
Nomenclature

A beam cross-sectional area!

B width of the beam!

E modulus of elasticity of beam material!

g acceleration due to gravity!

I section moment of inertia of the beam!

L total length of the beam!

m mass per unit length of the beam!

M lumped mass of the moving body!

n integer variable (varies from 1 to )! !
q integer variable (varies from 1 to )! !
t time!

v velocity of the moving mass!

W height of the beam!

x distance of the point from the fixed end to the!

point of interest where deflection is desired

y transverse dynamic deflection of the beam!

crack depthsa1,a2 !

Tn,tt(t) " d
2Tn(t)/dt

2

Vn " "0
L
Yn

2(x)dx

eigen functions of the beamYn !

relative crack depthsa1/W,a2/W !

relative crack position! " L1/L !

relative crack position" " L2/L !

eigenvalues"n !

Dirac delta function# !

mass density of the beam$ !

natural circular frequency of the beam for the%n !

n-th mode

1. INTRODUCTION

Engineers have been investigating the potential hazard

produced by the moving masses on structures for many sev-

eral years. The dynamic response of structures carrying mov-

ing masses is a problem of widespread practical significance.

In the early twentieth century, engineers such as Jeffcott1

managed to calculate the vibration response of simple struc-

tures with a moving mass. The response characteristics of a

beam subjected to a moving force were investigated by Flor-

ence2, Steele3, Kenney4, and Smith5. Stanisic and Hardin6,

and Stanisic et al.7 have developed a numerical-analytical

method for determining the behaviour of beams with various

boundary conditions and carrying a moving mass. Saigal6 has

developed expressions for beam structures with the help of

the Stanisic et al. theory7, which has a higher degree of prac-

tical significance. Later, Akin and Mofid8 analysed such

problems for finite beams with moving loads using a differ-

ential equation. Parhi et al.9 have discussed the vibration ana-

lysis of a cantilever beam with a transverse crack using influ-

ence coefficients and stiffness elements at the crack section.

None of these investigators have developed a theoretical ap-

proach for the dynamic deflection of a two-crack cantilever

beam with a moving mass. In this paper, the local stiffness

matrices at the cracked sections are taken into account for the

dynamic deflection of a beam subjected to a moving mass.

2. EQUATION OF MOTION

The equation of motion for a uniform beam of mass m

subjected to a moving mass M, as shown in Fig. 1, neglecting

damping, can be written as

 (1)EI
d4y(x, t)

dx4 #m
d2y(x, t)

dt2
" Mg !M

d2y(&, t)

dt2
# (x ! &) ,

where m is the mass per unit length of the beam, E is the

modulus of elasticity of the beam, I is the moment of inertia

of the beam cross-section,  is the distance considered from&
one end of the beam, t is the time taken by the moving mass

to travel a distance  on the beam,  is the Dirac delta func-& #
tion (see the Appendix), and x is the distance of any arbitrary

point z on the beam.

The solution of Eq. (1) is assumed to be in a series form,

                          (2)y(x, t) " '
n"1

!

Yn(x)Tn(t) ,
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An analytical method is used to investigate the dynamic behaviour of a two-crack cantilever beam with a mov-

ing mass. In order to obtain the characteristic functions of a multi-cracked beam, the local stiffness matrices are

taken into account. The Runge-Kutta numerical method has been used to solve the differential equations in-

volved in analysing the dynamic deflection of a cracked cantilever beam with a moving mass. Comparisons are

made between the dynamic deflection of a beam with a moving mass having no cracks and one with two-cracks,

both of which are subjected to varying velocities and masses. 
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