Dynamic Behaviour Analysis of Linear Rotor-Bearing Systems using the Complex Transfer Matrix Technique

B.B. Maharathi

Department of Mechanical Engineering, IGIT, Sarang-759146, Orissa, India

(Received 9 June 2004; accepted 22 April 2005)

A complex transfer matrix method is developed in the present work for analysing the steady-state response of linear rotor-bearing systems in the frequency domain. The transfer matrix of the shaft segment is derived by considering the state variables of the shaft in, a continuous system sense, to give the most general formulation. In this analysis, all the influencing parameters of the shaft, disk, and bearings are included. A three-disks-rotorbearings system has been used as the physical model to demonstrate the effectiveness of this matrix formulation for the evaluation of the dynamic characteristics of any rotor-bearing system. In order to establish the accuracy of this technique, experiments are also conducted on the same rotor-disks model under various bearing conditions as used in the numerical analysis. The numerical results evaluated by various researchers are also compared with these experimental results.

Nomenclature

a, b - major and minor axis of elliptical whirling orbits, respectively A - area of cross-section $[B]$ - bearing matrix C - bearing clearance C_{xy}, C_{yx} - cross-coupled bearing damping coefficients C_{xx}, C_{yy} - direct bearing foundation damping coefficients C_{fxx}, C_{fyy} - direct bearing foundation damping coefficients C_{fxy}, C_{fxx} - cross-coupled bearing foundation damping coefficients d - diameter of the shaft D - diameter of the disk D_b - diameter of the bearing $[D]$ - disk matrix $e(x), e(y)$ - eccentricity of the disk in X and Y directions, respectively E - Young's modulus of rotor EI - bending stiffness G - shear modulus h - disk thickness I_d, I_p - transverse and polar mass moments of inertia of the disk, respectively	$M_x, M_y = \text{bending moments about } X$ tively $Q_x, Q_y = \text{shear forces along } X \text{ and } Y \text{ a}$ $r_w = \text{radius of the whirl}$ $[S] = \text{state vectors}$ [T] = transfer matrix X, Y = displacement along X and Y $a, \beta = \text{slopes in } X \text{-} Z \text{ and } Y \text{-} Z \text{ planes}$ $a_t, \beta_t = \text{slopes in } X \text{-} Z \text{ and } Y \text{-} Z \text{ plane}$ spectively $a_b, \beta_b = \text{slopes in } X \text{-} Z \text{ and } Y \text{-} Z \text{ plane}$ spectively $\omega, \Omega = \text{rotating and whirling speeds}$ $\rho = \text{mass density}$ $\mu = \text{coefficients of viscosity}$ Subscripts C, S = associated to cosine and sine term 0, n = stage number Superscripts L, R = left and right to the station, respectively
<i>I,J</i> – Imaginary unit <i>I,J</i> – transverse and polar area moments of inertia of the rotor, respectively	1. INTRODUCTION
$\begin{array}{llllllllllllllllllllllllllllllllllll$	The transfer matrix method (TMM) dynamic problems in the frequency dom suitable for analysing the steady-state bearing systems with satisfactory accur first applied to a rotor-bearing system by ered rigid bearing characteristics and However, subsequently, this concept ha incorporating the dynamic characteristic and damping coefficients of fluid-film analysis. Kikuchi ² and Lund ^{3,4} made a ment by including the affects of merocore

- M_d mass of the disk
 - X and Y axes, respec-
 - ixes, respectively
 - axis, respectively
 - s, respectively
 - es due to shear, re-
 - s due to bending, re-
- , respectively
- ns, respectively

ctively

can be used to solve nain, which makes it responses of rotoracy. The TMM was Prohl,¹ who considfour state variables. as been modified by cs, such as stiffness n bearings, into the significant advancement by including the effects of gyroscopics, internal friction,