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The nonlinear vibration of a flexible hoisting rope with time-varying length and axial velocity is investigated. The
flexible hoisting rope is modeled as a taut translating string with a rigid body attached at its low end. A systematic
procedure for deriving the system model of a flexible hoisting rope with time-varying length and axial velocity is
presented. The governing equations were developed by employing the extended Hamilton’s principle considering
coupling of axial movement and flexural deformation of the rope. The derived governing equations are nonlinear
partial differential equations(PDEs) with time-varying coefficients. The Galerkin’s method and the 4th Runge-
Kutta method were employed to numerically analyze the resulting equations. Further, the dynamic stability of
the flexible hoisting rope was investigated according to the Lyapunov stability theory. The motions of an elevator
hoisting system were presented to illustrate the proposed mathematical models. The results of simulation show
that the dynamic motions of the flexible hoisting string are stable during downward movement but are unstable
during upward movement. The proposed systematic procedures in analyzing the dynamic stability can facilitate
further development in dynamic control of the flexible hoisting system in practice.

NOMENCLATURE

a Axial acceleration of the string (m/s2)
A, B Matrix differential operators
C Damp matrixes
d Diameter of the string (m)
E Young’s Modulus of the string (Pa)
Ek Kinetic energy of flexible hoisting system (J)
Ee Elastic strain energy of the string (J)
Eg Gravitational potential energy of flexible hoisting

system (J)
g Gravitational constant (m/s2)
i Unit vector along the x-axes
i Integer
I Inertia (m4)
I n× n identity matrix
j Unit vector along the y-axes
j Integer
k Integer
K Stiffness matrixes
l Length of the string (m)
m Mass of rigid body (kg)
M Mass matrixes
n Number of included modes
P Longitudinal tension (N)
qi Generalized coordinates
Q Vectors of generalized coordinates
R Position vector of the string
Rc Position vector of the rigid body
t Time (s)
T Lyapunov candidate function

U State vector
v Axial velocity of the string (m/s)
V Velocity vector of the string
Vc Velocity vector of the rigid body
x Spatial variable (m)
y Transverse displacement of the string (m)
ζ Transformed spatial variable
ε Strain measure
ρ Linear density of the string (kg/m)
λk Eigenvalue (k = 1, 2, 3, 4)
ξk Real parts of eigenvalue (k = 1, 2, 3, 4)
ϕi Trial function used in Eq. (19)
δij Kronecker delta
ωk Imaginary parts of eigenvalue (k = 1, 2, 3, 4)
Λ Eigenvector

1. INTRODUCTION

Ropes with time-varying length are widely used in the hoist-
ing industry such as mine hoists, elevators, cranes, etc; They
are subject to vibration due to their high flexibility and rel-
atively low internal damping characteristics.1, 2 Most often
these systems are modeled as either an axially moving ten-
sioned beam or as a string with time-varying length and a rigid
body at its lower end.3, 4 It was reported that the vibration
energy of the rope changed in general during elongation and
shortening.5–7 Zhang8–11 and Bao12, 13 published a series of
studies on vibration of a flexible hoisting system with arbitrar-
ily varying length. Terumichi et al. assumed the velocity of
the string was constant and studied the transverse vibrations
of a string with time-varying length and a mass-spring system
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at the lower end with theoretical and experimental methods.14

Zhu15 and Chen16 investigated the control of an elevator cable
with theoretical and experimental methods. A novel experi-
mental method was developed to validate the uncontrolled and
controlled lateral responses of a moving cable in a high-rise
elevator and showed good agreement with the theoretical pre-
dictions. Nguyen and Hong studied the transverse vibration
control of axially moving membranes by regulation of axial
velocity.17 A novel control algorithm that suppresses the trans-
verse vibrations of an axially moving membrane system was
developed. Ngo et al. investigated the control of an axially
moving system. The Lyapunov function taking the form of the
total mechanical energy of the system was adopted to ensure
the uniform stability of the closed-loop system.18 The results
of experiments showed that the proposed control law was ef-
fective. Fung and Lin analyzed the transverse vibration of an
elevator rope with time-varying length and the time-varying
mass and inertia of rotors were considered.19 A variable struc-
ture control scheme was proposed to suppress the transient am-
plitudes of vibrations. Chi and Shu calculated the natural fre-
quencies associated with the vertical vibration of a stationary
cable coupled with an elevator car.20 Zhang presented a sys-
tematic procedure for deriving the model of a cable transporter
system with arbitrarily varying cable length and proposed a
Lyapunov controller to dissipate the vibratory energy.21 Kacz-
marczyk and Ostachowicz studied coupled vibration of a deep
mine hoisting cable and built a distributed-parameter model.
They found that the response of the catenary-vertical rope sys-
tem may feature a number of resonance phenomena.22 Zhang
and Agrawal derived the governing equation of coupled vibra-
tion of a flexible cable transporter system with arbitrarily vary-
ing length.23

While an extensive number of studies focus individually on
vibration characteristics of the rope with time-varying length,
the dynamic stability of the rope has also been studied by sev-
eral researchers. Lee introduced a new technique to analyze
free vibration of a string with time-varying length by dealing
with traveling waves.24 As the string length is shortened, free
vibration energy increases exponentially, causing dynamic in-
stability. Kumaniecka and Niziol investigated the longitudinal-
transverse vibration of a hoisting cable with slow variability of
the parameters.25 The cable material non-linearity was taken
into account and unstable regions were identified by applying
the harmonic balance method. General stability characteris-
tics of horizontally and vertically translating beams and strings
with arbitrarily varying length and various boundary condi-
tions were studied by Zhu and Ni.26 While the amplitude of
the displacement can behave in a different manner depending
on the boundary conditions, the amplitude of the vibratory en-
ergy of a translating medium decreases and increases during
extension and retraction, respectively.

Extensive research on the flexible hoisting rope with time-
varying length has been conducted in the last few decades
as aforementioned; however, the focus of most studies was
restricted to cases with constant transport speed samples.
Clearly, with the advancement of high-performance mechani-
cal systems such as high-rise elevators, cranes and mine hoists,
etc., the stability analysis of dynamical systems is very impor-
tant. The linear dynamic characteristics and stability of the

flexible hoisting rope with time-varying length and axial veloc-
ity are the subject of this investigation. The governing equa-
tions were developed employing the extended Hamilton’s prin-
ciple. The derived governing equations are shown to be linear
partial differential equations (PDEs) with variable coefficients.
On choosing proper mode functions that satisfy the boundary
conditions, the solution of the governing equations was ob-
tained using the Galerkin’s method. The natural frequencies
were computed from the eigenvalues based on the eigenvalue
equations. The motions of an elevator hoisting system were
illustrated to evaluate the proposed mathematical models. Ac-
cording to the numerical simulations, the dynamic motions of
the flexible hoisting string are stable during downward move-
ment but are unstable during upward movement. Based on
the proposed fundamental dynamic analyses, further vibration
control can be adopted for flexible hoisting systems in the near
future.

2. MODEL OF FLEXIBLE HOISTING SYSTEM

A flexible hoisting system is simplify an axially moving
string with time-varying length and a rigid body m at its lower
end, as shown in Fig. 1. The rail and the suspension of the rail
are assumed to be rigid. The string has Young’s modulus E,
diameter d and mass per unit length ρ. The origin of the coor-
dinate is set at the top end of the string, and the instantaneous
length of the string is l(t) at time t. The instantaneous axial
velocity, acceleration and jerk of the string are v(t) = l̇(t),
a(t) = v̇(t), and j(t) = ȧ(t), respectively, where the overdot
denotes time differentiation. At any instant t, the transverse
displacement of the string is described by y(x, t), at a spatial
position x, where 0 ≤ x ≤ l(t). The model is based on the
following assumptions:

1. The parameters E, d and ρ of the string are always con-
stants;

2. Only transverse vibration is considered here. The elastic
distortion of the string arousing from the transverse vibra-
tion is much less than the length of the string;

3. All the damp and friction, and the influence of air currents
are ignored.

2.1. Energy of Flexible Hoisting System

After the string is deformed, the position vector R of a point
at x can be written as:27

R = x(t) i + y(x, t) j; (1)

where i and j are the unit vectors along the x-axes and y-axes,
respectively. The material derivative of R yields the velocity
vector

V = v(t) i + [yt + vyx] j; (2)

where the subscript t denotes partial differentiation with re-
spect to time, and subscript x denotes partial differentiation
with respect to space. Similarly, the position vector Rc and
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Figure 1. Schematic of a flexible hoisting string with time-varying length.

velocity vector Vc of the rigid body can be respectively writ-
ten as:

Rc = l(t) i + y(l(t), t) j; (3)

Vc = v(t) i + yt(l(t), t) j. (4)

Then, the kinetic energy of the flexible hoisting system is com-
puted by

Ek(t) =
1

2
mVc ·Vc

∣∣∣
x=l(t)

+
1

2
ρ

l(t)∫
0

V ·V dx. (5)

The first term on the right of Eq. (5) represents the kinetic en-
ergy of the rigid body; The second term represents the kinetic
energy of the string. The elastic strain energy of the string is28

Ee(t) =

l(t)∫
0

(
Pε+

1

2
EAε2

)
dx. (6)

The first term on the right of Eq. (6) represents the axial strain
energy of the string, the second term represents the bending
strain energy of the string. P (x, t) is the longitudinal tension
at spatial position x of the string at time t; The tension in a
flexible hoisting string, arising from its weigh, is given by

P = [m+ ρ (l(t)− x)] g; (7)

and ε represents the strain measure at the spatial position x of
the string and can be expressed as

ε = (ds− dx)/dx. (8)

Figure 2. A small element of the string in a deformed position.

As shown in Fig. 2, ds can be expressed as

ds ≈
√
1 + (dy/dx)

2
dx ≈[

1 +
1

2

(
∂y

∂x

)2

− 1

8

(
∂y

∂x

)4

+ . . .

]
dx ≈[

1 +
1

2

(
∂y

∂x

)2
]
dx. (9)

Substituting Eq. (9) into Eq. (8) yields

ε =
1

2
y2x. (10)

When the reference elevation of the string with zero potential
energy is defined at x = 0, then the gravitational potential
energy of the flexible hoisting system is

Eg(t) = −
l(t)∫
0

ρgx(t) dx−mgl(t); (11)

where g is the gravitational constant, the first term on the right
of Eq. (11) represents the gravitational potential energy of the
string, and the second term represents the gravitational poten-
tial energy of the rigid body.

2.2. Governing Equations of Motion
According to the characteristics of top restriction of the

string, the boundary conditions at x(t) = 0 are

y(0, t) = 0, yt(0, t) = 0. (12)

Substitute Eqs. (5), (6), and (11) in the extended Hamilton’s
Principle,

t2∫
t1

(
δEk(t)− δEe(t)− δEg(t)

)
dt = 0; (13)
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and apply the variational operation. Because the length of the
string l(t) changes with time, the standard procedure for inte-
gration by parts with respect to the temporal variable cannot
apply. Applying Leibnitz’s rule and part integration results in
the following expressions

l(t)∫
0

ρ (yt + vyx) δyt dx = ρ
∂

∂t

l(t)∫
0

(yt + vyx) δy dx−

ρ
[
v (yt + vyx) δy

]∣∣∣
l(t)
− ρ

l(t)∫
0

∂

∂t
(yt + vyx) δy dx. (14)

Following the standard procedure for integration by parts with
respect to the spatial variable and invoking Eq. (14), one ob-
tains from Eq. (13),

t2∫
t1

[
m
∂

∂t
yt(l, t) +

(
P +

1

2
EAy2x

)
yx

] ∣∣∣∣
l(t)

δy(l, t) dt+

t2∫
t1

l(t)∫
0

[
ρ
∂

∂t
(yt + vyx) + ρv

∂

∂x
(yt + vyx)−

∂

∂x

((
P +

1

2
EAy2x

)
yx

)]
δy dx dt = 0. (15)

Setting the coefficients of δy in Eq. (15) to zero yields the gov-
erning equation for the string,

ρ
(
ytt + 2v̇yx + v2yxx

)
− Pxyx − Pyxx −

3

2
EAy2xyxx = 0,

0 < x < l(t). (16)

The first four terms in Eq. (16) correspond to the local, Corio-
lis, tangential, and centripetal acceleration, respectively. Equa-
tion (16) is a partial differential equation that describes the
dynamics of the flexible hoisting string. The equation is de-
fined over time-dependent spatial domain rendering the prob-
lem non-stationary. Hence, the exact solution to this problem
is not available, and recourse must be made to an approximate
analysis. In what follows, numerical techniques are employed
to obtain an approximate solution for the governing equation.

3. DISCRETIZATION OF THE GOVERNING
EQUATIONS

Equation (16) is a partial differential equation with infinite
dimensions and many parameters are time-variant. It is im-
possible to obtain an exact analytical solution from Eq. (16).
In this section, Galerkin’s method was applied to truncate
the infinite-dimensional partial differential equation into a lin-
ear finite-dimensional ordinary differential equation with time-
variant coefficients. Then, they were solved with numerical
methods. In order to map Eq. (16) onto the fixed domain, a
new independent variable ζ = x/[l(t)] was introduced and
the time-variant domain [0, l(t)] for x was converted to a fixed
domain [0, 1] for ζ. According to the characteristic of a taut
translating string, the solution of y(x, t) was assumed in the
forms15, 23

y(x, t) =

n∑
i=1

ϕi(ζ)qi(t) =

n∑
i=1

ϕi

(x
l

)
qi(t); (17)

where qi(t) (i = 1, 2, 3, . . . , n) is the generalized coordinate
respect to y(x, t), n is the number of included mode, and ϕi(ζ)
is trial function,15, 23

ϕi(ζ) =
√
2 sin iπζ. (18)

Consequently, expanding Eq. (17) results in the expressions for
partial derivatives of transverse displacement functions:

yx(x, t) =
1

l

n∑
i=1

ϕ′i(ζ)qi(t),

yxx(x, t) =
1

l2

n∑
i=1

ϕ′′i (ζ)qi(t),

yxt(x, t) =

n∑
i=1

1

l
ϕ′i(ζ)q̇i(t)−

n∑
i=1

(
ζv

l2
ϕ′′i (ζ) +

v

l2
ϕ′i(ζ)

)
qi(t),

ytt(x, t) =

n∑
i=1

ϕi(ζ)q̈i(t)−
2ζv

l

n∑
i=1

ϕ′i(ζ)q̇i(t) +

n∑
i=1

(
2ζv2

l2
ϕ′i(ζ)−

ζa

l
ϕ′i(ζ) +

ζ2v2

l2
ϕ′′i (ζ)

)
qi(t). (19)

Substituting Eqs. (17)–(19) into Eq. (16), multiplying the gov-
erning equation by ϕj(ζ) (j = 1, 2, 3, . . . , n), integrating it
from ζ = 0 to 1, and using the boundary conditions and the
orthonormality relation for ϕi(ζ), yield the discretized equa-
tion of transverse vibration for the flexible hoisting string with
time-variant coefficients

MQ̈ + CQ̇ + KQ + S(Q) = 0; (20)

where Q = [q1(t), q2(t), . . . , qn(t)]
T is a vector of the gener-

alized coordinate, M, C and K are matrices of mass, damp-
ness and stiffness with respect to Q, respectively. S(Q) is a
higher-order item of the generalized coordinate. The matrices
are expressed as follows:

Mij = ρδij , Cij(t) =
2ρv

l

1∫
0

(1−ζ)ϕ′i(ζ)ϕj(ζ) dζ,

Kij(t) =
ρa

l

1∫
0

(1−ζ)ϕ′i(ζ)ϕj(ζ) dζ −

ρv2

l2

1∫
0

(1−ζ)2 ϕ′i(ζ)ϕ′j(ζ) dζ +

ρg

l

1∫
0

(1−ζ)ϕ′i(ζ)ϕ′j(ζ) dζ −
mg

l2

1∫
0

ϕ′′i (ζ)ϕj(ζ) dζ,

Sj(Q) = −3EA

2l4

1∫
0

( n∑
i=1

ϕ′i(ζ)qi(t)
)2 n∑

i=1

ϕ′′i (ζ)qi(t)ϕj(ζ) dζ;

(21)

where the superscript “ ′ ” denotes partial differentiation for the
normalized variable ζ, and δij is the Kronecker delta defined
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by δij = 1 if i = j and δij = 0 if i 6= j (i = 1, 2, 3, . . . , n,
j = 1, 2, 3, . . . , n). If the initial displacement and velocity
of the string are given by y(x, 0) and yt(x, 0), respectively,
where 0 < x < l(0), the initial conditions for the generalized
coordinate can be obtained from Eqs. (17) and (19);

qi(0) =

1∫
0

y (ζl(0), 0)ϕi(ζ) dζ; (22)

q̇i(0) =

1∫
0

yt (ζl(0), 0)ϕi(ζ) dζ +

v(0)

l(t)

n∑
i=1

qi(0)

1∫
0

ζϕ′i(ζ)ϕj(ζ) dζ. (23)

Solving the ordinary differential Eq. (20) with numerical
methods may yield the instantaneous values of Q. Substituting
these values into Eq. (17) may yield the instantaneous values
of transverse vibration of the string y(x, t). The mathematical
model defined by Eq. (20) illustrates the true dynamic nature
of the flexible hoisting string, and can be used to predict and
analyze the dynamic stability and vibration characteristics of a
flexible hoisting string with time-varying length and axial ve-
locity.

4. ANALYSIS OF DYNAMIC STABILITY

In order to gain a deeper insight into the mechanics of the
flexible hoisting string with time-varying length and axial ve-
locity, it is beneficial to investigate the stability characteristics
of the problem. In what follows, we performed a stability anal-
ysis of the flexible hoisting string with time-varying dynamic
parameters. According Lyapunov’s first method, the stability
of the system could be determined by analyzing the eigenval-
ues of the natural vibration. To obtain the eigenvalues of the
flexible hoisting string, the methods suggested by Stylianou
were used to reduce the system of governing Eq. (20) to a set
of first order differential equations.29 The set of reduced equa-
tions takes the form

AU̇ + BU = 0; (24)

where A and B are matrix differential operators, and

A =

{
M 0
0 K

}
, B =

{
C K
−K 0

}
; (25)

U is the state vector, and

U =

{
Q̇
Q

}
. (26)

Equation (24) is the canonical form of the equation of motion
and its solution satisfies the appropriate boundary conditions
and initial conditions. Rearranging Eq. (24), we write

U̇ + DU = 0; (27)

where

D = A−1B =

{
M−1C M−1K
−I 0

}
. (28)

Here, I is an n × n identity matrix. To obtain the natural
frequencies and mode shapes for the flexible hoisting string
with time-varying length, consider the eigenvalue problem of
Eq. (27). We now assume that U is periodic,

U = Λeλt; (29)

where

λ = ξ + iω (30)

is the eigenvalue which is a complex number, ξ =
[ξ1(t), ξ2(t), . . . , ξk(t)]

T , ω = [ω1(t), ω2(t), . . . , ωk(t)]
T are

the real and imaginary parts of λ = [λ1(t), λ2(t), . . . , λk(t)]
T ,

and ω is also the natural frequency of the flexible hoisting
string. It should be noted that the real and imaginary parts
of the eigenvalue are related to the modal damping coefficients
and the natrual frequencies of the flexible hoisting string. Sub-
stituting Eq. (29) into Eq. (27) leads to an eigenvalue equation

(λI + D)Λ = 0; (31)

where Λ is the corresponding eigenvector. The eigenvalues
can be obtained from

det (λI + D) = 0. (32)

When ξ ≤ 0, the flexible hoisting string is stable, and when
ξ > 0, the flexible hoisting string is unstable, a positive ξ
indicates the instability of the system. The system may lose
stability by either divergence (a static form of instability) or
flutter (a dynamic form of instability).

The same conclusions can be reached from Lyapunov’s sec-
ond method, which is a mathematical interpretation of the
physical property that if a system’s total energy is dissipating,
then the states of the system will ultimately travel to an equi-
librium point. This property can be explored by constructing
a scalar, energy-related time-dependent function T (t) for the
system, where usually this function T (t) is always positive.
If its time derivative dT (t)/dt < 0, then the total energy of
the system reduces, therefore leading to a stabilized dynamic
response. By contrast, if its time derivative dT (t)/dt > 0,
the total energy of the system increases, thus resulting in an
unstabilized dynamic response. So the choice of the appropri-
ate Lyapunov candidate function T (t) is very important. From
Eqs. (5) and (6), we observed that the total energy associated
with the transverse vibration of the flexible hoisting system is
always positive. Hence, the Lyapunov candidate function is
given as

T (t) =
1

2
my2t (l(t), t) +

1

2
ρ

l(t)∫
0

(yt + vyx)
2
dx+

1

2

l(t)∫
0

(
Py2x +

1

4
EAy4x

)2

dx; (33)

where P (x, t) and y(x, t) have been previously defined in
Eqs. (7) and (17), respectively. Obviously, T (t) is always pos-
itive. Differentiating T (t) in Eq. (34) using Leibnitz’s rule
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Figure 3. Movement profile of the elevator: (a) l(t); (b) v(t); (c) v̇(t); and (d) v̈(t).

yields

dT (t)

dt
= myt(l(t), t)ytt(l(t), t) +

1

2
v

[
ρ(yt + vyx)

2 +

(
Py2x +

1

4
EAy4x

)]
l(t)

+

l(t)∫
0

[
ρ(yt + vyx)(ytt + v̇yx + vyxt) +

1

2
Pty

2
x + Pyxyxt + EAy3xyxt

]
dx. (34)

Substituting Eq. (16) into Eq. (34), followed by integration by
parts, yields

dT (t)

dt
= − ρv3

2

(
y2x
)l(t)
0
− v

2

(
Py2x

)
0
+

1

2

l(t)∫
0

(Pt + vPx) y
2
x dx+

vEA

2

(
w4

x

)
l(t)
−

3vEA

8

(
w4

x

)
0
. (35)

5. NUMERICAL SIMULATION AND
DISCUSSIONS

A typical application of a flexible hoisting string with time-
varying length is a traction elevator. The site observation re-
vealed that traction ropes will fiercely vibrate during move-
ment of the elevator. In what follows, the motions of elevator
hoisting system were illustrated to evaluate the proposed math-
ematical models. An elevator hoisting system is modeled as an
axially translating string with a rigid body attached at its lower

Table 1. Simulation parameters.

Items Data values
Density per unit length ρ (kg/m) 0.707
Young’s modulus E (Pa) 2.01× 1011

String diameter d (m) 14× 10−3

Hoisting mass m (kg) 300
Minimum length of the string lmin (m) 5
Maximum length of the string lmax (m) 140
Maximum velocity vmax (m/s) 5
Maximum acceleration amax (m/s2) 1
Maximum jerk jmax (m/s3) 1
Total travel time t (s) 33
Number of transverse modes n 4

end. In this paper, the flexible hoisting system of a typical
high-speed elevator is considered as an example and analyzed.

The simulation parameters for the elevator are given in Ta-
ble 1. The flight time for a travel distance of 135 m (45 sto-
ries) is 33 seconds. Figure 3 gives the prescribed displacement,
velocity, acceleration and jerk curves of an elevator hoisting
system. Utilizing the curves as the input of Eqs. (20), (32),
and (35) with the aid of MATLAB R© may obtain dynamic re-
sponses of an elevator hoisting system. In this work, all numer-
ical analyses were implemented with the aid of MATLAB R©.

Consider the free vibration caused by a distributed initial
displacement and released from rest. The initial displacement
and velocity are respectively

y(x, 0) = y0 sin
xπ

l0
, yt(x, 0) = 0; (36)

where y0 = 0.005 m is the initial amplitude. Transverse vibra-
tion responses of the flexible hoisting string at 3 m above the
car during movement of the elevator are illustrated in Fig. 4.

Figures 4(a) and 4(b) display reducing vibration amplitudes
with an increasing length of the string during downward move-
ment. This is due to the energy of the flexible hoisting sys-
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Figure 4. Transverse vibration responses of the flexible hoisting string at 3 m above the car: (a) Transverse vibration displacement during downward movement
of the elevator; (b) Transverse vibration velocity during downward movement of the elevator; (c) Transverse vibration displacement during upward movement of
the elevator; and (d) Transverse vibration velocity during upward movement of the elevator.

Figure 5. The lowest four order natural frequencies of the flexible hoisting string during downward movement of the elevator: (a) First order natural frequency;
(b) Second order natural frequency; (c) Third order natural frequency; and (d) Fourth order natural frequency.
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Figure 6. Eigenvalues of the flexible hoisting string during downward movement of the elevator: (a) λ1; (b) λ2; (c) λ3; and (d) λ4.

Figure 7. The lowest four order natural frequencies of the flexible hoisting string during upward movement of the elevator: (a) First order natural frequency; (b)
Second order natural frequency; (c) Third order natural frequency; and (d) Fourth order natural frequency.
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Figure 8. Eigenvalues of the flexible hoisting string during upward movement of the elevator: (a) λ1; (b) λ2; (c) λ3; and (d) λ4.

Figure 9. The transverse vibration energy and the rate of change of the energy: (a) The transverse vibration energy during downward movement; (b) The rate
of change of the energy during downward movement; (c) The transverse vibration energy during upward movement; and (d) The rate of change of the energy
during upward movement.
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tem transfers from the transverse vibration to the axial motion
by bringing some mass into the domain of effective length,
which means that the axially moving string is dissipative dur-
ing downward movement. A possible physical interpretation
of the results is as follows: during downward movement nega-
tive external work is required to maintain the prescribed axial
motion which, in turn, brings about a convection of mass in
the domain of effective length. By contrast, in Fig. 4(c) and
Fig. 4(d), we observe that vibration amplitudes of the string in-
crease with the decreasing length of the string during upward
movement. This is due to the energy of flexible hoisting sys-
tem transfers from the axial motion to the transverse vibration
by leaving some mass out of the domain of effective length,
which means that the axially moving string gains energy dur-
ing upward movement. A possible physical interpretation of
the results is as follows: during upward movement positive ex-
ternal work is required to maintain the prescribed axial motion
which, in turn, brings about a convection of mass out of the
domain of effective length.

For the stabilization analysis of the flexible hoisting string,
the eigenvalues of the system obtained from Eq. (32) should
be studied for further consideration. During downward move-
ment of the flexible hoisting system, the mass of the string is
increasing and the stiffness of the string is reducing, or the
string becomes somewhat stiffer, and the natural frequencies
will decrease over time, which has been displayed in Fig. 5.
In the mean time, the dynamic motion of the string is stable
as the eigenvalues of this system have negative real parts ξ;
(see Fig. 6). On the other hand, during upward movement of
the flexible hoisting system, the mass of the string is decreas-
ing and the stiffness of the string is increasing, or the string
becomes somewhat stiffer, and the natural frequencies will in-
crease with time, (see Fig. 7). At the same time, the dynamic
motion of the string is unstable since the real parts ξ of eigen-
values of this system are all positive, which has been shown in
Fig. 8. That is, the coupling effect of the translation and trans-
verse motions generates a stabilizing response during down-
ward movement of the flexible hoisting system and a desta-
bilization response during upward movement of the flexible
hoisting string. The same conclusions can be reached from the
investigation based on an energy standpoint.

The resulting total transverse vibration energy and the rate
of change of the energy of the flexible hoisting system are dis-
played in Fig. 9. During downward movement of the flexible
hoisting system, the energy associated with the transverse vi-
bration of the flexible hoisting system decreases, which has
been displayed in Fig. 9(a). The reduction of transverse vi-
bration energy translates into the increase in kinetic energy
of the flexible hoisting system. In the mean time, the rate of
change of the energy dT (t)/dt is negative (see Fig. 9(b)), thus
leading to a stabilized transverse dynamic response. By con-
trast, during upward movement of the flexible hoisting system,
the transverse vibration energy of the flexible hoisting system
increases, which has been shown in Fig. 9(c). The increase
of transverse vibration energy comes from the reduction in
kinetic energy of the flexible hoisting system. At the same
time, the rate of change of the energy dT (t)/dt is positive (see
Fig. 9(d)), therefore resulting in an unstabilized transverse dy-
namic response. The results explain an inherent unstable short-

ening cable behavior encountered in the elevator industry.

6. CONCLUSIONS

The linear vibration characteristics and stability for a flexi-
ble hoisting string with time-varying length and axial velocity
considering coupling of axial movement and flexural deforma-
tion were analyzed in this paper. The flexible hoisting system
was modeled as an axially moving string with time-varying
length and a rigid body at its lower end. The governing equa-
tions were derived by using Leibnitz’s rule and the extended
Hamilton’s principle. The Galerkin’s method was used to trun-
cate the infinite-dimensional partial differential equations into
a set of nonlinear finite-dimensional ordinary differential equa-
tions with time-variant coefficients. Based on the numerical
simulations, the following conclusions can be obtained:

1. Two different methods, Lyapunov’s first method and Lya-
punov’s second method were used to analyze the stabil-
ity of the flexible hoisting string with time-varying length
and axial velocity. The same results were obtained by the
two mehtods.

2. The flexible hoisting string with time-varying length
and axial velocity experiences instability during upward
movement; the natural frequencies increase because of
the reducing mass and the increasing stiffness of the
string; and the energy transforms from the axial move-
ment into the flexible deformation. By contrast, it is sta-
ble during downward movement; the natural frequencies
decrease because of the increasing mass and the reduc-
ing stiffness of the string; and the energy coverts from the
flexible deformation into the axial movement.

3. The proposed theoretical model and analyses about the
stability of the flexible hoisting system in this paper will
be helpful for the researchers to comprehend its dynamic
behavior and develop the proper method to suppress the
vibration in practice.
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