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It has been a practice in modern day aircraft and automobile industries to manufacture a stiffened structure for
significantly enhancing efficiency and strength without incurring a considerable weight increase. In the present
study, an attempt is made to understand the effect of stiffeners on the sound radiation pattern of a vibrating plate.
Subsequently, a velocity feedback control algorithm based on Linear Quadratic Regulator (LQR) methodology
is developed to attenuate the radiated sound power from the vibrating structures with surface bonded piezo fibre
composite (PFC) patches with interdigitated electrodes (IDE) as actuators and polyvinylidene fluoride (PVDF)
films as sensors. Results are obtained for different orientations of stiffeners and various locations of PFC patches
and are discussed.
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NOMENCLATURE
ω Natural frequencyÛσ Radiation efficiency
{σ} Stress vector
{ε} Strain vector
{E} Electric field vector
E Young’s modulus
ν Poisson’s ratio
ρ Material density
[Q] Elastic moduli matrix
{D} Electrical displacement vector
[e] Piezoelectric stress/charge constant
[κ] Electric permittivity or dielectric matrix
[ρ] Inertia matrix
[N] Shape function matrix
{d},

¶
ḋ
©

,
¶
d̈
©

Generalized displacement, velocity, and
acceleration vector

[M] Mass matrix
[KUU] Mechanical stiffness matrix
[Kuφ] Electro-mechanical coupling stiffness

matrix
[Kφφ] Electrical stiffness matrix
[Z] Position matrix of the piezo patch
[B] Strain-displacement matrix
Q̂ Electrical charge
{Fel} Electrical load vector
{y}, {ẏ}, {ÿ} Displacement, velocity, and acceleration

vector in modal level

1. INTRODUCTION

In the present day automobile and aerospace industry, the
objective is to increase fuel efficiency without compromising
structural stiffness and strength. To achieve these objectives,
the present trend is to use lightweight structural elements.

However, these forms of structures have the possibility of gen-
erating unacceptable levels of sound and noise due to vibration.
Since interior noise has a strong effect on passenger comfort
and acceptance of the vehicle, researchers and engineers are
continually working on different methodologies to reduce the
noise level.

Classically, sound attenuation in the medium to high fre-
quency acoustic range can be achieved in a passive manner by
adding sound absorbing materials to the surface of the radiat-
ing structure. An alternate methodology is to use destructive
interference in the sound source path. A more advanced form
of the sound control is based on altering the vibrations of the
noisy structure such that it radiates less sound. This alteration
may be achieved by introducing discrete and collocated sen-
sors and actuator pairs that fall under the scope of active con-
trol strategy.

The acoustic radiation problem has been addressed by var-
ious researchers, including Gladwell,1 Gladwell and Zimmer-
man,2 Seybert et al.,3 and others. Cunefare has shown that the
radiated sound power can be expressed in terms of acoustic
radiation filters, surface radiation modes, and discrete surface
velocities of the vibrating structure.4 Elliot and Johnson com-
pared two different formulations for calculating the acoustic
power radiated from a vibrating structure in the free field and
then implemented a feed forward control of sound power for a
baffled square panel.5 Radiation efficiencies and singular ve-
locity patterns were introduced by Borgiotti and Jones using
the singular value decomposition (SVD) of a radiation resis-
tance matrix.6 Gibbs et al. developed a radiation modal ex-
pansion (RME) technique to reduce computational effort and
then apply a feedback control strategy with radiation filters em-
ploying multiple input or output smart sensor-actuators.7 Bhat-
tacharya et al. have shown that the size and geometry of the vi-
brating structure influences the cut-off limit of the acoustic ra-
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diation filters.8 In the paper by Liu et al., laboratory tests were
performed to validate the theoretical prediction of the sound
insulation properties of aircraft panels with ring frames and
stringers.9 They used shell panels made of both isotropic as
well as composite materials. Engels et al. discussed the per-
formances of different feedback controllers implemented on a
plate structure using collocated velocity sensors and force ac-
tuators with the objective to minimize the kinetic energy and
the radiated sound power.10 In a review paper by Fuller, dif-
ferent methodologies for controlling the radiated sound from a
vibratory structure were discussed—e.g., active acoustic con-
trol, active structural control, active structural-acoustic control
with the help of point acoustic sources, smart foam as active
skins, piezoelectric actuator-sensor pairs, etc.11

In the present work, an attempt is made to numerically
model and estimate the radiated sound power in the free field
from flat vibrating panels subjected to external disturbances.
Subsequently, the formulation is extended for stiffened plates
with stiffeners placed and oriented in different directions and
positions. The study also aims to develop an active control
strategy based on LQR methodology to minimize the sound ra-
diating into the free field where the sensor voltage correspond-
ing to the structural velocity is fed back into the piezo fibre
composite actuator patches. For the structural analysis, a four
node isoparametric quadrilateral finite element, with five me-
chanical degrees of freedom (3 translational and 2 rotational)
per node based on first-order shear deformation theory is em-
ployed. Necessary transformation is used to incorporate the
stiffeners into the FE model. A pair of electrical voltages,
namely sensor voltage (φs) and actuator voltage (φa), are con-
sidered as additional degree of freedom applied per element
containing piezo electric patches.

2. MATHEMATICAL FORMULATION

In this section, the mathematical formulation to describe the
radiated acoustic power from planar baffled structures with and
without stiffeners is presented. Thereafter, a feedback con-
trol algorithm based on LQR methodology with structurally
bonded piezoelectric sensor and actuator devices is formulated
and presented.

2.1. Acoustic
A vibrating structure consisting of an infinite number of nat-

ural mode shapes surrounded by an acoustic medium causes
pressure perturbation in the medium that is experienced as
sound. However, the structural mode shapes do not radiate in-
dependently and the inter-modal coupling between structural
modes affects the radiated sound power. Therefore, reducing
dominant structural modes may have little effect on the radi-
ated power. Hence, it is important to develop acoustic radiation
filters apart from identifying structural mode shapes. Acoustic
radiation filters describe the radiated power in terms of dis-
crete surface velocities and the surface radiation resistance, as
shown by Cunefare.4

In the present analysis, the vibrating structure consists of a
flat plate with and without stiffeners radiating sound into a free
field. The plate is partitioned into N — numbers of equally

Figure 1. Schematic showing the baffled plate with the geometric interpreta-
tion of the Reyleigh integral.

sized rectangular elements with the size very small as com-
pared to the acoustic wave length under consideration. Indi-
vidual elements can be assumed as a point source placed in
a baffle, and following the developments by Fahy and Gardo-
nio,12 the pressure at any observation point in the field can be
expressed in the form of the Rayleigh integral for the acoustic
Helmholtz equation. The Rayleigh integral is

p(r) =
iωρ0
2π

∫
S

vn(rs)
e−ik|r−rs|

|r − rs|
dS; (1)

where p(r) is the complex acoustic pressure amplitude at any
location r, k = ω/c0 is the acoustic wave number with c0 the
speed of sound in the medium, and %0 is the density of the
medium. The surface normal velocity is vn(rs) on the vibrat-
ing source with a closed boundary S, as shown in Fig. (1). The
sound power generated is equal to the surface integral of the
normal component of the sound intensity

W =
1

2
Re
Å∮

S

p(rs)v
∗
n(rs)dS

ã
. (2)

The Rayleigh integral is solved with the help of a numerical
scheme. It is assumed that the normal velocity is constant
across each element. That makes each element behave like an
elemental radiator or piston that moves with constant harmonic
velocity. For this discretization, the Rayleigh integral can also
be written as

pf = Zfvn; (3)

where pf is the vector with pressures in a set of field points,
vn is the vector with normal surface velocities of the elemen-
tal radiators, and Zf is a frequency dependent transfer matrix,
whose elements are given by

(Zf )ij =
iωρ0Se
2π

e−ikrij

rij
. (4)

Se defines the area of the elemental radiator and rij is the dis-
tance between the field point i and surface point j (rij =

|ri − rj |).
For the same discretization, the expression for the sound

power reduces to the summation

W =
Se
2

Re(vH
n p); (5)
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where p is the vector with surface pressures, evaluated at the
same points on the surface as vn. With the substitution of p =

Zvn, the sound powerW can be obtained in terms of a discrete
number of velocity measurements as

W = vH
n Rvn. (6)

In this equation, R = (Se/2)Re(Z) is called the radiation re-
sistance matrix. This matrix R can be written as

R =
ω2ρ0S

2
e

4πc0


1 sin(kr21)

kr21
· · · sin(kr1N )

kr1N

sin(kr12)
kr12

1
...

...
. . .

...
sin(krN1)
krN1

. . . · · · 1

 .

Since rij = rji, the radiation resistance matrix R is sym-
metric and positive definite. The elements of the matrix de-
pend on the properties of the acoustic medium, the frequency,
and the geometry of the plate.

The radiation efficiency is defined as the ratio of the sound
power radiated per unit area by the object to the sound power
radiated by a reference source. The reference source is a baf-
fled piston vibrating at a high frequency (wave number, k×
area of the piston, A � 1) with a velocity equal to the space
and time averaged, squared, normal velocity 〈v2n〉 of the object.
The radiation efficiency is given asÛσ =

W

ρ0c0S〈v2n〉
; (7)

where S is the total area of the object. The space and time
averaged normal velocity is given by

〈v2n〉 =
1

2S

∫
S

|vn(rs)|2dS = vH
n Ṅvn. (8)

The radiation modes and the radiation efficiencies can be ob-
tained by carrying out a singular value decomposition (SVD)
on the matrix Ṅ−1R. As the radiation resistance matrix R

depends upon the frequency, the SVD must be performed at
all the frequency steps. As a result, both the radiation ef-
ficiency and the radiation mode shapes are functions of fre-
quency. In order to predict the total power radiated over a cer-
tain frequency bandwidth, the characteristics of the R matrix
are modelled over that bandwidth.

2.2. Constitutive Relationship
The structural form considered here consists of an isotropic

stiffened plate with IDE-PFC patches bonded as actuators and
piezo monolithic patches as sensors. The constitutive relation-
ship for an isotropic material can be expressed as


σxx
σyy
τyz
τzx
τxy

=


E

(1−ν2)
Eν

(1−ν2) 0 0 0
Eν

(1−ν2)
E

(1−ν2) 0 0 0

0 0 E
2(1+ν) 0 0

0 0 0 E
2(1+ν) 0

0 0 0 0 E
2(1+ν)



εxx
εyy
γyz
γzx
γxy

 .

(9)

Figure 2. Actuation mechanism of piezo fiber composite (PFC) with interdig-
itated electrode (IDE).

In the case of piezo patches, the standard IEEE norm is fol-
lowed and presented below as

{σ} = [Q]{ε} − [e]T{E} (10)

and
{D} = [e]{ε}+ [κ]{E}; (11)

where the notations have their usual meanings.
The electric field vector {E} is expressed as

{E} = −∇φ; (12)

where φ is the applied electric potential.
In case of IDE-PFC patches (Fig. (2)), the electric field

along the length of the patch between two consecutive elec-
trode fingers is assumed to be linearly distributed with alter-
nate electrodes being suitably grounded. There is a perfect
bond between the piezo layer and the elastic substrate. Hence,
the electric field for the actuator layer is expressed as

Ea = −φ
a

hs
; (13)

where hs is the distance between IDE.
In case of sensor elements, the electric field is assumed to

be linearly distributed through the thickness of the piezo layer
with the electrode in contact with the substrate being suitably
grounded.

2.3. Finite Element Formulation
The governing equation for the structural motion is devel-

oped using the Hamiltonian formulation and is expressed as

d

dt

Å
∂T

∂q̇′i

ã
− ∂

∂q′i
(T − U) = Pi; (14)

where Pi is the generalized force and q′i are the generalized
coordinates.

The kinetic energy T is expressed as

T =
1

2

∫
V

{u̇}T{ρ}{u̇}dv. (15)

The potential energy U consists of potential due to mechanical
strain UM and electrical strain energy UE, where UM is given
as

UM =
1

2

∫
V

{ε}T {σ} dv. (16)

With the inclusion of a piezoelectric patch as an actuator in
the host structure, the potential energy due to the electric
field needs to be taken care of in the potential energy term in
Eq. (14) as:

UE =
1

2

∫
V

{E} {D} dv. (17)
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The sensor is separately modelled and is explained in the next
section.

The structure is discretized using a four-node isoparamet-
ric element. Five mechanical degrees of freedoms (3 trans-
lational and 2 rotational) are assumed per node. As already
mentioned, one actuator voltage per element is incorporated in
the FE model. The actuator modelling is done as per the work
given in the paper by Azzouz et al.13 Therefore, following the
isoparametric concept, the mechanical degrees of freedom can
be expressed in terms of the linear shape functions as

{u} = [N]{de}; (18)

where {u} is the displacement vector at any point of the finite
element and {de} is the nodal displacement vector.

The finite element form of the governing equations of the
system are written as

[M]
¶
d̈
©
+ [KUU] {d}+ [KUφ] {φa} = {Fm} (19)

and
[KφU]{d} − [Kφφ]{φa} = {Fel}; (20)

where Fm is the mechanical load vector and
[M] =

∫
A
[N]T[ρ][N]dA;

[KUU] =
∫
A
[B]T[D][B]dA;

[Kφφ] =
∫
V

Ä
1
h2
s

ä
[Bφ]

T[κ][Bφ]dV ; and

[KUφ] =
∫
V

Ä
Vf
hs

ä
[B]T[Z]T[e]T[Bφ]dV = [KφU]

T.

2.4. Sensor Modelling
The direct piezoelectric equation is used to calculate the

output charge from the piezo sensors induced by mechanical
strains. The electric displacement developed on the sensor sur-
face is directly proportional to the mechanical strain acting on
the sensor. By using a zero-input-impedance circuit, it is pos-
sible to show that the first term in the right-hand side of the
piezoelectric constitutive Eq. (10) contributes less than the sec-
ond term on the same side of the equation, and the second term
in the right-hand side of the piezoelectric constitutive Eq. (11)
is less significant than the first term on the same side of the
equation. Thus, the sensor behaves like a pure current source.
For such a configuration, the charge developed for the ith sen-
sor patch at location z = hi+1 (distance from the mid-plane of
the structure) can be expressed as

Q̂i(t) =

∫
Ai

D(x, y, hn+1, t)dA; (21)

where D(x, y, hn+1, t) = [e]T{ε} and {ε} = [Z][B]{de}.
The sensor current is proportional to the rate of charge de-

veloped. Therefore,

isensor =
˙̂
Q; (22)

and the sensor output voltage becomes

φs = Rf isensor (23)

or
φs = Rf [K

e
s]

T
¶
ḋe
©
; (24)

where [Kes]
T =

∫
Ai
[e]T[Z][B]dA is called the sensor stiffness

and Rf is the resistance offered by the piezo patch.
In the present formulation, the voltage produced in the sen-

sor patches (Eq. (24)) mounted on the vibratory structure is
fed back to the actuator patches after multiplying with the gain
value G obtained from control law and thus the third term in
Eq. (19) represents the equivalent piezoelectric load. Hence,
the final governing equation takes the form

[M]
¶
d̈
©
+ [KUφ] ·G · [Ks]T{ḋ}+ [KUU] {d} = {Fm}. (25)

The final governing equation in the element level when assem-
bled gives the global equation for the entire domain

[Mgl]
¶
d̈gl

©
+ [Cgl]

¶
ḋgl

©
+ [Kgl] {dgl} = {Fgl} . (26)

The FE model is developed in the MATLAB environment
for response calculation and is simultaneously used to imple-
ment the control algorithm.

After carrying out the response analysis (Eq. (26)), one can
obtain the surface velocities with and without the control volt-
ages and obtain the radiated sound power from the vibrating
plate from Eq. (6).

3. LQR CONTROL ALGORITHM

In the present section, the control algorithm implemented for
the sound power reduction is discussed briefly. For the present
study, a linear quadratic regulator (LQR) is considered, which
is based on the quadratic performance index. The state-space
model of the system in modal level is given byß

ẏi
ÿi

™
=

ï
0 1

−ω2
i 0

òß
yi
ẏi

™
+

ï
0

−KUφ

ò
{φa} ,

i = 1, 2, 3 (number of modes considered);

or
ẋ = Ax+Bu. (27)

The linear feedback control law for the system may be written
as

φa = −Gφs. (28)

The elements of the gain matrix G are found by minimizing
the performance index J ,14

J =

∫ ∞
0

L(x, u)dt; (29)

where L is a quadratic function of x and u; the final form is
expressed as follows:

J =

∫ ∞
t0

(xTQix+ uTRiu)dt (30)

i = 1, 2, 3 (number of modes considered).
Here, both Q and R matrices are real symmetric and Q con-

sists of sensor stiffness at modal level while R can be chosen
by the control designer. Again Q and R denote the relative
importance of error and expenditure of control effort. The op-
timization of the performance index J results in the continuous
time Riccati equation, which is solved in the MATLAB plat-
form.
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Figure 3. Schematic diagrams of unstiffened and stiffened plates.

4. RESULTS AND DISCUSSION

The present work on the behaviour of the vibrating structure
on the radiated acoustic energy into the free field is carried
out in two phases. The effect of the stiffeners on the radiating
sound energy from the simply supported plate structure sub-
jected to external mechanical excitations is investigated in the
first phase of the work. In the next phase, an active control
methodology is implemented to attenuate the emitted energy
in some selected cases. The different structural forms consid-
ered for the present study are presented below:

Case I: Simply-supported unstiffened plate (Fig. (3a));

Case II: Simply-supported stiffened plate with single
unidirectional stiffener parallel to x-axis (Fig. (3b));

Case III: Simply-supported stiffened plate with bidirec-
tional cross stiffeners (Fig. (3c));

Case IV: Simply-supported stiffened plate with double
unidirectional stiffeners parallel to x-axis (Fig. (3d)).

A square aluminium plate of size 1.0m ×1.0m with thick-
ness 0.004m (Young’s modulus, E = 70.0GPa, Poisson’s ra-
tio, ν = 0.3 and density, ρ = 2700 kg/m3) is considered for
the analysis. For a stiffened plate, the depth of the stiffener is
taken as 0.1m with the thickness maintained the same as that
for the plate. For validating the developed formulation, a free
vibration study is carried out initially on a stiffened plate and
is discussed in the next subsection.

4.1. Validation of the Stiffened Plate
Formulation

Free vibration frequencies are obtained for a simply-
supported stiffened plate with unidirectional stiffener (Case II)
from the present finite element model and from the ANSYS
ver. 11.0 model using the SHELL 63 element. They are pre-
sented in Table 1. The dimensions and the material properties
for the structure are kept the same as mentioned in the previ-
ous section. The flat portion of the plate is discretized into a
20×20 FE mesh while the stiffener is discretized using a 20×2
mesh. From Table 1 it is observed that the natural frequencies
obtained from the two models compare well.

As stated earlier, the objective of the present study is to
obtain radiated acoustic power from the vibrating plates. To

Table 1. Comparison of non-dimensional frequencies (λi) of an isotropic (alu-
minium) stiffened plate (Case II).

Mode Number Present Finite Element Code ( λi) ANSYS ( λi)
1 0.0092 0.0091
2 0.0125 0.0123
3 0.0148 0.0147

Note:λi = ωi

√
ρ(1−ν2)

E [Niyogi et al.15]

Figure 4. Radiation efficiency plots for the first 4 modes of the plate.

achieve this objective, initially a singular value decomposition
(SVD) to obtain the eigenvalues and the associated eigenvec-
tors is performed on the radiation resistance matrix R, given
in Eq. (6). Using the radiation modal expansion (RME) tech-
nique, as explained in Gibbs et al.,7 with the cut-off frequency
at 250Hz, the radiation plots are obtained and presented in
Fig. (4), which according to Gibbs et al.7 are termed as the
radiation efficiency plots. The eigenvectors represent the radi-
ation mode shapes. It is important to note that the radiation re-
sistance matrix is dependent only on the plate geometry and is
independent of the boundary condition and structural stiffness.
In the present study, for all the cases considered, the radiating
surface has the same geometry, and hence obtaining the eigen-
vectors and singular values for one case is sufficient and is then
used for all the cases. The obtained radiation efficiency plots
with the radiation mode shapes are subsequently in conjunc-
tion with the structural velocities used to calculate the radiated
energy (Eq. (6)). In the next sections, acoustic response results
for various cases are obtained and discussed.

4.2. Radiated Acoustic Power from
Unstiffened and Stiffened Plates

In the present section, radiated sound power from the four
different types of vibrating structures (Case I to IV), due to
the application of an external transient excitation of 1 kN, is
obtained. The load (Fig. (5)) is applied for 0.01 seconds over
an area of 0.05m ×0.05m with the centre of the loading point
located at 0.125m along the x- and y-axes from the origin of
the global coordinate system (Fig. (3)). The radiated sound

power, obtained using Eq. (7), is calculated as log10
( Ûσ

10−12

)10
in dB and is plotted in Fig. (6).

It is observed from Fig. (6) that the reduction of radiated
acoustic power in each mode is not assured with the addition
of stiffeners. The sound power level increases for Case III as
compared to Case I. For stiffened plates, the arrangement of the
stiffener plays an important role in the reduction of the radiated
sound power level. Though in both Case III and Case IV the
number of stiffeners is the same, in Case IV the radiated power
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Figure 5. Transient load applied at 0.125m along the x- and y-axes of plate
structure.

Figure 6. Radiated acoustic power of the stiffened plates (Case I to IV) sub-
jected to a transient excitation of 1.0 kN (Fig. (5)).

is less in all the modes due to the arrangement of the stiffeners
(Figs. (3c) and (3d)). It is also observed that with the addition
of stiffeners the system frequency shifts; hence, the placing or
arrangement of the stiffener needs some optimization study so
that it does not interfere with the loading frequency. Moreover,
stiffening the structure with the addition of a stiffener at any
arbitrary position is not the sole solution to reduce the emitted
acoustic energy, which necessitates the need for active control.
Furthermore, the proper optimization technique should be im-
plemented for the placement of stiffeners.

Additionally, the output to input pressure ratio (transmission
ratio) is calculated for various cases and presented in Fig. (7).
It is observed that the ratio is always less than 1. This suggests
that only a part of the input energy is radiated as sound.

Figure 7. Output pressure to input pressure (transmission ratio) for the stiff-
ened plates subjected to a transient excitation of 1.0 kN (Fig. (5)).

Figure 8. Piezoelectric patch locations for (a) a unidirectional and (b) a bidi-
rectional stiffened plate.

Table 2. Mechanical and electrical properties of the actuator and sensor
(Guennam and Luccioni,16 and Liew et al.17

IDE-PFC Actuator (PZT-5H) PVDF Film Sensor
Geometric Properties

Length, L 0.05m 0.05m
Width,B 0.05m 0.05m
Thickness 0.001m 40× 10−6 m

Elastic and Material Properties
E — 2.0GPa
ν — 0.28

ρ 7740 kg/m3 1800 kg/m3

Electrical Properties
e22 22.9C/m2 —

e31= e32 — 0.046 C/m2

κ11= κ22 1.27× 10−8 F m−1 106.2F m−1

κ33 1.51× 10−8 F m−1 —

Note: Spacing of interdigitated electrode hs = 0.0005m and fibre volume fraction

Vf = 0.2

4.3. Active Control of Radiated Acoustic
Power

It is already seen in the earlier section that the attenuation of
the acoustic energy is not always promised with the stiffening
of the structure. Hence, a piezo-based active control strategy
based on velocity feedback is attempted in the second phase.
Piezo fibre composite with interdigitated electrode (IDE-PFC;
PZT 5H) patches are used as actuators while PVDF films are
employed as sensors for which the properties are mentioned
in Tables 2 and 3.16, 17 Among the four cases (I to IV), studies
have been conducted on two typical stiffened plates with unidi-
rectional (Case II) and bidirectional stiffeners (Case III). Eight
pairs of collocated actuator-sensor patches are mounted on the
top of the stiffened plate. The schematic is shown in Fig. (8).

Prior to the control of radiated sound, the piezoelectric for-
mulation is validated with standard data available in open lit-
erature and with the results obtained from ANSYS software.
An IDE-PFC patch (PZT-5H) measuring 0.05m long, 0.02m
wide, and having a thickness of 0.001m with a fibre-volume
ratio of unity, with a pair of electrodes placed at a distance
of 0.05m along the length, is modelled using the present FE
formulation and in the ANSYS ver. 11.0 model using the
SOLID 5 element. An electrical potential of unit (1) volt-
age is applied across the electrode. The longitudinal strain
obtained from the ANSYS model is 0.350 × 10−8 and that
from the present FE model is found to be 0.350 69 × 10−8,
which compares extremely well. Moreover, the in-plane block
force obtained from the actuator patch is calculated to be
0.4580N/m which compares very well with the formulation
given by Bent18 in his work.
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Table 3. Elastic Properties of the IDE-PFC actuator (PZT-5H) (Guennam and
Luccioni16)

Q11 Q12 Q22 Q31 Q32 Q33 Q44 Q55 Q66

130.6 85.66 135.8 88.3 90.42 121.3 23.47 22.99 22.99

Figure 9. Radiated acoustic power (uncontrolled and controlled) from the
stiffened plate with the unidirectional stiffener (Case II) subjected to a transient
excitation of 1.0 kN (Fig. (5)).

4.4. Control of Radiated Acoustic Power
from the Stiffened Plate with
Unidirectional Stiffener (Case II)

As has been previously discussed in implementing the active
control scheme, the sensor signals obtained from the vibrat-
ing structure are fed back to the actuator with proper feedback
gains derived from the LQR algorithm. These gain values are
obtained by minimizing J (Eq. (29)), which is again depen-
dent on R (Eq. (30)). As R is correlated with expenditure of
control effort, it is chosen in such a manner that the capacity
of the actuator patches should not be exceeded. In the present
study, two different principal orientations of the IDE-PFC ac-
tuators are considered—(i) along the x-axis and (ii) along the
y-axis. The dimension, material properties, and the nature of
the applied external loading are already mentioned in Section
4 and Section 4.2. The piezoelectric properties of the actuator
and sensor are presented in Tables 2 and 3.

The plots of the uncontrolled and controlled sound power ra-
diating into the free field are shown in Fig. (9). As observed in
Fig. (9), the radiated sound power can be reduced significantly
by considering the structural velocities, as only the feedback
state which effectively increases the damping. Moreover, this
active control scheme is capable of reducing the radiated en-
ergy, which is not always assured with the passive strategy like
arbitrarily stiffening the structure. It is also seen that for the
PFC actuators having their principal actuation direction along
the x-axis, the reduction of radiated acoustic power in the free
field is almost 7.7 dB for the first mode; whereas, for the same
mode almost 18 dB reduction is achieved with the principal
actuation direction along the y-axis. From the plot, it is clear
that for the present structural configuration, the d22 actuation
is much more pronounced in attenuating the radiated energy in
the first and second modes when compared with the d11 actu-
ation for the same control effort. In the first case, maximum
voltage in the actuator patch is approximately 48 volts (peak
to peak), whereas in the next case it is approximately 46 volts.
It is imperative to note that in both cases, control in the third
mode is not very effective, as the actuator patches lay on the

Figure 10. Mode shape plots for the stiffened plates (Case II and III).

Figure 11. Radiated acoustic power (uncontrolled and controlled) from the
stiffened plate with the bidirectional stiffener (Case III) subjected to a transient
excitation of 1.0 kN (Fig. (5)).

inflexion line (Fig. (10)). Hence, it is evident from Fig. (10)
(3rd mode of Case II) that the actuator patches are incapable
of controlling the energy radiated in the third mode with the
given actuator location.

4.5. Control of Radiated Acoustic Power
from the Stiffened Plate with a Bidirec-
tional Stiffener (Case III)

In the present section, the attempt is to reduce the free
field sound power radiated from the bi-directionally stiffened
plate (Case III) with the same number of actuator-sensor pairs
(Fig. (8b)) as in the previous case, but with a different orienta-
tion of the patches. The results are plotted in Fig. (11).

In the first case, i.e., when the principal actuation direction
is along the x-axis, a reduction of sound power amounting to
11.9 dB in the 1st mode and 10.5 dB in the 2nd mode is achieved
with 43 volts as maximum input voltage to the actuator patch,
but it reduces to 42 volts when the actuation direction is ro-
tated by 90°. It is also seen that for d22 actuation, the reduction
achieved in the two modes is 12 dB and 10.7 dB, respectively.
Hence, it can be concluded that in this particular case the ori-
entation of the patches does not have much influence, which is
also shown in the mode shapes for this case (Fig. (10)).
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5. CONCLUSION

In the present work, a study has been carried out on the
sound radiation characteristics of the un-stiffened as well as the
stiffened plates in the free field. As it is shown that arbitrarily
stiffening the structure is not the sole solution to attenuating
the radiated sound power, one should either go for optimiz-
ing the stiffener locations or implementing an active control
scheme for a reasonable reduction in the radiated energy. In
the present work, an active control scheme is implemented by
providing sensor voltages as feedback signals multiplied with
the proper gain values obtained from the LQR algorithm to
the actuator patches collocated on the structure. Two cases
have been considered to elucidate the effectiveness of the con-
trol algorithm; however, it is found that for maximum utiliza-
tion of the active control system, an optimization study should
be carried out for positioning the piezo patches. The work
can be extended further to optimize the stiffener locations of
the structure and also in optimizing the positions of actuator-
sensor pairs towards achieving the maximum reduction in the
radiated sound.
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