceleration, shown in Figs. 3(a) and 3(b). The increase in the
RMS acceleration is, however, lesser than the RMS displace-
ment. This difference might be the result of the absolute ac-
celeration including ground acceleration, which is irrespective
of the parametric uncertainty. The coefficient of variation for
the respective unconditional responses are shown in Figs. 3(c)
and 3(d). It should be noted that the coefficient of variation in-
creases with increasing randomness for the range of considered
superstructure flexibilities. The coefficient of variation for the
RMS displacement is almost three orders of magnitude higher
compared to that of RMS acceleration.

The variations of the conditional and unconditional re-
sponses of the BI system are shown with respect to the varied
damping of the superstructure in Figs. 4(a) and 4(b). It is im-
portant to note that the deterministic system underestimates the
superstructure RMS displacement and acceleration. The dif-
ference increases with an increasing level of uncertainty. Ob-
serving the parametric variations of responses with the super-
structure damping, it can be inferred that the RMS acceleration
response is more sensitive to the variation of damping. How-
ever, the change of coefficient of variation of the acceleration
with an increasing level of randomness in system parameters

is less than that of the displacement, implying less sensitivity
of the acceleration to uncertainty.

The conditional and unconditional responses are presented
with varied time period of isolation in Figs. 5(a)–(d). These
figures also show that the unconditional responses are greater
than the respective conditional responses. The coefficient of
variation of the acceleration is seen to be a few orders of mag-
nitude less than that of displacement.

The parametric variation of the responses and their coeffi-
cients of variation are shown with respect to isolator damping
in Figs. 6(a)–(d). As described earlier, for different level of
randomness in the system parameters, the unconditional re-
sponses and associated coefficients of variation are affected
differently. The displacement is more affected by the uncer-
tainty compared to the acceleration, as shown in terms of the
unconditional responses and associated coefficients of varia-
tion. The effect of uncertainty uniformly affects the disparities
among the conditional and unconditional responses. The co-
efficient of variation of the unconditional responses does not
change significantly with the variations of isolator damping,
confirmed by Figs. 6(c) and (d).

The responses of the BI system are further studied with re-
gard to varied yield strength of the isolator in Figs. 7(a)–(d).
As described earlier, the conditional responses are lower com-
pared to the respective unconditional responses. It is notewor-
thy that the isolator yield strength presents the optimal value
for which acceleration/displacement is the minimum. Obvi-
ously, the optimal yield strength values for minimum displace-
ment and acceleration are not necessarily identical. It should
be noted that the associated coefficient of variation of the dis-
placement is almost irrespective of the parametric variations of
the yield strength (Fig. 7(c)), whereas the coefficient of varia-
tion for the acceleration shows a definite trend with respect to
varying isolator yield strength (Fig. 7(d)). The coefficient of
variation of the unconditional acceleration response decreases
first and then starts increasing with increasing yield strength
of the isolator, which is unlikely for the variations of the re-
sponses presented so far. Comparing Figs. 7(b) and 7(d), it
is observed that the optimal values of the yield strength cor-
responding to the minimum RMS acceleration might not en-
sure that the respective coefficient of variation is also at the
minimum. Thus, designers must deal with two conflicting ob-
jective functions, i.e., the minimization of the unconditional
RMS response and its variance. This problem can formally be
addressed by formulating it as bi-objective optimization in or-
der to minimize the unconditional RMS response as well as its
dispersion (coefficient of variation) simultaneously—referred
to as robust design optimization (RDO). The optimum LRB
parameters in RDO are achieved from a set of Pareto optimal
solutions by ensuring the desired level of robustness in the de-
sign. The issue is emphasized, though not studied, in this pa-
per.

It is noteworthy that the trend in Figs. 7(a) and (b) might not
necessarily be the same as that observed in an isolated structure
subject to a particular ground motion time history, even though
for large numbers of ground motion time histories, the average
trend should match that of the stochastic response in an ensem-
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Table 2. Disparities among the conditional and unconditional responses for
ranges of parameter variations.

Discrepancy Discrepancy
Lower Uncer- among cond. among cond.

System and tainty and uncond. and uncond.
parameters upper (cov, top-floor dis- top-floor ac-

value %) placement (%) celeration (%)
Lower Upper Lower Upper

Structural 0.1
5 0.27 0.41 0.020 0.019

period 1.0
10 1.10 1.43 0.08 0.07
15 2.48 3.08 0.19 0.17

Structural 0.01
5 0.00 0.00 0.03 0.03

damping 0.09
10 0.90 0.90 0.90 0.11
15 2.70 1.81 0.27 0.25

Isolator 1.5
5 0.00 0.00 0.044 0.02

period 2.5
10 1.40 1.25 0.17 0.08
15 2.80 2.50 0.39 0.18

Isolator
0.01

5 0.0 0.0 0.015 0.017
yield

0.20
10 0.60 0.78 0.055 0.066

strength 15 1.80 2.34 0.12 0.15

Isolator 0.025
5 2.5 0.0 0.15 0.02

damping 0.10
10 3.33 1.06 0.25 0.08
15 5.00 2.13 0.42 0.20

Seismic 0.01
5 0.00 0.00 0.018 0.030

intensity 0.09
10 0.00 0.60 0.025 0.12
15 2.32 2.42 0.20 0.27

ble sense. This is due to the wide disparities which exist in the
power spectrum of a particular ground motion time history and
the idealized Kanai-Tajimi spectra, employed in this stochastic
analysis.

The behaviour is further studied for earthquake scenario of
different intensities, shown in Figs. 8(a)–(d). With increas-
ing seismic intensity, the RMS response increases for obvious
reasons. The coefficient of variation of the unconditional dis-
placement response is almost three times higher than the cor-
responding acceleration response. However, the coefficient of
variation for both is insensitive to the variations in the seismic
intensities (Figs. 8(c) and (d)).

The discrepancies among the conditional and unconditional
responses and the associated coefficients of variation have been
presented, along with the parametric variations of responses
with the structural and isolator parameters. Though the varia-
tions of the response coefficients of variation are quite obvious
from the plots, the response values and associated disparities
(in %) are presented in Table 2 to provide more precise esti-
mates of the disparities. The particular cases presented here
correspond to the minimum and maximum value of the re-
spective parameters considered in the parametric study. Ta-
ble 2 shows that the differences among the conditional and un-
conditional RMS displacement responses could be as high as
5%, whereas for acceleration response, the difference is around
0.5%. The associated coefficients of variation are around 20%
for displacement and 8% for acceleration (Figs. 7(c), 7(d), 8(c),
and 8(d)). These differences (particularly for displacement) are
substantial, considering the fact that the peak value of the re-
sponses could be as high as three to four times (peak factor)
of the respective RMS values.31, 32 Thus, system parameter un-
certainty is a critical issue in response evaluation and design
of BI systems in order to ensure the desired level of seismic
safety.35

4. CONCLUSIONS

The effects of system parameter uncertainty on the perfor-
mance of BI systems subject to a stochastic earthquake load
has been examined. This study incorporates the effects of sys-
tem parameter uncertainty in the response evaluation through
perturbation-based analysis of the dynamic equations of mo-
tion. The degree of parameter uncertainty is assumed to be
small so that the linear first-order perturbation analysis is valid.
The responses are found to be in parity with the results ob-
tained from the usual random vibration analysis assuming de-
terministic system parameters. However, a definite change in
the responses occurs when the effects of system parameter un-
certainty are included. In general, the efficiency of a BI sys-
tem tends to decrease as the level of uncertainty increases,
though efficiency is not completely eliminated. Therefore,
even though the randomness in the seismic events dominates,
the random variations of the system parameters play a signif-
icant role. The randomness in the structural stiffness governs
the unconditional RMS displacements and associated coeffi-
cient of variation, whereas the randomness in the characteris-
tic ground frequency and intensity governs the unconditional
RMS acceleration response and coefficient of variation. The
unconditional RMS responses are always greater than (floor
displacement, acceleration) the conditional responses. The dis-
crepancies among the conditional and unconditional RMS re-
sponses are observed to be 5% for the superstructure displace-
ment, with the maximum possible value of isolator damping.
The respective coefficient of variation of the unconditional re-
sponses for the top-floor superstructure displacement and ac-
celeration are around 19% and 6%, respectively. With the
observed discrepancies amongst the conditional and uncondi-
tional responses and coefficient of variation, the peak value of
the respective responses could be significantly different from
the conditional one. Thus, disregarding the system uncertainty
might lead to an unsafe design. From the parametric variations
of the responses with respect to the isolator yield strength, it
is observed that the optimal yield strength exists to ensure the
best performance, which might be affected by the uncertainty.
The optimum value of the yield strength might be based on two
mutually conflicting objective function containing the mini-
mization of both the unconditional responses as well as the
associated standard deviations, thus making the problem ideal
for reliability-based robust optimization. However, this aspect
requires further study.
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APPENDIX

The structure of the augmented system matrix (Eqs. (20)
and (22)) A for a n-storied shear building is given in Eq. A.1
All the parameters in the matrices have already been defined in
the main text. The variable δij is the Kronecker’s delta defined
as δij = 1 when i = j and δij = 0 when i 6= j. The aug-
mented stiffness (M−1K) and damping (M−1C) matrices are
indicated in the respective block of dimension n× n.

The mass matrix is diagonal containing the storey mass in
each diagonal term. The stiffness and damping matrices take
the following form:

K =


k1 + k2 −k2 · · · · · · · · ·
−k2 k2 + k3 · · · · · · · · ·
· · · −ki ki + ki+1 −ki+1 · · ·
· · · · · · · · · kn + kn−1 −kn
· · · · · · · · · −kn kn


(A.2)

C =


c1 + c2 −c2 · · · · · · · · ·
−c2 c2 + c3 · · · · · · · · ·
· · · −ci ci + ci+1 −ci+1 · · ·
· · · · · · · · · cn + cn−1 −cn
· · · · · · · · · −cn cn


(A.3)

in which ki and ci are the stiffness and damping of the i-th
storey of the building. The damping for the i-th storey is ex-
pressed as

ci = 2ξ
√
kimi; (A.4)

where ξ is the viscous damping ratio of the superstructure.
The matrix for the rock bed seismic motion, characterized

by the white noise of intensity S0 is expressed as

Sww =


0 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

0 0 · · · 0 2πS0

 (A.5)

which is a square matrix of dimension (2n+ 5).
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Drill bit whirl is a common phenomenon in rotary drilling rigs. It causes severe drill collar damage and borehole
enlargement, leading to an irrevocable decrease in drilling efficiency. The majority of the research in this field
concentrates on designing new drill bits or placing shock absorbers near the bottom hole assembly to minimize the
damage caused by drill bit whirling. However, practically, vibrations in rotary drilling are minimized by tuning
the upper rotary table speed or varying the weight on drill bit. This work explores the design and implementation
of an adaptive controller to minimize vibrations of drill bits, particularly bit whirl. The developed controller
achieves the vibration mitigation by varying the upper rotary speed. Moreover, the developed control law takes
into account the vibrational frequencies and critical operating speeds of the drill string, thus also being capable of
avoiding resonant vibrations. Experimental results are provided to prove the vibration mitigation capability of the
developed controller.

NOMENCLATURE
A(z) Discrete process model denominator
B(z) Discrete process model numerator
C(z) Discrete noise model numerator
D(z) Discrete noise model denominator
E Compression constant
e(k) Discrete process noise vector
f Controller selected frequency of operation
fn Natural frequency
G Shear constant
k Discrete time instant
L Length of the drill string
N Critical speed of operation
n Normal frequency of operation
n(t) White noise
t Continuous time instant
u(k) Discrete process input
u(t) Process Input
y(k) Discrete Process output
y(t) Process output

1. INTRODUCTION

Bit whirl is a common phenomenon arising due to high lat-
eral vibrations in rotary drilling rigs. It causes reduction of
drilling efficiency, drill pipe bending, and well borehole en-
largement. Hence, lateral vibrations of the drill bit are the most
destructive type of vibrations in rotary drilling.1–3

Drill bit whirl can also occur when drill bits have an imbal-
ance in the drill bit design during manufacturing or when there

is a slight bend in the drill collars due to high lateral vibra-
tions.4 Both of these imperfections cause lateral vibrations to
be predominant.5

Most of the commercially available drill bits have imbal-
ances in the range of 2% to 10%, with 2% only for a very high
commercially graded bit.6 To overcome this manufacturing
imbalance and reduce drill bit whirl, many new drill bit models
were designed.6–9 However, these designs cannot mitigate bit
whirl completely due to manufacturing imbalances. Practical
solutions to minimizing and stabilizing drill string vibrations
using current monitoring technology include changing the up-
per rotary speed or varying the weight on bit.10 This study
attempts to provide a practical solution to minimizing drill bit
whirl using adaptive controllers.

Adaptive controllers are a very exciting new technology,
and a few researchers have recently developed and tested
adaptive controllers to mitigate drill string vibrations. Fubin
et al. developed an adaptive proportional-integral-derivative
(PID) control strategy of the drilling rotary system to elimi-
nate the stick-slip oscillation of the bit.11 The main objective
of the adaptive PID controller is to improve system character-
istics of the output-to-input and dynamic response. The re-
sults of the controller have been proven only in simulations.
Jijón et al.12 designed an adaptive observer and analysed the
Drilling-Oscillation Killer (D-OSKIL) control law proposed
by C. Canudas-de Wit et al.13 The D-OSKIL controller uses
a vertical force (weight on the bit) as an additional variable to
eliminate the stick-slip effect. Jijón et al.12 tried to improve
the control law with an additional adaptive observer so that the
unknown states of the system could be estimated. Smoother
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estimates were obtained; however, no different control law has
been proposed. Li, Qizhi, and Nurzat developed a time-varying
sliding mode adaptive controller for the mathematical model
of a rotary drilling system.14 The controller used is PID, and
the simulation results proved a good time response for the bit.
However, the vibrational frequencies of the upper and lower
rotary and their angular velocity magnitudes were not clear.
The simulations showed a good tracking performance, but in
our view, the drill bit is an underactuated part of the rotary
drilling system,15 and hence its accurate movements cannot be
completely predicted or verified through simulations.

The literature review revealed a gap for a practically appli-
cable control solution to drill bit whirl. This study attempts
to design an adaptive control law for drill bit whirl. The con-
troller we developed and its efficiency were also tested experi-
mentally on a laboratory prototype of rotary drilling.

2. THEORETICAL METHOD AND FINDINGS

During our experiments, the vibration associated with the
drill string increased substantially when operated near or at
some critical speeds. Dareing16 states that various vibrational
modes (lateral, torsional, and axial) have separate excitation
frequencies associated with each of them, and hence there is
a need for identifying these critical speeds in order to better
avoid these speeds during operation. Dareing also developed
a formula which proves a direct proportional relation between
the critical speeds and the natural frequencies of the drill col-
lar (tubular steel sections—the component of the drill string
near to the drill bit). However, the drill collar length changes
during drilling operation as the drill borehole becomes deeper.
The natural frequencies of the drill collar associated with each
of the vibrational modes also change.16–18 Even though most
of the designed controllers fail to include this significant the-
ory, Bailey et al. developed a bottom hole assembly modelling
tool that avoids the critical modes causing resonance for a par-
ticular operating range.19

Drill bit imbalance together with borehole friction increases
the lateral vibrations in rotary drilling. Experimental tests were
conducted on the laboratory prototype of a rotary drilling rig to
analyse the system behaviour. Initially, tests were conducted
with an imbalance of 5.2% added on the drill bit, based on
research findings from Jansen4 and Warren, Brett, and Sinor6

to account for drill pipe eccentricity. The experimental tests
conducted to detect the natural frequencies of the system are
discussed below.

The laboratory set up with the imbalanced bit was operated
at three speeds, spanning from low to high, selected from the
normal operational speed range (30–100 RPM) used in rotary
drilling. The angular velocity of the drill bit was logged during
operation using rotary encoders and programmed using a de-
veloped MATLAB program to plot the fast Fourier transforma-
tion (FFT) response. The FFT frequency response of the drill
bit angular velocity was analysed to detect the system natural
frequencies (Fig. 1). It was noticed that the system has more
than one natural frequency, and the resonant frequencies of the
system do not change when varying the operational speed.

In order to analyse the borehole effect on the drill bit whirl
dynamics, a layer of natural rubber sponge was added as a lin-
ing to the casing surrounding the drill bit to represent the fric-
tional effect of mud and fluid on the drill bit within the bore-

Figure 1. FFT response of imbalanced drill bit whirling with no borehole
effect.

Figure 2. FFT response of drill bit whirling with borehole friction effect.

hole. The system was again run on the previous operational
speeds. The FFT frequency response of the drill bit angular
velocity was again plotted using the developed MATLAB pro-
gram. More prominent vibrations were now exhibited by the
system. The obtained FFT plot is exhibited in Fig. 2.

Comparing the FFT plot in Fig. 2 with Fig. 1, it should be
noted that the resonant modes are excited and more prominent
when the external borehole effect is present. Experimentally,
the lateral and torsional vibrations exhibited by the drilling sys-
tem were noticeably more severe under borehole friction.

Using the data in the frequency response plots, the critical
speeds for the system for the various excitational modes were
found. The speeds were obtained to closely match the calcu-
lated speeds using the formula developed (Eq. (10)) by Dare-
ing.16 If the system is operated at operational speeds near or
at the critical resonant frequencies in the plots above, high vi-
bration should be exhibited. The recordings of the experiments
conducted to observe the resonant vibrations near the critical
speeds are plotted in Figs. 3(a)–(d).

In Figs. 3(a)–(d), the residual signal is the difference be-
tween the angular velocities of the upper and lower flywheels.
It should be noted that the limit cycling is present and notice-
able at 53 and 83 RPM. However, they are not visible in the
plots for 23 and 69 RPM, though the lower flywheel was visi-
bly whirling due to the friction imposed by the rubber sponge
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Figure 3. Experimental response at (a) 23 RPM, (b) 53 RPM, (c) 69 RPM, and (d) 83 RPM.

lining on the casing. The tests confirmed the calculated val-
ues of the critical operational speeds. The lateral vibrations
causing the whirl effect is reflected in the bit angular velocity
at critical speeds of operation, and they disappeared at other
operational speeds. The tests also proved the significance of
developing a control law which could effectively avoid operat-
ing the drilling system near its critical operational speeds.

3. CONTROL METHODOLOGY AND
EXPERIMENTAL RESULTS

The control strategy which would minimize the vibrations
affecting the drill string and stabilize it must ensure that the
drill string is operated at a velocity away from its critical
speeds of rotation. The drill string natural frequencies and crit-
ical speeds vary during the drilling process as the well deepens
and the drill string length changes. This fact poses a chal-
lenge to developing a method to identify the critical speeds of
the system during drilling operation. New tools which have
been developed, such as the BlackBox downhole dynamics
data recorder, can log dynamic data, and researchers have iden-
tified methods for online detection of natural frequencies for
complex nonlinear systems.20–22 The controller should adapt
its control output to effectively stabilize the system based on
the identified natural frequencies and critical speeds. The com-
plete control system has four objectives: (1) to detect the vi-
bration of the system above an acceptable threshold value, (2)
to force the system to operate at a stable operating speed away
from its critical speeds, (3) to pull or free the axially displaced
drill bit from the fluid/mud forces to a point near its centre of
rotation, and (4) to resume normal operating speeds as soon as

the vibration decreases below the threshold.
The point of the control law is that the rotary drilling sys-

tem is a stable system affected by external disturbances which
make the system unstable. Thus, the control law effectively
returns the system to its initial stable dynamics by helping the
system to free itself from the destabilizing forces and forcing
the system to operate in its stable region.

3.1. Adaptive Control

According to its definition, an adaptive control changes or
adapts the design of the control algorithm to accommodate
changes in the plant or its environment. There are two ma-
jor types of adaptive control: self-tuning and model reference.
This research uses self-tuning adaptive control. Model ref-
erence control requires a reference model. Because the drill
string length changes as the rotary drilling progresses, the
model for the system would also change; this fact implies the
need for using an additional system to identify the model for
the system continuously and developing the controller based
on its performance. This would unnecessarily complicate the
situation because, as described earlier, it is important to detect
online the natural frequencies of the system to generate an effi-
cient control law. Model reference control applied here would
then necessitate a two-fold online identification system. Adap-
tive control applied to complex systems itself is quite com-
plex and requires good data synchronization. Based on the fact
that it is best to simplify where possible without losing quality
results, this research aimed to develop a self-tuning adaptive
control law which can be implemented and analysed experi-
mentally.
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Self-tuning control of a plant has three major parts: (1) a
feedback control law, (2) a control design algorithm, and (3) an
online identifier. The feedback control law should be designed
to give control performance based on the data from the online
identifier. The online identifier should provide good estimates
of the data required to form the control law. The control design
algorithm uses the estimate of the online identifier to update
the feedback control law.

For the current research system, these three parts can be
defined as follows. The adaptive control signal serves as the
feedback control law; the synchronization of the flow of data
using vibration detector, the command signal selector, and sig-
nal generation serve as the control design algorithm; and the
online natural frequency identifier serves as the online identi-
fier.

The adaptive control law developed for the research is a
combined application of minimum variance and gain schedul-
ing algorithms.

3.2. Minimum Variance Control
Consider a discrete process model:

y(t) =
z−kB(z)

A(z)
u(t) +

C(z)

A(z)
n(t); (1)

where y(t) is the output, u(t) the input, n(t) is white noise
at any sampled instant t, and k is the process delay. Assume
k > 0 and

E [n(t)n(s)] =

{
0, s 6= t
σ2, s = t

. (2)

Then, the control law for minimal output variance is obtained
as

u(t) =
−G(z)

B(z)F (z)
y(t); (3)

by solving for

C(z) = A(z)F (z) + z−kG(z). (4)

The rotary drilling system is an underactuated system, with
the drill bit being the underactuated part.15 The drill bit is also
the part experiencing vibrations and the source of phenomena
such as bit whirl, stick slip, etc. The underactuation of the drill
bit poses a serious problem to the results, which could be ob-
tained practically by the application of any control law. This
is because the control objective is to minimize the vibrations
of the underactuated part, meaning it cannot be directly con-
trolled, and the objective made complicated by the fact that the
underactuated part is affected by unpredictable and uncontrol-
lable external disturbances (i.e., well borehole friction, hard
rocks, etc). However, it is possible in simulations and has been
widely demonstrated in numerous studies.11, 14, 23

In order to practically achieve the control objectives, a new
control mechanism based on gain scheduling must be ap-
plied. Previous research by Dareing16 and Cobern17, 18 sug-
gests the importance of avoiding the critical speeds during ro-
tary drilling operation as the more predictable method of min-
imizing the vibrations at drill bit. Dareing16 developed equa-
tions relating the critical speeds of resonance to the natural fre-
quencies of the rotary drilling system:

N = 60fn; (5)

Figure 4. Schematic of adaptive controller implementation.

for a natural frequency fn of the drilling system, the critical
speed of operation of the drilling process to cause excitation is
N .

However, the natural frequency is inversely related to the
length of the drill string,16 and hence, the natural frequen-
cies corresponding to different modes of vibrations will change
continuously during drilling as the well deepens.

The natural frequency of the fundamental drill collar longi-
tudinal mode is

fna =
1

4L

√
E

ρ
; (6)

the natural frequency of the fundamental drill collar torsional
mode is

fnθ =
1

4L

√
G

ρ
; (7)

where E and G are the compression and shear constants of
drill string material and L is the length of the drill string.

The above equations were used for developing the control
law which selects the appropriate speed of operation for the
drilling system based on gain scheduling the natural frequen-
cies of the process obtained by the online identification proce-
dure, as detailed in Appendix A. The literature review resulted
in the conclusion that the best possible method to minimize vi-
brations in drill strings is to develop a controller which adapts
itself according to the natural frequencies of the system.

The applied control law is

u(t) = 60f sin 2πnt; (8)

where f is the low frequency of the drilling process, which is
also not near any of the natural frequencies of the system, and
n is the original frequency of drilling. The selection of f is
the task of the control design algorithm. The critical speeds
of the system were calculated using Eq. (5). The frequency f
was selected so that the calculated resonant frequencies were
avoided. The variable f is taken up by the adaptive controller,
which produces the control signal as defined by the control law
in Eq. (8). The motor connected to the upper rotary table is
run by the control law developed in Eq. (8) until the vibration
levels fall below the predetermined threshold values. Once the
vibration levels are lowered, normal operation is resumed.

The control objectives were met by a complex synchroniza-
tion achieved between the operating command signal, the de-
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Figure 5. Laboratory arrangement.

veloped adaptive controller signal, and the rotary drilling hard-
ware system. The flow of signals and their synchronization are
depicted in Fig. 4. The angular velocities of the upper rotary
and drill bit were used by the vibration detector and the online
natural frequency identifier as data. The data was measured by
rotary encoders and logged using LabVIEW programs. The vi-
bration detector played an important part in deciding the level
of vibrations and switched the motor excitation signal between
the operating speed and control signal. The vibration detec-
tor was designed and developed using the LabVIEW Virtual
Instrument. The threshold value is determined by the amount
of vibration level the system could withstand and varies for
every system depending on external factors such as the bore-
hole effects, length of the drill string, etc. The amplitude of
the control signal used to run the motor was selected by the
adaptive controller using the system natural frequency data to
operate the system at a speed away from the system’s critical
frequency. The control signal was designed to be sinusoidal
so that the system can force itself out of any friction or hold-
ing force at the drill bit end. The vibration detector was re-
sponsible for the switch back of the excitation signal to nor-
mal operating speed once the vibration level was reduced and
maintained below threshold level for a specific time.

4. DISCUSSION

The drilling process was simulated in the laboratory by a
simple experimental setup (Fig. 5 and Table 1) which cap-
tures the major features of a rotary drilling system. In a rotary
drilling rig, an electric generator energizes the turntable, which
provides the driving force for the entire drilling unit. The drill
string is attached to the turntable and can vary in length from
8 to 10 km. The lower part of the drill string has drill collars

Table 1. Parts of the laboratory setup from Fig. (5).

Part number Name of the part
1 DC Motor
2 Upper incremental Encoder
3 Upper rotary table
4 Universal Joint
5 Drill string
6 Metal frame
7 PWM Amplifier
8 Lower incremental encoder
9 Drill bit

10 Metal casing
11 NI DAQ BNC 2120

Table 2. Least squares based parameter estimates for selected Box-Jenkins
model.

Terms Parameter estimates Terms Parameter estimates
b0 1.0345 f3 -0.0442
b1 0.512 c1 -0.2482
b2 0.3147 c2 -0.7141
f1 0.5825 d1 -1.2031
f2 0.3153 d2 0.7316

and the drill bit. The laboratory setup was run by operating a
motor which rotates a large rotor connected to the motor shaft.
A drill string (1 m long made of carbon steel chosen due to its
similarity to actual drill string material) was attached to the up-
per rotor by a universal joint. This joint provided two degrees
of rotational freedom (DOF) about the x and y axes. The mo-
tor rotation provided the setup with one DOF of rotation about
the z axes. Another flywheel was connected to the end of the
drill string. It served to represent the drill bit and the mass of
the drill collars. A casing surrounded the lower flywheel, rep-
resenting the oil well borehole and its friction effects. Incre-
mental encoders were used to measure the angular velocities of
the upper rotor and the flywheel representing the drill bit. Two
incremental encoders were used: one to measure the speed of
the upper flywheel and a second one to measure the speed of
the lower flywheel.

The practical experimentation was preceded by simulations
using an identified mathematical model for the system using
the BlackBox system identification method.24 The identified
Box-Jenkins model takes the following form:

y(k) = z−m
B(z−1)

F (z−1)
u(k) +

C(z−1)

D(z−1)
e(k); (9)

where y(k), u(k), and e(k) are the output, input, and white
noise at any instant k. And,

B(z) = 1 + b1z
−1 + b2z

−2 + . . .+ bnbz
−nb; (10)

C(z) = 1 + c1z
−1 + c2z

−2 + . . .+ cncz
−nc; (11)

D(z) = 1 + d1z
−1 + d2z

−2 + . . .+ dndz
−nd; (12)

F (z) = 1 + f1z
−1 + f2z

−2 + . . .+ fnfz
−nf ; (13)

nb, nc, nd, and nf are the orders of the polynomials B(z),
C(z), D(z), and F (z), respectively.

The Box-Jenkins model has orders nb = 2, nf = 3, noise
model nc = 2 and nd = 2, and delay = 0. The parameter
coefficients were estimated using the least squares principle
and are listed in Table 2.

The adaptive control scheme in Fig. 4 was implemented on
the laboratory setup for two operational speeds. In Fig. 6, the
laboratory setup was operated at 54 RPM. The drill bit angu-
lar velocity was recorded and are plotted in Fig. 6. The drill
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Figure 6. Experimental results of bit whirl and control in open and closed loop
at operating speeds of 54 RPM.

Figure 7. Experimental results of bit whirl and control in open and closed loop
at operating speeds of 84 RPM.

bit rotates with no major vibrations until the drill bit starts
whirling due to an external effect. When operated in an open
loop, the drill bit continues whirling. However, when operated
in a closed loop, the adaptive controller detects the increased
vibration level and starts the control action when the vibration
persists above the threshold value for a specified time, as de-
picted in Fig. 6. The controller forces the command signal to
switch the upper rotary to the adaptive tuned control signal.
The control signal is based on the control law given in Eq. (8).
The control signal forces the drill bit to equilibrium by oper-
ating it such that it is taken away from its resonant modes of
frequency. As soon as the vibration detector identified that the
vibration levels of the drill bit have come down and remain
within the threshold value, it forced the switch to resume nor-
mal operation. The residual signals in open and closed loop
tests are also depicted in Fig. 6.

The differences in the angular velocity denote that the upper
rotary and drill bit are operating at different magnitudes and
phases during the vibrations. This indicates the presence of
lateral and torsional vibrations at the same time. During closed
loop operation, the controller minimized both the vibration ef-
fects and the residual signal was stable and near zero.

Figure 7 shows the plot of the open and closed loop opera-
tion of the system at 84 RPM. Results similar to this discussion
were seen. A clear reduction in vibration and fast resuming of
the normal operation were achieved by the controller.

5. CONCLUSIONS

The drill bit whirl phenomenon is very common in rotary
drill rigs and has never been practically controlled by the appli-
cation of an advanced control technology. The major vibration
mitigation approaches have been new designs of drill bits and
the introduction of dampers near the bottom hole assembly.
An adaptive controller approach was developed in this study to
stabilize and minimize drill bit vibrations. Well-defined rela-
tions between the vibrations and critical operating speeds were
utilized to form the control law. The developed control law
was implemented using LabVIEW programs, rotary encoders,
and NI BNC2120 data acquisition devices. The controller ef-
fectiveness was practically tested on a laboratory scale setup
of rotary drilling with well borehole friction effects, inducing
bit whirling. The adaptive controller approach was proven suc-
cessful and stabilization of the drill bit, and vibration mitiga-
tion of all three axes were achieved.
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APPENDIX A

For online identification of natural frequency of a multi-
DOF system by wavelet transforms, a linear MDOF system
with m degrees of freedom represented by

MẌ+C(t)Ẋ+K(t)X = Rf(t);

is considered, where M, C(t), and K(t) are the mass, time-
varying damping, and time-varying stiffness matrices, respec-
tively; R is the influence vector for forces at different degrees
of freedom; and f(t) is a forcing function. The displacement
response vector is denoted by X(t).

If the elements Klj ; l, j = 1, . . . ,m in the stiffness ma-
trix have discontinuities at a finite number of points, then it
is possible to divide the time in several segments with in-
dices arranged as to t0 < t1 < . . . < tn such that all Klj ;
l, j = 1, . . . ,m are a continuous function in [ti−1, ti]. Further,
it is assumed that the variations of all Klj are slower than the
fundamental (lowest) frequency of the system (corresponding
to the longest period). It subsequently follows that assuming
a variation of X(t) with slowly varying amplitude φ(t)ki and
slowly varying frequency ωki(t) at the kth mode in the time in-
terval [ti−1, ti], the displacement vector and its derivatives can
be represented by

X = φ(t)ki e
iωki(t)t;

Ẋ = iωki(t)φ(t)
k
i e
iωki(t)t;

Ẍ = −ω2
ki(t)φ(t)

k
i e
iωki(t)t.

Substitution of Eq. (11a)–(11c) in the homogeneous free vi-
bration equation corresponding to Eq. (1) leads to the time-
varying eigenvalue problem with eigenvalues ω2

ki(t) and eigen-
vectors φ(t)ki ; k = 1, 2, . . . ,m. If the system in Eq. (1) is
assumed to be lightly damped, then using wavelet transforma-
tions, the natural frequency corresponding to the kth mode in
the j th

k band can be obtained as

ω0jk =
σ + 1

2

π

ajk
;

where ajk is the discrete parameter used for wavelet transform
and aj = σj where σ is a scalar.25
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This work presents a finite element-based strategy for exterior acoustical problems based on an assumed pressure
form that favours outgoing waves. The resulting governing equation, weak formulation, and finite element for-
mulation are developed both for coupled and uncoupled problems. The developed elements are very similar to
conventional elements in that they are based on the standard Galerkin variational formulation and use standard
Lagrange interpolation functions and standard Gaussian quadrature. In addition and in contrast to wave envelope
formulations and their extensions, the developed elements can be used in the immediate vicinity of the radia-
tor/scatterer. The method is similar to the perfectly matched layer (PML) method in the sense that each layer of
elements added around the radiator absorbs acoustical waves so that no boundary condition needs to be applied
at the outermost boundary where the domain is truncated. By comparing against strategies such as the PML and
wave-envelope methods, we show that the relative accuracy, both in the near and far-field results, is considerably
higher.

1. INTRODUCTION

The main difficulty that arises in solving exterior acoustical
problems is the unboundedness of the domain. Although the
boundary element method yields accurate results, the computa-
tional cost and memory requirements for large-scale problems
can be prohibitive. Finite element methods can be more cost-
effective due to the sparse nature of the matrices. Among the fi-
nite element-based techniques, one popular approach has been
to truncate the computational domain at some distance away
from the radiator or scatterer, and to impose a boundary condi-
tion at this artificial boundary (see Givoli1 for a description of
the classical approaches and to Qi and Geers2 for a relatively
recent approach known as the perfectly matched layer (PML)).
Yet another approach involves infinite elements.3–9 Both ap-
proaches have their merits and demerits, which have been dis-
cussed in detail in the references cited.

Most of the work towards improving the former approach
has focused either on devising and implementing higher-order
absorbing conditions or on modifying these conditions to make
them applicable for non-spherical truncation boundaries. The
goal in this study is to improve upon the former approach, not
by modifying the boundary conditions, but by modifying the
function that is being solved for, namely the pressure field. The
assumed form of the pressure field favours outgoing waves,
which makes it easier for the resulting finite element formula-
tion to capture the solution. Summarizing, note the following:

1. The proposed formulation is a modification of the conven-
tional approach based on absorbing boundary conditions;
the computational domain and input data are exactly the
same; and the computational cost is also almost the same
as for the conventional formulation.

2. The most crucial aspect of the proposed formulation is that

it is based on a Cartesian framework and, thus, avoids the
cumbersome use of angular coordinates and the problems
associated with them. In particular, it allows the elements
to be used directly in the vicinity of the radiator or scat-
terer, which is in contrast to existing wave envelope and
related formulations, where an inner mesh of conventional
elements has to be used, leading to poorer accuracy (see
section 4.2 for a comparison). In addition, there is no prob-
lem of ill-conditioning, as for example, occurs in the radial-
direction matrices in some infinite finite element formula-
tions (see, e.g., Bhandakkar and Jog9 and Dreyer and Es-
torff10). Although researches have attempted to alleviate
this ill-conditioning10 the fact remains that non-standard in-
terpolations, such as Legendre or Jacobi polynomials, must
be used.

3. Since an oscillatory part is separated out in the proposed
formulation, the resulting finite element formulation has to
capture a more gently varying function in most problems,
resulting in much higher accuracy compared to the con-
ventional formulation. In this connection, I mention that
both the near- and far-field results presented in this study
were obtained from raw nodal values without the use of the
Helmholtz integral equation (which can be computationally
very expensive to evaluate and which is used to obtain ac-
curate far-field results3–5).

4. Since it uses only a first-order (spherical) damper, the im-
plementation is very simple. Similar to the PML method,
each layer of elements added around the radiator/scatterer
absorbs acoustical waves so that no boundary condition
needs to be applied at the truncated boundary. Note that the
PML method is not only more complicated but also fails
to yield good accuracy even on relatively simple problems,
such as the dilatational motion of a spherical surface unless
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a large acoustical domain is used.2 In addition, implement-
ing the PML requires setting several numerical parameters
such as the width of the layer and the number of divisions as
well as the PML coefficients and their maximal values, re-
quiring an optimization of these parameters.11, 12 Methods
that are coupled to the PML inherit its problems. For ex-
ample, Huttunen, Kaipio, and Monk13 mention that several
PML parameters must be properly adjusted to reduce nu-
merical reflections to an acceptable level. Even after such
an optimization is carried out, the accuracy could be poor,
even on simple problems, as discussed in section 4.1. In
contrast, in the proposed method—apart from the radius of
the circumscribing spherical boundary—no factors need to
be adjusted by the user.

Section 2 briefly presents the conventional formulation and
then the proposed formulation, and section 3 extends the pro-
posed formulation to coupled problems. Section 4 presents
several numerical examples involving uncoupled/coupled and
radiation/scattering problems. The conclusions are presented
in section 5.

2. FORMULATION

Before presenting the proposed formulation, I briefly re-
view the conventional formulation involving absorbing bound-
ary conditions on the surface where the infinite domain is trun-
cated. In this work, we consider only the case where the load-
ing, and hence the pressure response, is time-harmonic, i.e.,

p = p̃eiωt; (1)

where ω is the angular frequency. The wave equation in this
case reduces to the Helmholtz equation given by

∇2p̃+ k2p̃ = 0; (2)

where, with c denoting the acoustic wave speed, k = ω/c is
the wave number. Although in interior acoustical problems
(in the absence of absorbers), p̃ is real-valued; in the case of
the exterior problem being solved in this study, p̃ is complex-
valued because of the damping-like effect that arises due to
the infinite domain (see Eq. (9) below). If Ω denotes the do-
main over which the problem is being solved, Γ denotes its
boundary and n denotes the unit normal to the boundary, then
the variational formulation of the above equation, obtained by
multiplying Eq. (2) by the variation pδ and carrying out an ap-
propriate integration by parts, is given by∫

Ω

(∇pδ ·∇p̃− k2pδp̃) dΩ =

∫
Γ

pδ∇p̃ · n dΓ. (3)

In an exterior radiation problem, the normal velocity vn is
specified over part of the boundary Γr, while over the part of
the boundary Γ∞ where the domain is truncated, appropriate
absorbing conditions (see below) that approximate the Som-
merfeld radiation condition are specified. In a scattering prob-
lem, the total pressure p̃ is assumed to be decomposed into an
incident pressure field pinc and a scattered field pscat, both of
which individually satisfy Eq. (2), and the scattered field satis-
fies the Sommerfeld radiation condition as well. Thus, in the

scattering problem, we can solve for the scattered field by re-
placing p̃ with pscat in Eq. (3). If the boundary over which the
scattering occurs is denoted by Γs and un denotes the normal
displacement of the scatterer boundary, then

∇p̃ · n =∇pinc · n+∇pscat · n = ρfω
2un;

which implies that

∇pscat · n = −∇pinc · n+ ρfω
2un.

Thus, with ρf denoting the density of the acoustical fluid, the
boundary conditions on the radiating and scattering surfaces
Γr and Γs are

∇p̃ · n = −ρf iωvn (radiation); (4a)

∇pscat · n = −∇pinc · n+ ρfω
2un (scatterer). (4b)

If, for example, the incident wave is a plane wave of the form

pinc = pie
ik·x; (5)

where x is the position vector, then

∇pinc · n = pii(k · n)eik·x.

Although I present the formulation for the radiation problem
below, the formulation for the scattering problem can be ob-
tained by replacing p̃ with pscat. I take Γ∞ to be a sphere of
radius R throughout this work and use a spherical damper of
the form used by Bayliss and Turkel14:

∇p̃ · n = − p̃
R
− ikp̃. (6)

The finite element formulation is obtained by discretizing
the pressure field and its variation as

p̃ = Npp̂, pδ = Npp̂δ; (7a)

∇p̃ = Bpp̂, ∇pδ = Bpp̂δ; (7b)

where Np = [N1 N2 . . . ] is the standard Lagrange
shape function matrix, and

Bp =


∂N1

∂x
∂N2

∂x . . .

∂N1

∂y
∂N2

∂y . . .

∂N1

∂z
∂N2

∂z . . .

 . (8)

By substituting the above discretizations into Eq. (3) and using
the arbitrariness of p̂δ , we obtain the finite element equations[

Kp − ω2Mp + iωCp

]
p̂ = f̂p; (9)

where with R written as |x|,

Kp =

∫
Ω

BT
pBp dΩ +

∫
Γ∞

1

|x|
NT

pNp dΓ ; (10)

Mp =

∫
Ω

1

c2
NT

pNp dΩ; (11)

Cp =

∫
Γ∞

1

c
NT

pNp dΓ ; (12)
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f̂p = −
∫
Γr

ρf iωvnN
T
p dΓ. (13)

For the scattering problem, where, for example, the incident
wave is given by Eq. (5),

f̂p = −
∫
Γs

pii(k · n)eik·xNT
p dΓ.

Note that in the above formulation, the damping matrix Cp is
exclusively due to the boundary condition on Γ∞. If (ξ, η) are
the natural coordinates used for parametrizing the surface, then
the expressions for the normal and the area element are

n =

∂x
∂ξ ×

∂x
∂η∥∥∥∂x∂ξ × ∂x
∂η

∥∥∥ ;
dΓ =

∥∥∥∥∂x∂ξ × ∂x

∂η

∥∥∥∥ dξ dη.
Since the same interpolation functions are used for p̃ and
pδ (see Eq. (7a)), the above formulation corresponds to the
Bubnov-Galerkin method. Other choices, such as, for exam-
ple, the interpolation functions for pδ and p̃ being complex-
conjugates of each other, are also possible; see Astley15 and
Eq. (29).

The proposed formulation is as follows. Instead of the pres-
sure assumed to be of the form given by Eq. (1), we assume it
to be of the form

p =
1

|x|
G(x)ei(ωt−k|x|); (14)

where |x| =
√
x · x, andG(x) is an unknown complex-valued

function which is to be determined by an approximation strat-
egy such as the finite element method. The above form as-
sumes that the “centre” of the radiating body is at the origin; if
instead the centre is at x0, x should be replaced with x − x0

in the above expression. Note the following:

1. The form of the pressure in Eq. (14) favours outgoing
waves, while the form in Eq. (1), allows for both incom-
ing and outgoing waves. The spherical damping condi-
tion given by Eq. (6) and (15) below leads to the condition
(∇G) ·n = 0 on Γ∞. Thus, similar to the PML, no bound-
ary condition needs to be imposed on Γ∞. A higher-order
damper was also tried but did not result in any significant
improvement in the results.

2. From Atkinson,16 we know that the far-field pressure is pro-
portional to e−ik|x|/ |x|, which provides a justification for
the use of Eq. (14). In the near-field, of course, the field is
generally more complicated, but the function G(x) (to be
determined) compensates for the difference. The fact that
it does so effectively will be shown in section 4 by means
of various nontrivial problems in whichG(x) has a compli-
cated variation.

3. Since the oscillatory part is separated, G(x) is a more gen-
tly varying function compared to p̃, resulting in higher over-
all accuracy, as will be clear in section 4.

4. The differences of the proposed formulation from the wave
envelope formulation of Astley17 and Astley and Evers-
man18 are discussed at the end of this section.

5. The use of |x| instead of the radial spherical coordinate r
is the most critical aspect of the proposed formulation; it
ensures that the formulation can be carried out with respect
to a Cartesian basis, thus avoiding the use of angular coor-
dinates, which can be quite cumbersome.9 Since the for-
mulation is then exactly analogous to that for conventional
elements, one can use these elements in the direct vicinity
of the radiator or scatterer (except when the origin is part of
the acoustic domain, in which case, conventional elements
are used in the vicinity of the origin as discussed towards
the end of this section). Since in most situations, conven-
tional elements do not need to be used at all, the use of the
proposed method results in a dramatic reduction in compu-
tational cost. In contrast, with most infinite element for-
mulations, one needs a mesh of conventional elements be-
tween the radiator/scatterer and a circumscribing boundary
such as an ellipsoid, with infinite elements used in the exte-
rior of this boundary. Although there have been attempts to
alleviate this problem,19–21 they involve very complicated
formulations.

We now derive the governing equations and boundary con-
ditions for G(x). From Eq. (1) and (14), we see that

p̃ =
1

|x|
G(x)e−ik|x|. (15)

Using the fact that

∇ |x| = x/ |x|

and
∇(1/ |x|) = −x/ |x|3 ;

we get

∇p̃ =
[
∇G− 1

|x|
ikxG− 1

|x|2
xG

]
e−ik|x|

|x|
; (16)

∇2p̃=

[
∇2G− 2

|x|
ik∇G · x− 2

|x|2
∇G · x−k2G

]
e−ik|x|

|x|
.

(17)
Substituting Eqs. (15) and (17) into Eq. (2), we get the govern-
ing equation for G(x) as

∇2G− 2

|x|

(
ik +

1

|x|

)
∇G · x = 0. (18)

If n denotes the unit normal to the boundary, then from
Eq. (16), we get

∇G·n− 1

|x|

(
ik +

1

|x|

)
(x·n)G = |x| eik|x|(∇p̃·n). (19)

The variational formulation forG is obtained by multiplying
Eq. (18) by the variation Gδ and carrying out an appropriate
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integration by parts. We get∫
Ω

[
∇Gδ ·∇G+

2

|x|
Gδ

(
ik +

1

|x|

)
∇G · x

]
dΩ

=

∫
Γ

Gδ∇G · n dΓ. (20)

Substituting Eq. (19) into Eq. (20), we get∫
Ω

[
∇Gδ ·∇G+

2

|x|
Gδ

(
ik +

1

|x|

)
∇G · x

]
dΩ

−
∫
Γ

1

|x|
Gδ

(
ik +

1

|x|

)
(x · n)GdΓ

=

∫
Γ

Gδ |x| eik|x|(∇p̃ · n) dΓ. (21)

On the radiating surface Γr, ∇p̃ · n is as given by Eq. (4a),
while on Γ∞, by using Eq. (6) and (15), we have ∇G · n =

0; thus, similar to the PML, no boundary condition needs to
be imposed on Γ∞. It follows that, for a radiation problem,
Eq. (21) can be written as∫

Ω

[
∇Gδ ·∇G+

2

|x|
Gδ

(
ik +

1

|x|

)
∇G · x

]
dΩ

−
∫
Γr

1

|x|
Gδ

(
ik +

1

|x|

)
(x · n)GdΓ

= −
∫
Γr

Gδ |x| eik|x|ρf iωvn dΓ. (22)

Note that on the surface Γr, the term eik|x| does not vary
rapidly (e.g., if Γr is a sphere, then it is a constant), and
hence standard Gaussian quadrature can be used. Note also
that on symmetry surfaces in the finite element model where
∇p̃ · n = 0, since x · n = 0, it follows from Eq. (19) that
∇G · n is also zero.

The finite element formulation is obtained by discretizing G
using the same interpolations as used for p̃ in Eq. (7), i.e.,

G = Npĝ, Gδ = Npĝδ; (23a)

∇G = Bpĝ, ∇Gδ = Bpĝδ, (23b)

with Bp given by Eq. (8). Substituting these interpolations
into Eq. (22), and using the arbitrariness of ĝδ , we get the finite
element matrix equation as

[Kg + iωCg] ĝ = f̂g; (24)

where

Kg =

∫
Ω

[
BT
pBp +

2

|x|2
NT

p x
TBp

]
dΩ

−
∫
Γr

x · n
|x|2

NT
pNp dΓ ; (25)

Cg =

∫
Ω

2

c |x|
NT

p x
TBp dΩ −

∫
Γr

x · n
c |x|

NT
pNp dΓ ; (26)

f̂g = −
∫
Γr

ρf iωvn |x| eik|x|NT
p dΓ. (27)

Comparing Eq. (24) with Eq. (9), we see that in the proposed
formulation, the Mp matrix is absent, while the damping terms
are due to integrals over the domainΩ and boundary Γr instead
of over Γ∞. In addition, because outgoing waves are favoured,
the matrices are also unsymmetric. However, since the matri-
ces are still sparse, it does not result in a significant increase in
computational cost. Once ĝ is determined, the pressure field is
recovered using Eq. (15).

In the case of scattering by a rigid body, we approximate the
scattered field pscat as G(x)e−ik|x|/ |x| so that we end up with
the same equation as Eq. (24) with Γs in the place of Γr, and
the load vector, when the incident wave is as given by Eq. (5),
now given by

f̂g = −
∫
Γs

pii(k · n) |x| ei(k·x+k|x|)NT
p dΓ.

When the origin is part of the acoustical domain (e.g., ra-
diation from a circular plate in a baffle), we use conventional
elements in the region between the radiator (or scatterer) and
a sphere Γ1 whose radius is denoted by r1, and the proposed
elements in the region between Γ1 and Γ∞. In order to ensure
continuity of the pressure field at the interface Γ1, we modify
Eq. (15) to

p̃ =
r1
|x|

G(x)eik(r1−|x|). (28)

The matrix formulation presented in Eq. (24) remains unal-
tered because of this scaling by a constant—the only difference
being that one multiplies the expression for f̂g by e−ikr1/r1,
and one uses Eq. (28) instead of Eq. (15) while recovering
the actual pressure field from G(x). The matrix formulation
for the conventional formulation also remains unaltered except
that matrices that are evaluated over Γ∞ are now evaluated
over Γ1, ensuring continuity of ∇p̃ · n (in a weak sense) be-
tween the two types of elements.

It may appear that an approximation of the type p̃ =

G(x)e−ik|x| may bypass the use of conventional elements al-
together, even when the origin is part of the acoustic domain;
however, numerical experiments show that the results are poor
in the vicinity of the origin since∇p̃ has a term x/ |x| that be-
comes indeterminate at the origin, leading to ill-conditioning.
The second-order damper presented in the work of Bossut and
Decarpigny22 was also tried both with this approximation and
the conventional formulation, but resulted only in a marginal
improvement, especially since I ensured that R is chosen such
that kR� 1.

In the wave-envelope method of Astley and Eversman17, 18

one substitutes

p̃ =
1

|x|
G(x)e−ik|x|; pδ =

1

|x|
Gδ(x)e

ik|x|; (29)

into the conventional variational formulation given by Eq. (3).
The result is equations of the same form as Eq. (24), but with
different Kg , Cg and f̂g matrices as given by

Kg=
∫
Ω

1
|x|2

[
BT
pBp+

1
|x|2

(
NT

pNp−NT
p x

TBp

−BT
p xNp

)]
dΩ

+
∫
Γ∞

1
|x|3N

T
pNp dΓ ;

(30)
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Cg =

∫
Ω

1

c |x|3
[
NT

p x
TBp −BT

p xNp

]
dΩ

+

∫
Γ∞

1

c |x|2
NT

pNp dΓ ; (31)

f̂g = −
∫
Γr

1

|x|
ρf iωvne

ik|x|NT
p dΓ. (32)

When used in conjunction with conventional elements, one
again uses Eq. (28) for the pressure and its complex conjugate
for the variation so that one multiplies the above Kg , Cg by
r21 and f̂g by r1/eikr1 . Since the weak continuity of ∇p̃ · n
is automatically satisfied, no boundary condition needs to be
imposed at Γ1. Note the following:

1. The derivation of the above wave envelope elements has
been carried out using the same critical idea of replacing r
by |x| as used for the proposed method and thus leads to the
same advantage of being able to replace conventional ele-
ments in most problems. In line with the equivalence shown
between these two approaches for some one-dimensional
problems with piecewise-linear shape functions,23 the re-
sults obtained using the above approach are very similar to
the results obtained using the proposed formulation. (Note,
however, that the matrix expressions as given by Eqs. (25)–
(27) are not only more compact, and hence more economi-
cal to compute, but are also simpler to implement since they
do not involve any integrals over Γ∞) The original wave
envelope formulation17, 18 is, however, based on a separa-
tion of the shape functions into radial and angular direc-
tions necessitating the use of an inner mesh of conventional
elements and leading to poorer accuracy, as shown in sec-
tion 4.

2. The radial direction is treated in a special manner even in re-
cent enhancements of the wave envelope formulation in the
literature, and other complications are involved, such as the
need to choose weighting functions for these elements and
the location of virtual source nodes; for example, see the
rather involved way of constructing the radial shape func-
tions as discussed in section IIC of Astley et al.,20 or as
discussed by Cremers and Fyfe,24 the difficulties associated
with identifying the source location for radiators of arbi-
trary shape, which can lead to large meshes of conventional
elements. Again, in contrast, in this formulation, the radial
direction is not treated in a special manner, since the oscilla-
tory terms associated with the radial direction have already
been eliminated a priori (thus, we use standard Lagrange
shape functions). And since they are similar to conventional
elements, no factors need to be adjusted, no weights need to
be chosen, and no virtual source nodes need to be identified.

3. COUPLED FORMULATION

I first briefly present the so-called pressure formulation25

for coupled problems within the conventional setup and then
present a formulation analogous to this pressure formulation
for the proposed method. Assume that three-dimensional ele-
ments, such as tetrahedral or hexahedral elements, are used to

conduct the structural analysis. If û denotes the vector of the
displacement degrees of freedom,

Nu =

N1 0 0 N2 0 0 . . .

0 N1 0 0 N2 0 . . .

0 0 N1 0 0 N2 . . .

 ; (33)

denotes the shape function matrix (i.e., u = Nuû); Γwet de-
notes the wet surface (i.e., the interface between the structure
and the acoustic fluid); n denotes the unit normal to the sur-
face; and Ks, M s, and Cs denote the stiffness, mass, and
damping matrices for the structure, then the matrix equations
for a radiation problem can be written as[

Kuu Kup

Kpu Kpp

] [
û

p̂

]
=

[
f̂u
f̂p

]
; (34)

where, with Kp, Mp, Cp, and f̂p given by Eqs. (10)–(13),

Kuu = Ks − ω2M s + iωCs;

Kup =

∫
Γwet

NT
unNp dΓ ;

Kpu = −
∫
Γwet

ρfω
2NT

p n
TNu dΓ ;

Kpp = Kp − ω2Mp + iωCp.

The normal n that occurs in the expressions for Kup and Kpu

represents the outward unit normal to the structural and fluid
domains, respectively. The load vector f̂u is due to the exter-
nal loading on the structure; for example, if a given pressure ps
acts on part of the surface Γp, then f̂u = −

∫
Γp
psN

T
un dΓ .

In the case of the scattering problem considered in the previous
section, where the scattering now occurs over the wet surface
Γwet, the above set of equations remains the same, with p̂ now
denoting the nodal variables for the scattered pressure and

f̂u = −
∫
Γwet

pie
ik·xNT

un dΓ

f̂p = −
∫
Γwet

pii(k · n)eik·xNT
p dΓ.

Similar to the uncoupled formulation in the previous section
and coupled formulation above, we get the coupled equations
for the proposed formulation as[

Kuu Kug

Kgu Kgg

] [
û

ĝ

]
=

[
f̂u
f̂g

]
; (35)

where, with Kg , Cg , and f̂g given by Eqs. (25)–(27),

Kuu = Ks − ω2M s + iωCs;

Kug =

∫
Γwet

1

|x|
e−ik|x|NT

unNp dΓ ;

Kgu = −
∫
Γwet

ρfω
2 |x| eik|x|NT

p n
TNu dΓ ;

Kgg = Kg + iωCg −
∫
Γwet

x · n
|x|

(
ik +

1

|x|

)
NT

pNp dΓ.
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The load vector f̂u is as in the conventional formulation above
for both the radiation and scattering problems. For the scatter-
ing problem,

f̂g = −
∫
Γwet

pii(k · n) |x| eik·x+ik|x|NT
p dΓ.

As in the uncoupled case, once ĝ is found, p̃ is recovered using
Eq. (15). Thus, the great simplicity of formulation and imple-
mentation inherent in the uncoupled case carries over to the
coupled problem.

For both the coupled and uncoupled problems presented
above, an axisymmetric formulation can be developed easily
from the three-dimensional formulation. If (r, z) represent the
coordinates in the cylindrical coordinate system and ξ repre-
sents the natural coordinate parametrizing the boundary in the
finite element framework, then the normal and the area element
are given by

n =

 dz/dξ√
(dr/dξ)

2
+ (dz/dξ)

2
,− dr/dξ√

(dr/dξ)
2
+ (dz/dξ)

2

 ;

dΓ = 2πr

√(
dr

dξ

)2

+

(
dz

dξ

)2

dξ;

while the Bp and Nu matrices are obtained by a straightfor-
ward modification of Eqs. (8) and (33).

4. NUMERICAL EXAMPLES

I present several numerical examples, involving both radia-
tion and scattering in the coupled and uncoupled frameworks,
to illustrate the performance of the proposed method. The pres-
sure values presented are directly the nodal values obtained
from the finite element formulation, and no use is made of the
Helmholtz integral equation to compute the far-field pressure,
as is done in the case of some infinite elements.9 In many ex-
amples, a high value of R is deliberately chosen to show the
high accuracy of the far-field pressure. The values of the in-
put data and the corresponding results are in SI (or appropriate
consistent) units.

Since the proposed method is similar to the conventional
method, which uses absorbing boundary conditions (described
briefly in section 2), I shall compare the proposed method with
the conventional method; the similarity is borne out by the fact
that both strategies use the same mesh and other input data.
Wherever possible, we also carry out comparisons with other
techniques such as the boundary element method, infinite el-
ement method, PML, ultra-weak variational formulation, etc.
I use either 9-node axisymmetric elements or a combination
of 18-node wedge and 27-node hexahedral elements in both
the formulations. When used within the context of the con-
ventional formulation, these elements are denoted by B9 and
B18/B27, while they are denoted by A9 and W18/S27 when
used within the context of the proposed formulation. In the
coupled problems presented, standard displacement-based el-
ements are used to conduct the structural analysis and are ob-
viously of the same order as the acoustic elements in order

Figure 1. Comparison of the numerically and analytically obtained real and
imaginary parts of the surface pressure for various frequencies in the pulsating
sphere problem.

to maintain compatibility with the acoustic mesh. Full inte-
gration (in both the structural and acoustic elements) and uni-
form meshes are used in all the examples. The Watson Sparse
Matrix Package solver is used to solve the system of equa-
tions.26, 27

4.1. Pulsating Sphere Problem
A sphere of radius a = 10 vibrates with uniform radial ve-

locity u0 = 1. The analytical solution28 for the pressure as a
function of the radial distance r is

p̃(r) =
ρfcu0
r

ika2

1 + ika
e−ik(r−a).

Due to symmetry, I model only half of the sphere using a uni-
form mesh of 16 × 16 axisymmetric elements (almost identi-
cal results are obtained if one solves the problem using three-
dimensional elements, i.e., by discretizing one-eighth of the
domain using an equivalent mesh of 18-node wedge and 27-
node hexahedral elements). The bounding surface is taken to
be a sphere of radiusR = 50. The properties used are ρf = 1.2

and c = 341. Since G(x) is a constant in this problem, the ex-
act solution is captured by the proposed method irrespective of
the mesh density and bounding radius R. Thus, this problem
acts like a patch test for the proposed formulation.

A comparison of the real and imaginary parts of the surface
and far-field pressures against the analytical solution for var-
ious frequencies of oscillation is shown in Figs. (1) and (2).
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Figure 2. Comparison of the numerically and analytically obtained real and
imaginary parts of the pressure at r = 50 for various frequencies in the pul-
sating sphere problem.

As seen from Figs. (1) and (2), although the conventional for-
mulation yields good results at low frequencies, it results in
significant errors at higher frequencies, while the proposed for-
mulation yields very accurate results over the entire frequency
range, even at points that lie on the outer bounding surface. I
have also verified that the proposed formulation continues to
yield the exact result, both in the near and far-field (including
at r = R), over the entire frequency range when R = 90,
with the same mesh density as used when R = 50, thus show-
ing the insensitivity to mesh density in this particular example.
In addition, one can obtain almost the exact particle velocity
(which is proportional to∇p̃) over the entire frequency range,
and over the entire domain.

Huttunen et al.13 consider the very similar problem of a
point source, which is solved using the ultra-weak variational
formulation combined with the PML. In spite of carrying out
extensive tests to determine the optimal value of various pa-
rameters in their method and in spite of using a very fine mesh
(see Huttunen et al.’s Fig. (2)), the errors in their solution are
large (see Huttunen et al.’s Fig. (4)), even on this simple prob-
lem.

4.2. Oscillating Sphere Problem
A rigid sphere of radius a = 10 oscillates along the z-axis

as shown in Fig. (3). The analytical solution29 for the pres-
sure as a function of the radial distance r from the centre of
the sphere and the angle θ between the radius vector and the

Figure 3. Oscillating sphere problem geometry.

velocity vector is

p̃(r, θ) = ρfcu0

(a
r

)2
cos θ

ika(1 + ikr)

2(1 + ika)− (ka)2
e−ik(r−a).

An axisymmetric mesh of nr × nθ = 16 × 32 is used to dis-
cretize the domain. The material properties and the value of
R are chosen to be the same as in the pulsating sphere prob-
lem, and u0 is taken as unity. The solution obtained at (0, 0, a)
and (0, 0, R) for various frequencies of oscillation is shown in
Figs. (4) and (5). The high relative accuracy of the proposed
formulation is again evident from these figures. Almost the
same high accuracy is obtained both in the near and far-field
over the entire frequency range shown, even for a much larger
choice of radius of the bounding sphere, such as R = 90 (with
the same nr × nθ mesh as used for R = 50).

Although I have shown the results only up to ka = 10, the
agreement with the analytical solution continues to be good,
both in the near and far-field, for very large ka. For example,
for ka = 200 (when there are only 0.125 elements per wave-
length), the analytical values of pressure at r = 10 and r = 50

are (409.2, 2.046) and (−36.015,−73.49), while the numer-
ical values are (409.242, 2.02) and (−36.03,−73.5), respec-
tively. As an illustration, the variation of the real part of the
pressure (normalized using a factor of ρfcu0) for ka = 100 as
a function of r/a at θ = 0, and as a function of cos θ at r = a,
using the same mesh and material data mentioned above, are
shown in Fig. (6); note that the conventional method fails com-
pletely at these high frequencies.

Even beyond ka = 200, the accuracy of the proposed for-
mulation reduces very gradually. In contrast, with the wave
envelope method of Astley, Macaulay, and Coyette,19 there
are differences between the analytical and numerical results
even for as small a ka value as 2π (see Astley, Macaulay, and
Coyette’s Fig. (9b)).

4.3. Radiation from an Elastic Hollow
Sphere

The inner surface of an elastic hollow sphere of inner and
outer radii r1 and r2 is loaded with a uniform time-harmonic
pressure p0eiωt. If (λ, µ) denote the Lame constants for the
solid, and if ρs denotes its density, then the wave number in
the solid is

ks = ω
√
ρs/
√
λ+ 2µ.
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Figure 4. Comparison of the numerically and analytically obtained real and
imaginary parts of the surface pressure for various frequencies in the oscillat-
ing sphere problem.

Using the approach outlined in Seybert, Wu, and Wu,30 we
find that the pressure field outside the sphere as a function of
the radial coordinate r is given by

p̃ = Ne−ikr/(rD);

where

N = −2ei(kr2+ks(r1+r2))k3s(λ+ 2µ)ω2p0r
3
1r

3
2ρf ;

D = e2iksr1
[
−4µ+ 4iksµr1 + k2s(λ+ 2µ)r21

]
·

·
[
(−i+ kr2)

(
−4µ− 4iksµr2+

k2s(λ+ 2µ)r22

)
+ ω2r22(i− ksr2)ρf

]
− e2iksr2

[
−4µ− 4iksµr1 + k2s(λ+ 2µ)r21

]
·

·
[
(−i+ kr2)

(
−4µ+ 4iksµr2+

k2s(λ+ 2µ)r22

)
+ ω2r22(i+ ksr2)ρf

]
.

We take r1 = 10 m, r2 = 12.5 m, E = 2 × 1011 Pa,
ν = 0.25 (where E and ν denote the Young modulus and
Poisson ratio of the solid, respectively), ρs = 7800 kg/m3,
ρf = 1000 kg/m3, c = 1500 m/s, and p0 = 1 Pa (note that we
have used properties for a heavy fluid where a coupled anal-
ysis is more relevant). A uniform mesh of 16 × 16 axisym-
metric elements was used to mesh half the spherical domain,
which comprises both the structure and the acoustic fluid (it
has been verified that similar results are obtained using three-
dimensional elements). The results for the pressure at the sur-
face r = 12.5 m and at the bounding sphere r = 50 are shown

Figure 5. Comparison of the numerically and analytically obtained real and
imaginary parts of the pressure at r = 50 for various frequencies in the oscil-
lating sphere problem.

Table 1. Comparison of surface and far-field pressures in the hollow sphere
radiation problem.

kr1 B9 A9 Analytical
Surface pressure (r = 12.5)

5 0.65368−0.18626i 0.65385−0.18657i 0.65359−0.18690i
8 0.01624−0.07858i 0.01662−0.08122i 0.01662−0.08122i

10 0.01187−0.05114i 0.00811−0.05596i 0.00811−0.05596i
Far-field pressure (r = 50)

5 0.16793−0.02541i 0.16729−0.03016i 0.16723−0.03025i
8 0.01943 +0.00618i 0.02070 +0.00097i 0.02070 +0.00097i

10 0.01188−0.00644i 0.00475−0.01331i 0.00475−0.01331i

in Table 1. Similar to the observation in the previous prob-
lems, the results obtained using the conventional formulation
are poor at high frequencies, while the proposed formulation
yields accurate results at high frequencies even in the far-field.

4.4. Scattering from a Rigid and Elastic
Hollow Sphere

A plane wave of the form pie
ikzz is incident on a rigid

sphere as shown in Fig. (7). The analytical solution31 for the
scattered pressure field is given by

pscat = −pi
∞∑
n=0

(2n+ 1)in
j′n(ka)

h′n(ka)
hn(kr)Pn(cos θ);

where r is the (spherical) radial coordinate, θ is the angle be-
tween the z-axis and the radial coordinate, jn is the spherical
Bessel function of the first kind, hn is the Hankel function of
the second kind, Pn are Legendre polynomials, and primes de-
note derivatives of the function.
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Figure 6. Comparison of the numerically and analytically obtained (normal-
ized) real part of the pressure as a function of r/a and cos θ, respectively, for
ka = 100 in the oscillating sphere problem.

We take pi = 1, a = 10, ρf = 1.2, c = 341, R = 50, and
discretize the domain using an nr×nθ = 64×32 axisymmetric
mesh. The backscattered pressure on the surface and in the
far-field (i.e., pscat|θ=π at r = 10 and r = 50) is tabulated in
Table 2. Both the B9 and A9 elements perform equally well
in this case, both in the near and far-field. The reason is that
even though the e−ik|x| component is present in the solution,
the transverse part of the solution oscillates more rapidly than
this part. Note, however, that even in such a case, the solution
using the proposed strategy is no worse than the conventional
one.

Now consider the case when the scattering is due to a hol-
low elastic sphere of inner radius b and outer radius a. Unlike

Figure 7. Scattering of a plane wave from a rigid sphere.

Table 2. Comparison of backscattered surface and far-field pressures when the
sphere is rigid.

kza B9 A9 Analytical
Surface backscattered pressure (r = 10)

1 −0.51049−0.22125i −0.51049−0.22125i −0.50655−0.22612i
5 −0.54813−2.08572i −0.54803−2.08568i −0.55389−2.07178i
9 0.42105−0.53238i 0.41863−0.53435i 0.44242−0.54739i

Far-field backscattered pressure (r = 50)
1 0.04383 +0.01860i 0.04383 +0.01860i 0.04425 +0.01994i
5 0.11147−0.42893i 0.11143−0.42893i 0.11214−0.43208i
9 −0.80695−0.30955i −0.80763−0.30765i −0.81531−0.31005i

Figure 8. Pulsating cylinder with hemispherical end caps.

the case of the rigid sphere discussed above, this needs to be
solved using the coupled formulation discussed in section 3. I
use the same geometrical data and the data for hard rubber,30

namely, b = 0.5 m, a = 1 m, E = 2.3 × 109 Pa, ν = 0.4,
ρs = 1100 kg/m3, ρf = 1026 kg/m3, and c = 1500 m/s.
I chose R = 10.5 and meshed the total domain (structure
and acoustic fluid) using an nr × nθ = 80 × 64 axisym-
metric mesh and, in order to show the performance of the
three-dimensional elements, one-fourth of the domain using
an nr×nθ×nφ = 40× 16× 8 mesh comprised of wedge and
hexahedral elements. The results for various values of kza are
shown in Table 3 and compared against the values presented by
Seybert, Wu, and Wu.30 The results obtained with the conven-
tional formulation are almost identical to the ones shown above
and hence not shown again. The wedge/hexahedral mesh was
deliberately chosen to be much coarser than the axisymmetric
mesh to show that good results can be obtained even using a
coarse mesh. Although the match with the results of Seybert,
Wu, and Wu30 is good at the lower frequencies, significant de-
viation at the higher frequencies occurs. I believe the reason
for this deviation is that those researchers used a coarse mesh
which does not capture the solution accurately at the higher
frequencies; I have carried out a mesh refinement study and
verified that the A9 results presented in Table 3 are close to
the converged results. The accuracy of the results can also be
improved further by using a mixed formulation32 for the struc-
tural analysis rather than the displacement-based formulation
that has been used in generating the above results.

4.5. Cylinder with Hemispherical End Caps

I consider both radiation and scattering for a problem involv-
ing a cylinder with hemispherical end caps (see Fig. (8)).9, 33, 34

First I consider the radiation problem. The cylinder pulsates
with a uniform normal velocity of unit magnitude over the en-
tire surface. The dimensions used are l = 3.5, r = 1, and
R = 23.5. For the radiation case, the fluid properties used are
the same as in the pulsating sphere example. Symmetry con-
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Table 3. Comparison of backscattered pressures at various distances when the hollow sphere is elastic; Bracketed values show the magnitude of the pressure.

kza A9 W18/S27 |pscat| 30

Surface backscattered pressure (r = 1)
0.2 −0.9437E−2+0.4911E−2i (0.1064E−1) −0.9462E−2+0.4917E−2i (0.1066E−1) 0.1063E−1
0.4 −0.4414E−1+0.1349E−1i (0.4615E−1) −0.4418E−1+0.1354E − 1i (0.4620E−1) 0.4606E−1
0.6 −0.1452E0 +0.2999E−1i (0.1483E0) −0.1447E0 +0.3010E−1i (0.1478E0) 0.1455E0
0.8 −0.8658E0 +0.8683E−1i (0.8701E0) −0.8425E0 +0.8540E−1i (0.8468E0) 0.7441E0
1.0 0.6857E0 +0.1250E0i (0.6970E0) 0.6990E0 +0.1256E0i (0.7102E0) 0.7419E0

Backscattered pressure at r = 3
0.2 −0.3641E−3+0.5893E−3i (0.6927E−3) −0.3726E−3+0.5952E−3i (0.7023E−3) 0.7039E−3
0.4 −0.1571E−2+0.1700E−2i (0.2315E−2) −0.1583E−2+0.1739E−2i (0.2352E−2) 0.2959E−3
0.6 −0.6828E−2+0.4254E−2i (0.8045E−2) −0.6764E−2+0.4337E−2i (0.8035E−2) 0.1118E−1
0.8 −0.6228E−1+0.3689E−1i (0.7238E−1) −0.6039E−1+0.3599E−1i (0.7030E−1) 0.6783E−1
1.0 0.5645E−1−0.5132E−1i (0.7629E−1) 0.5780E−1−0.5238E−1i (0.7800E−1) 0.7248E−1

Backscattered pressure at r = 10
0.2 0.6466E−4+0.6618E−4i (0.9253E−4) 0.6599E−4+0.6905E−4i (0.9551E−4) 0.9751E−4
0.4 0.1900E−3−0.1308E−3i (0.2307E−3) 0.1983E−3−0.1407E−3i (0.2432E−3) 0.5866E−3
0.6 0.9077E−3−0.4914E−3i (0.1032E−2) 0.8723E−3−0.4973E−3i (0.1004E−2) 0.2597E−2
0.8 −0.7941E−2−0.1353E−1i (0.1569E−1) −0.7698E−2−0.1309E−1i (0.1519E−1) 0.1647E−1
1.0 0.1315E−1−0.1402E−1i (0.1922E−1) 0.1349E−1−0.1435E−1i (0.1969E−1) 0.1698E−1

Table 4. Comparison of pressures at points A and B in the pulsating cylinder with hemispherical caps problem.

ω B9 A9 B18/B27 W18/S27 Bhandakkar and Jog9

Pressure at A
62.83 24.409 −4.899i 24.416 −4.902i 24.409 −4.899i 24.416 −4.902i 24.457 −4.917i

157.08 −36.716−14.800i −36.726−14.797i −36.716−14.799i −36.726−14.797i −36.391−14.809i
318.03 11.010 +14.170i 10.968 +14.117i 11.010 +14.169i 10.968 +14.117i 11.13 +14.04i
475.66 −28.154−27.635i −28.251−27.688i −28.157−27.633i −28.251−27.687i −28.392−27.061i

Pressure at B
66.06 24.373 −9.955i 24.380 −9.959i 24.373 −9.955i 24.380 −9.959i 24.157 −8.035i

157.94 −55.500 −6.130i −55.522 −6.121i −55.500 −6.130i −55.522 −6.121i −55.622 −6.110i
315.38 36.407−85.483i 35.938−85.767i 36.407−85.483i 35.938−85.767i 36.002−85.528i
472.26 76.511 +83.703i 80.274 +80.448i 76.511 +83.702i 80.274 +80.448i 79.592 +80.361i

Figure 9. A typical mesh for the cylinder with hemispherical end caps prob-
lem; for clarity, fewer elements are shown in the radial direction than actually
used.

siderations allow us to model one-eighth of the structure. A
mesh of nr×nθ×nφ = 20×20×10 (where φ is the circumfer-
ential direction) was used to model one-eighth of the structure
as shown in Fig. (9). Solutions were also obtained using an ax-
isymmetric mesh of nr×nθ = 20×20 (roughly four elements
per wavelength). The solutions at points A and B with coor-
dinates (0, 0, 10) and (10, 0, 0), respectively, compared against
the solutions in Bhandakkar and Jog,9 are presented in Table 4.
Note that the solutions presented with our strategy are the raw
nodal values, while the ones in Bhandakkar and Jog9 have been
obtained using the Helmholtz integral equation. The proposed
method yields a better approximation at point B at the high-
est frequency considered. The coarse mesh results obtained by
using a nr × nθ × nφ = 8 × 20 × 10 mesh and R = 16.5

are shown in Table 5, demonstrating the better accuracy of the
proposed formulation, especially at higher frequencies.

Now I consider the scattering by the same cylinder of a plane
wave that is incident along the x-axis and given by eikxx. The
fluid properties used are ρf = 1026 kg/m3 and c = 1500 m/s.

Table 5. Comparison of coarse-mesh pressures at point A in the pulsating
cylinder with hemispherical caps problem.

ω B18/B27 W18/S27 Bhandakkar and Jog9

62.83 24.459 −5.036i 24.498 −5.055i 24.457 −4.917i
157.08 −37.052−14.795i −37.139−14.755i −36.391 −14.809i
318.03 10.606 +14.704i 10.916 +13.988i 11.13 +14.04i
475.66 −22.997−31.793i −28.839−27.975i −28.392 −27.061i

Table 6. Comparison of scattered pressures at points B and C in the cylinder
with hemispherical caps problem; Bracketed values show the magnitude of the
pressure.

kxa B18/B27 W18/S27
Pressure at B

1.5 1.809E−2+0.161i (0.162) 2.721E−2+0.160i (0.162)
2.25 −4.177E−2+0.232i (0.235) 3.831E−2+0.242i (0.245)
3 −0.109 −0.242i (0.265) −3.137E−2+0.266i (0.268)

Pressure at C
1.5 −0.187 +0.122i (0.223) -0.181+0.131i (0.223)
2.25 6.994E−2+0.337i (0.344) 0.182+0.313i (0.361)
3 −0.122 +0.273i (0.299) 0.463-0.185i (0.498)

The discretization used is similar to that in the radiation case,
with a mesh of nr×nθ×nφ = 20×20×20 used to mesh one-
fourth of the domain. The results for the forward and backscat-
tered pressures at points B and C with coordinates (10, 0, 0)

and (−10, 0, 0), respectively, are presented in Table 6 (a = 1),
and when compared against Fig. (12) of Chen and Liu,34 again
show the high accuracy of the proposed formulation.

4.6. Vibrating Circular Piston in a Baffle
A circular piston of radius a = 10 centred at the origin vi-

brates with a normal velocity vn. The analytical expression for
the pressure field35 at a point (0, 0, z) along the axis is given
by

p̃ = ρfcvn

(
e−ik

√
a2+z2 − e−ikz

)
.

The properties used are ρf = 1.2 and c = 341. The vari-
ables vn and R were chosen to be 1 and 50, respectively. A
uniform mesh of nr × nθ = 40 × 32 axisymmetric elements
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Table 7. Comparison of surface and far-field pressures along the axis for the
circular piston example.

ka B6/B9 B6/B9/A9 Analytical
Pressure at z = 0

1 188.109 +344.338i 188.109 +344.338i 188.108 +344.330i
5 293.389−391.894i 293.413−391.924i 293.125−392.392i

10 761.414−217.362i 762.958−215.072i 752.548−222.613i
Pressure at z = 50

1 −38.206 +13.090i −38.206 +13.090i −38.222 +13.397i
5 22.840 +198.795i 23.12 +198.831i 22.972 +199.211i

10 68.789 +380.338i 85.709 +376.840i 88.500 +378.631i

was used to discretize the domain with conventional triangular
six-noded elements, denoted by B6, used in the layer closest
to the origin. I use conventional elements up to r1 = 10, and
the proposed elements beyond r1 and the results are compared
against a mesh comprised of conventional elements alone; see
Table 7. Not surprisingly, the near-field accuracy is almost the
same, while the far-field accuracy is better with the proposed
formulation.

To show that good far-field results are obtained even at high
frequencies, I takeR = 80 and ka = 8π, with the other proper-
ties the same as above. A uniform mesh of nr×nθ = 120×64
axisymmetric elements is used to discretize the domain. In or-
der to compare the results with Fig. (7.4.2) of Kinsler et al.,28

one must normalize the pressures by a factor of 2ρfcvn. The
results are shown in Fig. (10). From the plot of the absolute
pressure, it may appear that the errors in the conventional for-
mulation are small. However, in reality, the significant errors
in the real and the imaginary parts of the conventional formula-
tion, especially in the far field, cancel each other as seen from
the plot for the real value of the pressure.

5. CONCLUSIONS

A finite element method has been proposed for exterior
acoustic problems that favours outgoing waves and hence pro-
vides higher accuracy both in the near and far-field compared
to other methods based on absorbing boundary conditions. The
computational domain and input data are the same as for the
conventional method (i.e., no extra variables are introduced).
In addition, the cost of constructing the element stiffness ma-
trix is also almost the same. Although the resulting global ma-
trix as given in Eq. (24) is unsymmetric, it is sparse so that
the computational cost is not increased significantly. The pro-
posed elements, similar to standard finite elements, are based
on Cartesian coordinates, use standard Gaussian quadrature
and Lagrange interpolations, and, hence barring a few situa-
tions, can be used even in the direct vicinity of the radiator
or scatterer, thereby circumventing the need of using an in-
ner mesh of conventional elements. The method is similar to
the PML method in that each layer surrounding the radiator or
scatterer absorbs acoustic radiation so that no boundary condi-
tion on the truncated boundary needs to be imposed.
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Slender continua such as long ropes, cables, and belts are used as tension and payload-carrying members in various
engineering applications. They are deployed in terrestrial mine/underground equipment and high-rise building in-
stallations through to tethered offshore tension members, tethered space satellite systems and rotating momentum-
exchange tethers in Earth’s orbit. The slender continua are inherently nonlinear, leading to large nonlinear re-
sponses with passages through resonances taking place when the time-varying natural frequencies of the system
approach the frequency of the inertial load resulting from the dynamic loadings. In this paper, the lateral nonlinear
dynamic behaviour of long slender continua moving at speed in a tall host structures is analysed. A mathemat-
ical model comprising non-stationary, nonlinear ordinary differential equations is used to describe the dynamic
behaviour of the system equipped with a multi-modal active stiffness controller. The active control is implemented
by an axial motion of the support, which results in substantial reduction of the response.

1. INTRODUCTION

Moving continuous tensioned slender structural elements,
such as ropes, cables, belts, and tethers, are pivotal components
of many engineering systems. The applications include crane
and mine hoists, offshore and marine installations, vertical
transportation systems in buildings, and space tether propul-
sion systems. Due to their relatively low weight, flexibility,
and low internal damping, these continua often vibrate at large
amplitudes and exhibit a broad range of complex nonlinear dy-
namic phenomena.

The dynamic behaviour of systems with moving tensioned
members has attracted considerable attention. Numerous as-
pects of their dynamic response characteristics in transport in-
stallations, in particular in building elevators, mine hoists and
space systems, have been studied.1–5 A broad range of sources
of excitation are present in such systems. These include tran-
sient loads as well as periodic forces. The excitations pro-
duced by earthquakes and high winds may lead to adverse dy-
namic behaviour of these tension members installed in large
civil structures and tall buildings. Substantial research in the
area of rope and cable dynamics has been devoted to the is-
sue of mitigating the effects of their dynamic responses. Var-
ious control techniques have been developed to suppress their
lateral response, mainly for use in cable civil structures such
as suspended bridges and cable-stayed bridges. Passive meth-
ods involve the application of viscous dampers placed near the
cable support and acting in a lateral direction.6 Semi-active
control strategies include the application of magnetorheologi-
cal dampers that achieve significant vibration reduction com-
pared to viscous dampers.7 Active vibration control methods
using boundary lateral motion8, 9 or longitudinal motion10–13

have also been considered. The latter strategy utilizes the fact
that the longitudinal elastic stretching of the slender element
is coupled with its lateral motion. An actuator is used to pro-
duce a longitudinal oscillatory motion of the support in order to
cause the time variation of transverse (lateral) stiffness which
in turn results in extracting energy from the system. Such an
active control method is termed “active stiffness control.”

The aim of this paper is to develop a mathematical model
to predict the dynamic behaviour of long slender continua de-
ployed in tall host structures. The objectives include to de-
termine the dynamic responses when these continua are sub-
jected to harmonic excitation due to a low-frequency sway of
the host structure and to investigate the effectiveness of a suit-
able strategy to control the effects of the sway. Active stiffness
control is considered to mitigate the effects of passage through
resonances when a slender continuum, such as a wire rope or
cable, moves at speed and comes to rest, exhibiting large dy-
namic displacements.

2. VIBRATION MODEL AND CONTROL
STRATEGY

The planar model of a slender element, representing a rope
or cable and modelled as a taut string of time-varying length
L(t) moving at speed in a vertical cantilevered host structure,
is depicted in Fig. (1). The element has mass per unit length
m, elastic modulus E, and an effective cross-sectional area A.
It is wrapped around a drum at the bottom end with its upper
end attached to a support moving at speed v(t), while the host
structure is subjected to bending deformations described by the
shape function Ψ (z), with z denoting a coordinate measured
from ground level. The bending deformations produce a har-
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Figure 1. Slender element moving in a vertical host structure.

monic motion w0 (t) of frequency Ω and amplitude W0 mea-
sured at the level defined by the coordinate z0. The system
is equipped with the actuator F acting on the drum assembly,
which produces an axial motion u0 (t) according to a suitable
feedback-control strategy in order to achieve the active stiff-
ness control.

The bending motions (sway) of the structure result in an in-
ertial dynamic load acting upon the element and its dynamic
response is represented by the lateral displacements denoted
as w (x, t), where x is measured from the origin O placed at
distance l below ground level. The lateral response w (x, t) is
coupled with axial (longitudinal) motions that are denoted as
u (x, t). It is assumed that the motion of the host structure is
not influenced by the response of the slender element. Thus, in
the model used in this work, the excitation is treated as a kine-
matic ideal excitation with the swaying structure being treated
as an ideal source of energy.14 For practical applications in-
volving modelling interactions between tall building structures
and slender components, such as ropes and cables employed in
vertical transportation systems, this is an acceptable simplifi-
cation.

2.1. Vibration Model

The mean tension of the element is expressed as

Tm (x, t) = T0 +mx [g + a (t)] ; (1)

where T0 represents a constant tension term, a (t) = v̇ (t) is
the acceleration of the upper support (an overdot denotes the
time derivative) and g is the acceleration of gravity. The axial
Green’s strain measure due to stretching of the element is given
as15

ε = ux +
1

2
w2
x; (2)

where ( )x ≡
∂( )
∂x . The equations governing the undamped

dynamic displacements u(x, t) and w(x, t) can be developed

by applying Hamilton’s principle, which yields

m
d2u

dt2
− EAεx −ma(t) = 0; (3)

m
d2w

dt2
− [T0 +m (g + a(t))x]wxx+

−m (g + a(t))wx − EA(εwx)x = 0; (4)

where

d2( )

dt2
= ( )tt + 2v( )xt + v2( )xx + a( )x (5)

and ( )t ≡
∂( )
∂t . For tensioned members, such as wire ropes

and metallic cables, the lateral frequencies are much lower than
the longitudinal frequencies. For tall structures, such as high-
rise towers and buildings, the bending motion frequencies Ω
are much smaller than the fundamental longitudinal frequen-
cies of the element, and we can assume that no interaction
will take place between the lateral modes and the longitudi-
nal modes. Thus, the longitudinal inertia of the element can be
neglected in Eq. (3) so that the model is reduced to one equa-
tion only.16 This leads to the following equation for the lateral
response:

mwtt−

{
T0 +m

[
1
2a (t)L (t)− v2(t) + gx

]
+

+ EA
L(t)

[
1
2

∫ L(t)
0

w2
xdx+ u0 (t)

] }wxx+

+m [a (t)− g]wx + 2mv (t)wxt = 0; (6)

where the spatial coordinate x is defined in a time-variant do-
main 0 < x < L(t). The lateral displacements at the bound-
aries are defined as

w (0, t) = 0; w [(L (t) , t)] = wL (t) ; (7)

where wL (t) represents lateral displacements of the structure
corresponding to the upper end of the element (see Fig. (1)).
In order to accommodate the excitation in the equation of mo-
tion (Eq. 6)) the overall lateral displacements of the rope are
expressed as

w(x, t) = w̄(x, t) +
x

L (t)
wL (t) ; 0 ≤ x ≤ L (t) ; (8)

where w̄ (x, t) are the displacements relative to the stretched
configuration of the element. In this analysis, the deformation
shape function Ψ (z) is assumed to be related to the fundamen-
tal mode of the host structure and is approximated by a cubic
polynomial as follows:

Ψ (z) = 3

(
z

z0

)2

− 2

(
z

z0

)3

(9)

so that the lateral displacement at x = L can be expressed as

wL(t) = ΨLw0(t); (10)

where

ΨL = 3

(
L (t)− l

z0

)2

− 2

(
L (t)− l

z0

)3

(11)
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and l = L (0).
Using the transformation in Eq. (8) in Eq. (6), an approxi-

mate solution to the nonlinear partial differential equation of
motion is sought by using the Galerkin method with the fol-
lowing finite series:

w̄(x, t) =
N∑
n=1

Φn [x;L (t)]qn (t) ; (12)

where Φn [x;L (t)] = sin nπ
L(t)x; n = 1, 2, . . . , N ; with N

denoting the number of modes, are the natural vibration modes
of the corresponding taut string of length L = L (t) with the
tension given as

T (t) = T0 +
1

2
ma (t)L (t) ; (13)

and qn (t); n = 1, 2, . . . , N represent the modal displace-
ments. This results in the following set of N ordinary differ-
ential equations:

q̈r (t) + 2ζrωr (t) q̇r (t) +

+ λ2r (t)

{̄
c2 (t)−v2 (t)+c2

[
1
2

(
wL(t)
L(t)

)2
+ u0(t)

L(t)

]}
qr (t) +

+
N∑
n=1

Krn (t) qn (t) +
N∑
n=1

Crn (t) q̇n (t)+

+

(
λr (t)

2
c

)2

qr (t)
N∑
n=1

λ2n (t) q2n (t) = Qr (t) ;

r = 1, 2, . . . , N ; (14)

where cubic nonlinearities arising due to the effect of rope
stretching are present; the modal damping represented by the
ratios ζr has been added; ωr (t); r = 1, 2, . . . , N are the
undamped time-varying natural frequencies of the element;

c̄ (t) =
√

T (t)
m and c =

√
EA
m represent the lateral wave speed

and the longitudinal wave speed, respectively; λr (t) = rπ
L(t) ;

Krn (t); Crn (t) are time-variant coefficients; and Qr (t)is the
modal excitation given as

Krn (t) =

=
2g

L (t)



r2π2

4 , n = r

(a(t)g − 1
)

nr
n2−r2 +

+ 2rn3

(n2−r2)2

[(−1)
r+n− 1

]
, n 6= r

; (15)

Crn (t) =
4v (t)

L (t)


0, n = r

nr
n2−r2

[
(−1)

r+n − 1
]
, n 6= r

; (16)

Qr(t) =
2

rπL (t)


(−1)

r
L (t) ẅL (t) +

−
[

(g − a (t))wL (t) +
−2v (t) ẇL (t)

]
[(−1)

r − 1]

 .

(17)
It is also evident that the host structure motion wL(t) appears
in Eq. (14) together with the axial motion u0 (t) applied at the
lower boundary as parametric excitation terms.

2.2. Control Strategy
A feedback control algorithm is needed to achieve active

stiffness control. For example, a non-collocated control strat-
egy based on the measurements of the response expressed as

u0 (t) = Φ [q (t) , q̇ (t)] ; (18)

where Φ represents a suitable control law and q and q̇ denote
the modal displacement vector and the modal velocity vector,
respectively, can be considered. The feasibility of the active
stiffness control of ropes and cables based on various non-
collocated feedback control has been studied extensively. In
particular, the implementation of feedback control in terms of
vibration modes has been investigated by many researchers. In
the modal control law proposed by Chen,10 the feedback for
axial support motion is given as

u0 (t) =
au
ωr

qr q̇r
|qr|

; (19)

where au is the control gain. In the event of primary resonance,
when the frequency of the excitation Ω is near the natural fre-
quency ωr, this control algorithm results in the axial motion at
a frequency equal to twice the natural frequency of the rope (at
the parametric resonance; 2ωr) with the phase shift of the con-
trol motion relative to the response of the system equal to π

2

(which is achieved by the product of the modal displacement
and the modal velocity). Fujino, Warnitchai, and Pacheco11

developed Chen’s concept further and proposed the following
feedback control law:

u0 (t) =
2au
ωr

qr q̇r

q2r +
(
q̇r
ωr

)2 . (20)

The algorithms of Eqs. (19) and (20) are single-mode con-
trollers. They are effective in suppressing the target mode.
However, control spillover might occur when the uncontrolled
modes are excited to some degree by the active control system.
This effect might have a detrimental influence on the perfor-
mance of the system. In order to address this issue Achkire,
Bossens, and Preumont applied a collocated control strategy
with positive integral force feedback.12 However, Wang and
Xu demonstrated that multimode feedback for the axial mo-
tion can be used in active stiffness control.13 In such a control
strategy, the modal spillover phenomenon can be avoided. In
this study, a multimode feedback law was applied. This law
accommodates all modes involved in series (12) and is given
as

u0 (t) = au

∑N
n=1 qnq̇n∑N
n=1 ω

2
nq

2
n

. (21)

3. CASE STUDY

The dynamic performance of the system comprising a steel
wire rope of mass per unit length m = 1.3 kg/m, having the
modulus of elasticity E = 0.7 × 105 N/mm2 and an effec-
tive cross-sectional area A = 148 mm2, is considered. The
modal damping ratios of 0.3% are used across all modes.12

The rope is being accelerated from rest when its initial length
is l = 3.75 m, at the rate of 1.2 m/s2 and is moving upwards at
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Figure 2. Velocity, acceleration, and jerk time profile.

Figure 3. Variations of the first three natural frequencies (a) versus time and
(b) versus length of the rope together with the frequency of the excitation
(dashed line).

a speed of 5 m/s, later being decelerated at the rate of 1.2 m/s2

and coming to rest after 29.7 s, having reached the maximum
length Lmax = 128.75 m. The velocity, acceleration and jerk
time profiles of the upper end of the rope are shown in Fig. (2).

The jerk value of 2.4 m/s3 has been applied to smooth the
acceleration time profile.

The host structure is subjected to a harmonic motion of fre-
quency 0.4 Hz (Ω = 2.513 rad/s) and amplitude 0.25 m mea-
sured at z0 = 137.75 m above the ground floor level. This
results in an inertial load acting upon the rope during its travel
and after it has reached its maximum length remaining station-
ary. In order to predict the dynamic response and to assess the

Figure 4. The dynamic operational shapes during travel: (a) without control
and (b) with control.

Figure 5. The dynamic operational shapes at rest: (a) without control and (b)
with control.

performance of the controller, the equations of motion repre-
sented by Eq. (14) are integrated numerically using an explicit
Runge-Kutta fourth- and fifth-order formula. The numerical
procedure is started from the initial instant t0 = 0 when the
rope begins to move and is carried out until the final simu-
lation time, chosen as tf = 120 s. The results are shown in
Figs. (3)–(9) and are discussed in the following sections.

The length variation of the rope results in changes of its mass
and stiffness characteristics so that slow variations of the natu-
ral frequencies occur.2 In addition, the natural frequencies are
affected by the speed and acceleration of the transport motion.
The variations of the first three natural frequencies versus time
and length of the rope are shown in Figs. (3a) and (3b), re-
spectively, together with the frequency of the excitation Ω (ex-
pressed in Hz and represented by a dashed line). The natural
frequencies decrease as the length of the rope increases. After
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Figure 6. Vibrations (displacements) of the rope at quarter span without con-
trol (dashed line) and with active control (solid line).

Figure 7. FFT frequency spectrum of the response w̄[Lmax/4, t] with active
control corresponding to the time interval t ∈ [60, 100] s.

Figure 8. Control motion.

approximately 10 s, a passage through the fundamental reso-
nance takes place when the rope reaches the length of 41.7 m,
followed by the second mode resonance after 20 s correspond-
ing to the length of 91 m.

The dynamic deformation (operational) shapes of the rope,
without control and with the controller activated at the time in-
stant t = 25 s with the gain au adjusted to 0.1, are presented
in Figs. (4) and (5), during travel and when the system is sta-
tionary after the rope has been fully extended, respectively. As
is evident from Fig. (4a), during the first stage of travel the
deformation shapes reflect the fundamental mode character of
the response, but after the second mode resonance takes place,
the second-mode becomes dominant, with the rope subjected

Figure 9. FFT frequency spectrum of the control motion corresponding to the
time interval t ∈ [60, 100] s.

to large amplitude vibrations. Large displacements and the in-
fluence of second mode resonance are evident from the op-
erational shapes corresponding to the stage after the rope has
reached its maximum length and the system is stationary, pre-
sented in Fig. (5a). The results presented in Figs. (4b) and (5b)
show that the resonance motions are suppressed and the defor-
mations of the rope are reduced.

The effect of the active stiffness control is demonstrated fur-
ther in Fig. (6), where the corresponding combined time re-
sponse plots representing the dynamic displacements of the
rope w̄ [L (t)/4, t] (during travel) and w̄ [Lmax/4, t] (fully ex-
tended and stationary after 29.7 s) recorded at its quarter span
versus time are shown. The results demonstrate that, without
feedback control, large motions of the rope, with the ampli-
tudes exceeding 1 m, occur. However, when the active con-
trol system is applied the response is reduced by about 50%
(the displacements are less than 0.5 m after the rope reaches its
maximum length and the system is at rest). The fast Fourier
transformation (FFT) frequency spectrum of the response of
the system with active control corresponding to the time in-
terval t ∈ [60, 100] s is shown in Fig. (7). The dominant fre-
quency of the response is equal to the frequency of the sway
excitation (0.4 Hz).

The axial control motion u0 is plotted versus time and shown
in Fig. (8). At the beginning, shortly after the control system
is activated, the maximum displacement at the actuator end is
approximately 7.5 cm. But after about 60 s from the start, the
maximum peak amplitude is decreased to about 4 cm. The fre-
quency spectrum of the control motion corresponding to the
time interval t ∈ [60, 100] s is shown in Fig. (9). The sup-
port motion has the dominant frequency equal to twice the fre-
quency of the excitation (0.8 Hz).

4. CONCLUSIONS

The equations of motion of a slender continuum represented
by a rope moving at speed within a tall host structure derived in
this paper accommodate the nonlinear effects of rope stretch-
ing. This model is used to determine the response of the sys-
tem under the load due to the sway of the host structure and to
demonstrate the application of active stiffness control. Numer-
ical simulation results show the effect of transient resonance
conditions on the dynamic response of long slender continua
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deployed in tall structures. The continua suffer from large lat-
eral displacements that often exceed allowable limits. This is-
sue often arises in many engineering systems. For example,
in high-rise structures, traction drive elevator systems employ
long ropes and cables, which results in the need to predict
and control flexible low-frequency modes and nonlinear, non-
stationary dynamic phenomena.

The active stiffness control system proposed in this work fa-
cilitates extracting energy from the vibrating slender continua,
moving at speed and then being stationary in the host structure,
through dynamic axial motion implemented at the support. It
has been demonstrated by means of a case study that the ac-
tive stiffness control of the lateral response can substantially
reduce the response and the effects of passage through primary
resonances. A relatively small amplitude of the axial motion is
required to achieve the active stiffness control.

However, it should be noted that the axial motion at the
boundary may either generate or dissipate energy, depending
on the phase shift angle between the control signal and the re-
sponse. For the control to be effective, the control law, such
as given by Eq. (21), must be strictly observed. Otherwise, the
axial motion may act as parametric excitation leading to energy
generation and instability in the system.
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Book Reviews

Fundamentals of Shallow Water
Acoustics

By: Boris Katsnelson, Valery Petnikov, and James Lynch
Springer, 2012, 540 p., 202 illus., Hardcover
ISBN: 978-1-4419-9777-7
Price: US $169

This book provides an analyti-
cal approach to low- and medium-
frequency underwater acoustics in
continental shelf areas. The fore-
word describes the purpose of the
book in terms of a remedy for
what other textbooks dedicated to
the subject of low-frequency shal-
low water acoustics lack. Hence,
the focus is filling the gap by
supplying comprehensive infor-
mation of relevance to shallow
water acoustics. This book begins
with a thorough description of significant environmental fea-
tures such as variable topography, oceanographic fronts, and
internal waves. Subsequent analysis demonstrates that these
features are of primary importance rather than secondary is-
sues in shallow water acoustics.

Shallow water acoustic propagation is analysed using nor-
mal modes to represent the dominant physical acoustical fea-
tures in shallow water. It is shown that this is more informative
in shallow water than the ray-tracing and parabolic equation
approaches adopted in deep water underwater acoustics. The
modus operandi is the calculation of the acoustical field as a
function of range, depth, and time. The approach is initially
derived for the simplest case known as the “Pekeris waveg-
uide” then progressively extended to cases with variable sound
speed profile, depth, and sediment properties. One particu-
lar feature, uncovered by the analysis, is the differing group
velocity between the acoustical modes in typical shallow wa-
ter environments at low frequency. Measurement results are

provided to show how this leads to different arrival times of
the modes. Furthermore, mathematical explanations are pro-
vided for the dependency of the attenuation of the modes as
a function of environmental properties and frequency. At one
juncture, it is noted that both theory and measurement indi-
cate that the absorption in the water column is relatively small,
such that it can be ignored in shallow water at the frequencies
discussed in this monograph. Oceanographic measurement ac-
tivities are described and used as the basis for application of
the mathematics. Examples are supplied from the Barents Sea
to the north of Russia and the Atlantic Ocean to the east of
the USA. Reworking these examples would enable readers to
confirm that they have understood the analysis.

A key implication from the analysis is that sonar equip-
ment, signal-processing techniques, and acoustical transmis-
sions designed for deep water application may exhibit unex-
pected characteristics in shallow water environments. For ex-
ample, the varying time delay and absorption of the modes
are likely to cause an active sonar system to receive multiple
echoes from the same targetâĂŤpotentially leading to a false
estimate of range. An understanding of the environment and
usage of the mathematics would enable the received signal
to be better understood and the target better defined. How-
ever, the level of mathematics used in this book goes well
beyond the Fourier theory and introductory time-series anal-
ysis. For example, solutions to the wave equation are sought
using eigenvalues of the Sturm-Liouville form on the assump-
tion that readers are familiar with the approach. Contour inte-
gration in the complex plane is also employed as an analysis
technique. Readers lacking strong graduate-level mathemati-
cal abilities would derive limited benefit from this book.

In summary, this book provides the mathematics and sup-
porting evidence needed to gain an understanding of low-
frequency shallow water acoustics. Applying this book to real
problems will be an intellectual challenge, but a potentially
worthwhile alternative to using deep water models.

Adrian Brown
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Portsdown, Hampshire, UK
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