Vibration Analysis of a Cracked Beam Subjected to a Moving Mass

R.K. Behera and D.R.K. Parhi

Department of Mechanical Engineering, National Institute of Technology, Rourkela, 769008, Orissa, India

S.K. Sahu

Department of Civil Engineering, National Institute of Technology, Rourkela, 769008, Orissa, India

(Received 20 April 2004; accepted 18 October 2005)

An analytical method is used to investigate the dynamic behaviour of a two-crack cantilever beam with a moving mass. In order to obtain the characteristic functions of a multi-cracked beam, the local stiffness matrices are taken into account. The Runge-Kutta numerical method has been used to solve the differential equations involved in analysing the dynamic deflection of a cracked cantilever beam with a moving mass. Comparisons are made between the dynamic deflection of a beam with a moving mass having no cracks and one with two-cracks, both of which are subjected to varying velocities and masses.

Nomenclature

Α	- beam cross-sectional area
В	– width of the beam
Ε	- modulus of elasticity of beam material
g	 acceleration due to gravity
Ι	- section moment of inertia of the beam
L	 total length of the beam
т	 mass per unit length of the beam
M	 lumped mass of the moving body
n	– integer variable (varies from 1 to ∞)
q	– integer variable (varies from 1 to ∞)
t	– time
V	 velocity of the moving mass
W	 height of the beam
x	- distance of the point from the fixed end to the
	point of interest where deflection is desired
У	 transverse dynamic deflection of the beam
a_1, a_2	 – crack depths
$T_{n,tt}(t) = d^2$	$^{2}T_{n}(t)/dt^{2}$
$V_n = \int_0^L Y_n^2$	(x) dx
Y_n	– eigen functions of the beam
$a_1/W, a_2/W$	⁷ – relative crack depths
$\beta = L_1/L$	 relative crack position
$\gamma = L_2/L$	 relative crack position
γn	– eigenvalues
δ	– Dirac delta function
ρ	 mass density of the beam

 ω_n – natural circular frequency of the beam for the *n*-th mode

1. INTRODUCTION

Engineers have been investigating the potential hazard produced by the moving masses on structures for many several years. The dynamic response of structures carrying moving masses is a problem of widespread practical significance. In the early twentieth century, engineers such as Jeffcott¹ managed to calculate the vibration response of simple structures with a moving mass. The response characteristics of a beam subjected to a moving force were investigated by Florence², Steele³, Kenney⁴, and Smith⁵. Stanisic and Hardin⁶, and Stanisic et al.⁷ have developed a numerical-analytical method for determining the behaviour of beams with various boundary conditions and carrying a moving mass. Saigal⁶ has developed expressions for beam structures with the help of the Stanisic et al. theory⁷, which has a higher degree of practical significance. Later, Akin and Mofid⁸ analysed such problems for finite beams with moving loads using a differential equation. Parhi et al.⁹ have discussed the vibration analysis of a cantilever beam with a transverse crack using influence coefficients and stiffness elements at the crack section. None of these investigators have developed a theoretical approach for the dynamic deflection of a two-crack cantilever beam with a moving mass. In this paper, the local stiffness matrices at the cracked sections are taken into account for the dynamic deflection of a beam subjected to a moving mass.

2. EQUATION OF MOTION

The equation of motion for a uniform beam of mass m subjected to a moving mass M, as shown in Fig. 1, neglecting damping, can be written as

$$EI\frac{d^{4}y(x,t)}{dx^{4}} + m\frac{d^{2}y(x,t)}{dt^{2}} = \left[Mg - M\frac{d^{2}y(\eta,t)}{dt^{2}}\right]\delta(x-\eta), (1)$$

where *m* is the mass per unit length of the beam, *E* is the modulus of elasticity of the beam, *I* is the moment of inertia of the beam cross-section, η is the distance considered from one end of the beam, *t* is the time taken by the moving mass to travel a distance η on the beam, δ is the Dirac delta function (see the Appendix), and *x* is the distance of any arbitrary point *z* on the beam.

The solution of Eq. (1) is assumed to be in a series form,

$$y(x,t) = \sum_{n=1}^{\infty} Y_n(x)T_n(t),$$
 (2)

International Journal of Acoustics and Vibration, Vol. 10, No. 4, 2005 (pp 197-201)