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The increasing needs of the industry involved in development of components for aerospace and power sector
demand the engineering community to develop new concepts and strategies to improve the functional requirements
of structures and to enhance the strength of materials. This is particularly essential in the cases of rotating beams
that are subjected to severe vibration under large pressure loadings, high rotating accelerations, centrifugal forces,
geometric stiffening, etc. A theoretical investigation of the free vibration characteristics of rotating cantilever
beams, made of a functionally-graded material (FGM) consisting of metal and alumina, is presented in this study.
It was assumed that the material properties of the FGM beam were symmetric, but varied continuously in the
thickness direction from the core at the mid section to the outer surfaces, according to a power-law relation.
Equations of motion were derived from a modelling method, which employed the hybrid deformation variable.
The natural frequencies were determined using the Rayleigh-Ritz method. The effect of parameters such as the
power law index, the hub radius, and the rotational speed on the natural frequencies of functionally-graded rotating
cantilever beams were examined through numerical studies and then compared with the numerical results reported
in earlier works.

NOMENCLATURE

~aP Acceleration vector of the generic point P
A Cross-sectional area of the beam
b Width of the beam
E(z) Youngs modulus
h Total thickness of the beam
l̂, ĵ, k̂ Orthogonal unit vectors fixed to the rigid

hub
JE11 Axial rigidity of the beam
Jρ11 Mass density per unit length
JE22,yy, J

E
22,zz Flexural rigidities of the functionally-

graded beam
L Length of the beam
n Power law index
~P Vector from point O to P0

P(z) Effective material property
P(m) Metallic material property
P(c) Ceramic material property
q1i, q2i, q3i Generalized co-ordinates
r Radius of the rigid frame
ρ(z) Mass density per unit volume
s Arc length stretch of the neutral axis
T Reference period

u, v, w Cartesian variables in the directions of î, ĵ,
and, k̂

U Strain energy of the functionally-graded
beam

~vO Velocity of point O
~vP Velocity vector of the generic point P
x Spatial variable
γ Ratio of the angular speed of the beam to

the reference angular speed
δ Hub radius ratio
Θ Constant column matrix characterizing the

deflection shape for synchronous motion
µ1, µ2, µ3 Number of assumed modes corresponding

to q1i, q2i, and q3i
τ Dimensionless time
φ1j , φ2j , φ3j Modal functions for s, v and w
~ωA Angular velocity of the frame A
Ω Angular speed of the rigid hub
(′) Partial derivative of the symbol with

respect to the integral domain variable
(′′) Second derivative of the symbol with

respect to the integral domain variable

1. INTRODUCTION

Functionally-graded materials are special composites whose
properties change spatially in one or more directions.
Functionally-graded structures are being widely applied in ex-
tremely high temperature environments like those occurring
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aroudn space vehicles, aircrafts, nuclear power plants, auto-
mobiles, combustion chambers, turbine blades, etc. As these
structures are often subjected to vibration with large pres-
sure loadings, temperature gradients, and thermo-elastically-
induced loading, understanding of their dynamic behaviour is
important. FGM have been presented as an alternative to lami-
nated composite materials that exhibit a mismatch in properties
at the material’s interface. The discontinuity in these materials
leads to large stress concentrations or intensity factors, attenu-
ation of stress waves, and potentially the commencement and
propagation of cracks. This problem was reduced in the FGM
because of the gradual change in mechanical properties as a
function of position through the composite laminate.

Several studies have been conducted to analyse static and
dynamic behaviour of the functionally-graded beams, plates,
and shells over the past two decades. In 1994, Nag-
uleswaran considered the doubly-symmetric Euler-Bernoulli
uniform beam to describe the lateral vibrations of the beam.
Different combinations of the boundary conditions were con-
sidered for estimating the first three dimensionless natural fre-
quencies.1 Sankar, in 2001, presented an elasticity solution
based on the Euler-Bernoulli beam theory for a functionally-
graded beam subjected to sinusoidal transverse loads, by as-
suming that property of the beam varied exponentially through
the thickness.2 In 2009, Sina et al. carried out a free vibra-
tion analysis of functionally-graded beams using a new beam
theory that differed from the traditional first order shear de-
formation theory. In this work, Hamiltons principle was used
to derive the equations of motion. Different boundary condi-
tions were considered and comparisons were made considering
the different beam theories.3 Yang and Chen, in 2008, investi-
gated free vibration and elastic buckling of functionally-graded
beams with the material properties varying along the thickness.
This was done according to the exponential distributions with
open edge cracks through consideration of the Bernoulli-Euler
theory and the theoretical spring model.4 Ying et al., in 2008,
presented the exact two-dimensional elasticity solutions for the
bending and free vibration of functionally-graded beams on
a Winkler-Pasternak foundation. Infinite trigonometric series
were considered to expand the solutions of stresses and dis-
placements.5 In 2008 Li suggested a new unified approach for
analysing the static and dynamic behaviours of functionally-
graded beams, including rotary inertia and shear deformation.6

In the same year, Yang et al. investigated the free and forced
vibrations of slender FGM beams with open edge cracks under
the combined action of an axial compression and a concen-
trated transverse moving load with different end supports.7 Li
and Shi, in 2009, employed the extension of the state-space-
based differential quadrature method (SSDQM), to study the
free vibration of a functionally-graded piezoelectric material
(FGPM), multi-layered beam under different boundary condi-
tions. The influence of material parameters on the natural fre-
quency of the FGPM beam was also discussed.8 Kadoli et al.,
in 2008, implemented a displacement field based on the higher
order shear deformation theory, to study the static behaviour of

functionally-graded metal-ceramic beams under ambient tem-
perature.9

Aydogdu and Taskin, in 2007, investigated the free vibra-
tion of a simply-supported functionally-graded beam using
classical beam theory, parabolic shear deformation beam the-
ory, and exponential shear deformation beam theory. The
governing equations of the beam were derived using the
Hamilton principle and the Navier type solution method.10

In 2006, Kocatürk and Şimşek analysed the lateral vibra-
tions of a beam subjected to eccentric compressive force and
harmonically-varying transverse concentrated moving force,
using Bernoulli-Euler beam theory. The results of the nu-
merical simulations were presented in various combinations
for the value of the eccentricity, the eccentric compressive
force, the excitation frequency, and the constant velocity of
the transverse moving harmonic force.11 Şimşek and Ko-
catürk, in 2009, also investigated free and forced vibration of
a functionally-graded, simply-supported beam subjected to a
concentrated moving harmonic load.

The space-dependent functions were chosen as polyno-
mial functions. The system of equations was derived us-
ing Lagranges equations, under the assumptions of the Euler-
Bernoulli beam theory. The material properties of the beam
were assumed to vary continuously in the thickness direction,
according to an exponential law and a power law. The effects
of the distribution of materials with differing properties, the
velocity of the moving harmonic load, and the excitation fre-
quency on the dynamic responses of the beam are discussed in
this paper.12 A theoretical model for the free vibration anal-
ysis of layered, functionally-graded beams was presented by
Kapuria et al., in 2008, and has been validated experimen-
tally.13 Jaworski and Dowell, also in 2008, conducted a the-
oretical and experimentally investigation on the flexural-free
vibration of a cantilevered beam with multiple cross-section
steps; these results were then compared.14 Kang and Li, in
2009, investigated the mechanical behaviours of a non-linear,
functionally-graded, material cantilever beam subjected to an
end force, by using large and small deformation theories. The
effects of varying the Young’s modulus and the non-linearity
parameter on the large and small deflections were presented.15

In the 2008, Benatta et al. presented high-order, flexural
theories for short, functionally-graded, symmetric beams un-
der three-point bending. The governing equations were ob-
tained using the principle of virtual work (PVW).16 In 2009,
Şimşek carried out a static analysis of a functionally-graded
(FG), simply-supported beam, subjected to a uniformly dis-
tributed load using the Ritz method. The analysis was carried
out considering the Timoshenko and the higher order shear
deformation beam theories. Trigonometric functions were
taken as trial functions to describe the transverse, the axial
deflections, and the rotation of the cross-section.17 In 2010,
Şimşek also investigated vibration of a functionally-graded
(FG), simply-supported beam due to a moving mass, using the
Euler-Bernoulli, the Timoshenko, and the third order shear de-
formation beam theories. In this study, the effects of shear de-
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formation, material distribution, velocity of the moving mass,
inertia, Coriolis, the centripetal effects of the moving mass on
the dynamic displacements, and the stresses of the beam are
discussed using Lagranges equations to derive the system of
equations of motion.18

Ozdemir Ozgumus and Kaya, in 2010, presented a flap-wise
bending vibration analysis of a rotating, tapered. Timoshenko
beam where the Differential Transform Method (DTM) was
used as the tool to obtain the solution.19 Chih-Ling Huang,
in 2009, proposed a method based on the power series solu-
tion to estimate the flap-wise vibrations of the rotating Euler
beam with constant angular speed.20 Huang et al., in 2010,
investigated the natural frequencies of a rotating beam for the
flap-wise bending vibration and coupled lag-wise bending and
axial vibration. The power series solution was proposed for a
very slender rotating beam at high angular velocity to estimate
the natural frequency.21 Yoo and Shin, in 1998, presented the
equations of motion for a rotating cantilever beam based on a
new dynamic modelling method. The derived linear equations
were used for vibration analysis.22 In 1995, Yoo et al. pre-
sented a modelling method for beams undergoing large overall
motions and small deformations. In the equations of motion, a
quadratic form of the strain energy expressed with the hybrid
set of deformation variables in the equations of motion, to ob-
tain the generalized active forces and Cartesian variables, was
used to carry out the generalized inertia forces.23

Park et al., in 2010, employed the constrained multi-body
technique to derive equations of motion for a wind-turbine
(rotating) blade and numerical problems were solved to ver-
ify the accuracy of the proposed method.24 Alshorbagy et al.,
in 2011, evaluated the dynamic characteristics of a stationary
functionally-graded beam considering the material gradation
in the axial and transverse directions through the power law-
based thickness. The system of equations of motion were de-
rived using the principle of virtual work for the Euler-Bernoulli
beam model.25 Fazelzadeh et al., in 2007, and Fazelzadeh and
Hosseini, in 2007, investigated a thin-walled beam made of
functionally-graded material (FGM). They focused mainly on
the aerothermoelastic effects related to graded properties.26, 27

Piovan and Sampaio, in 2009, developed a rotating, nonlinear
model that accounted for the arbitrary axial deformations in a
FGM rotating beam; the model was also employed to analyse
the isotropic and composite materials.28

To those authors knowledge, an analysis of the natural fre-
quencies for a functionally-graded rotating beam, considering
the rotating accelerations, the centrifugal force, the hub radius,
and the material morphology, has scarcely been reported. In
this paper, the dynamic modelling method–which is proposed
for a homogeneous, rotating cantilever and uses the hybrid
deformation variables–is extended to estimate the natural fre-
quencies of a functionally-graded, rotating cantilever beam.22

The governing equations of motion derived for both stretch-
ing and bending configurations were observed to be coupled
through gyroscopic coupling terms. The present work inves-
tigates the effect of power law index, angular speed, and hub

Figure 1: Configuration of the functionally-graded rotating
beam.

radius on the natural frequencies of a functionally-graded ro-
tating beam for the bending configuration. This was done by
neglecting the coupling effects in the chord-wise and flap-wise
modes through numerical studies, and a comparison was made
with the numerical results reported in the literature.

2. FUNCTIONALLY-GRADED BEAM

Consider a functionally-graded beam with length L, width b,
total thickness h, and composed of a metallic core and ceramic
surfaces, as shown in Fig. (1). The graded material properties
vary symmetrically along the thickness direction from the core
towards the surface, according to a power law:

P(z) = P(m) +
(
P(c) − P(m)

) ∣∣∣∣2× zh
∣∣∣∣2 ; (1)

where P(z) represents an effective material property (i.e., den-
sity, ρ(z) or Youngs modulus, E(z)), and P(m), and P(c) are
metallic and ceramic properties, respectively.

The volume fraction exponent, or power law index, n, is
a variable whose value is greater than or equal to zero; the
variation in beam properties depends on its magnitude. The
beam was constructed with the functionally-graded material,
which is ceramically rich at the top and bottom surfaces (at
z = h

2 and h
2 ) with a protective metallic core (at z = 0).

2.1. Equations of Motion

For the problem considered in this study, the equations of
motion were obtained under assumptions; namely, that the ma-
terial properties varied only along the thickness direction ac-
cording to a power law, and that the neutral and centroidal axes
in the cross-section beam coincided. Therefore, the effects due
to eccentricity and torsion were not considered. Shear and ro-
tary inertia effects of the beam were also not addressed. No
external force acts upon the FG beam, and the beam was at-
tached to a rigid hub that rotated with constant angular speed.

Figure (1) shows the deformation of the neutral axis of a
beam fixed to a rigid hub rotating about the axis k̂. The rota-
tion of the beam was characterized by means of a prescribed
rotation Ω(t) around the k̂-axis. The position of a generic point
on the neutral axis of the FG beam located at P0 (before defor-
mation) changed to P (after deformation) and its elastic de-
formation was denoted as d̂ with three components in three-
dimensional space. Conventionally, the differential equations
of motion were derived by approximating the three Cartesian
variables u, v, and w. In the present work, a hybrid set of
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Cartesian variables (v and w) and the non-Cartesian variable
(s) were approximated by spatial functions. Corresponding co-
ordinates were employed to derive the equations of motion.

2.1.1. Approximation of deformable variables

By employing the Rayleigh-Ritz method, the deformation
variables were approximated as follows:

s(x, t) =

µ1∑
j=1

φ1j(x)q1j(t); (2)

v(x, t) =

µ2∑
j=1

φ2j(x)q2j(t); (3)

and

w(x, t) =

µ3∑
j=1

φ3j(x)q3j(t). (4)

In the above equations, φ1j , φ2j , and φ3j were the assumed
modal functions for s, v, and w, respectively. Any compact set
of functions that satisfy the essential boundary conditions of
the cantilever beam can be used as the test functions. The qijs
were the generalized coordinates and µ1, µ2, and µ3 were the
number of assumed modes used for s, v, and w, respectively.
The total number of modes, µ, was equal to the sum of indi-
vidual modes; i.e., µ = µ1 + µ2 + µ3. The geometric relation
between the arc length stretch s and the Cartesian variables u,
v, and w were given as Eqs. (5) to (7)23

x+ s =

x∫
0

[(
1 +

∂u

∂σ

)2

+

(
∂v

∂σ

)2

+

(
∂w

∂σ

)2
] 1

2

dσ; (5)

Based on the assumptions described in section 2.1., the
equations of motion were obtained from the following equa-
tion:

L∫
0

Jρ11

(
∂~vp

∂q̇i

)
~aP dx+

∂U

∂qi
= 0; (8)

where
Jρ11 =

∫
A

ρ(z)dA; (9)

A donates the cross-section, ρ(z) represents the mass density
per unit volume of the functionally-graded beam, and U is the
strain energy of the functionally-graded beam. ~vP and ~ap are
velocity and acceleration of the generic point, P , respectively.

The velocity of generic point P can be obtained as

~vP = ~vO +
Ad~p

dt
+ ~ωA × ~p; (10)

where ~vO is the velocity of point O, which was a reference
point identifying a point fixed in the rigid frame A. ~ωA is the
angular velocity of the frame A, and ~P is the vector from point
O to PO. The term

Ad~p
dt was the time derivative of the vector

~P in the reference frame A, and the terms ~P ,~vO, and ~ωA can
be expressed as follows:

~p = (x+ u)̂i+ vĵ + wk̂; (11)

~vO = rΩĵ; (12)

~ωA = Ωk̂; (13)

and

~vp = (u̇− Ωv)̂i+ [v̇ + Ω(r + x+ u)]ĵ + ẇk̂; (14)

where î, ĵ, and k̂ are the orthogonal unit vectors fixed inA, and
r is the distance from the axis of rotation to point O (i.e., the
radius of the rigid frame). Ω is the angular speed of the rigid
frame.

To derive the equations of motion, the partial derivative of
the velocity of P , with respect to the generalized speed, qij s
can be obtained as:

∂~vP

∂q̇1i
= φ1iî, (i = 1, 2, 3, . . . µ1); (15)

where a symbol with a prime () represents the partial derivative
of the symbol with respect to the integral domain variable.

By differentiating Eq. (14) with respect to time, the acceler-
ation of the point P can be obtained as follows in Eq. 18.

Based on the assumptions, the total elastic strain energy of a
functionally-graded beam can be written as in Eq. (19), where

JE11 =

∫
A

E(z)dA; (20)

JE22,yy =

∫
A

E(z)z
2dA; (21)

and

JE22,zz =

∫
A

E(z)y
2dA. (22)

Eq. (20) is axial rigidity, and Eqs. (21) and (22) are the flex-
ural rigidities of the functionally-graded beam.

Substituting the partial velocities and the strain energy ex-
pression of Eq. (19) in to Eq. (8), the linearized equations of
motion can be obtained as in Eqs. (23) to (25), where a symbol
with double prime (′′) represents the second derivative of the
symbol with respect to the integral domain variable.

3. ANALYSIS OF CHORD-WISE NATURAL
FREQUENCIES

Eq. (24) governs the chord-wise bending vibration of the
functionally-graded rotating beam, which was coupled with
Eq. (23). With the assumptions that the first natural frequencies
of the stretching motion were far greater than the bending mo-
tion, and the coupling effect become negligible for the slender
beams,22 the stretching equation of motion and coupling terms
involved in Eq. (24) were ignored. The equation can be thus
modified as in Eq. (26).

Equation (26) involves the parameters E(z), ρ(z), L, Ω, and
x, which are the properties varied along the transverse direc-
tion of the beam.
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s = u+
1

2

x∫
0

[(
∂v

∂σ

)2

+

(
∂w

∂σ

)2
]
dσ + (Higher Degree Terms) ; (6)

ṡ = u̇+

x∫
0

[(
∂v̇

∂σ

)(
∂v

∂σ

)
+

(
∂ẇ

∂σ

)(
∂w

∂σ

)]
dσ + (Higher Degree Terms) . (7)

For the analysis, the equations in the dimensionless form
may be obtained by introducing the following dimensionless
variables in the equation:

τ
4
=

t

T
; (27)

ξ
4
=
x

L
; (28)

θj
4
=
qj
L

; (29)

δ
4
=
r

L
; (30)

γ
4
= TΩ; (31)

where τ , σ, and γ are the dimensionless time, the hub radius
ratio, and the dimensionless angular speed, respectively.

After introducing the dimensionless variable from Eq. (27)
into Eq. (31) in Eq. (26), the equation can be modified to the
Eq. (32), where

T =

(
Jρ11L

4

JE22,ZZ

) 1
2

. (33)

Equation (32) can be written as

µ2∑
j=1

[
M22
ij θ̈2j +KB2

ij θ2j + γ2(KG2
ij −M22

ij )θ2j

]
= 0, (34)

where

Mab
ij

4
=

1∫
0

ψaiψbjdξ; (35)

KBa
ij

4
=

1∫
0

ψ”aiψ”ajdξ; (36)

and

KGa
ij

4
=

1∫
0

(1−ξ)ψ′
aiψ

′
ajdξ+

1

2

1∫
0

(1−ξ2)ψ′
aiψ

′
ajdξ. (37)

In the above equations, ψai is a function of ξ and has the same
functional value of x.

From Eq. (34), an eigenvalue problem was derived by as-
suming that θs were harmonic functions of τ , expressed as

θ = ejωτΘ; (38)

where j is the imaginary number, ω is the ratio of the flap-wise
bending natural frequency to the reference frequency, and θ is

a constant column matrix characterizing the deflection shape
for synchronous motion. The above yields:

ω2MΘ = KCΘ; (39)

where M is the mass matrix and KC is the stiffness matrix,
which consists of elements defined as:

Mij
4
= M22

ij , (40)

and
KC
ij

4
= KB2

ij + γ2(KG2
ij −M22

ij ). (41)

4. ANALYSIS OF FLAP-WISE NATURAL
FREQUENCIES

Equation (25) governed the flap-wise bending vibration of
the functionally-graded, rotating beam, which was not coupled
with Eqs. (23) and (24). The Eqation (25) involved the param-
eters E(z), ρ(z), L, Ω, and x, in which the properties may vary
along the transverse direction of the beam.

The equations in the dimensionless form were obtained
by introducing the dimensionless variable from Eq. (27) to
Eq. (31) in Eq. (25),resulting in Eq. (42), where

T
4
=

(
Jρ11L

4

JE22,Y Y

) 1
2

; (44)

From Eq. (43), the eigenvalue problem for the flap-wise bend-
ing vibration of the functionally-graded, rotating cantilever
beam can be formulated as:

ω2MΘ = KFΘ; (45)

where M and KF are defined as

Mij
4
= M33

ij ; (46)

and
KF
ij

4
= KB3

ij + γ2KG3
ij . (47)

5. NUMERICAL RESULTS AND DISCUSSION

The numerical testing of the procedure, as well as the para-
metric studies, were performed with two examples in order to
establish the validity and application of the present approach to
estimate the chord-wise bending vibrations of a functionally-
graded, rotating beam, whose properties are given in Table 1.

From Eq. (1), it can be inferred that if Pm = Pc, then there
was no variation in the properties across the section, implying
the bream was made up of fully metallic material.
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∂~vP

∂q̇2i
=

− µ2∑
0

 x∫
0

φ
′

2iφ
′

2jdσ

 q2j

 î+ φ2iĵ, (i = 1, 2, 3, . . . µ2); (16)

∂~vP

∂q̇3i
=

− µ3∑
0

 x∫
0

φ
′

3iφ
′

3jdσ

 q3j

 î+ φ3ik̂, (i = 1, 2, 3, . . . µ3); (17)

~aP = [ü− 2Ωv̇ − Ω2(r + x+ u)]̂i+ [v̈ + 2Ωu̇(r + x+ u)]ĵ + ẅk̂; (18)

U =
1

2
JE11

∫
L

(
ds

dx

)2

dx+
1

2
JE22,zz

∫
L

(
d2v

dx2

)2

dx+
1

2
JE22,yy

∫
L

(
d2w

dx2

)2

dx; (19)

(23)

µ1∑
j =1

 L∫
0

Jρ11φ1iφ1jdx

 q̈1j − 2Ω

 L∫
0

Jρ11φ1iφ2jdx

 q̇2j − Ω2

 L∫
0

Jρ11φ1iφ1jdx

 q1j +

 L∫
0

JE11φ
′

1iφ
′

1jdx

 q1j


= Ω2

L∫
0

Jρ11xφ1idx+ rΩ2

L∫
0

Jρ11φ1idx;

(24)

µ2∑
j =1

 L∫
0

Jρ11φ2iφ2jdx

 q̈2j − Ω2

 L∫
0

Jρ11φ2iφ2jdx

 q2j +

JE22,zz L∫
0

φ
′′

2iφ
′′

2jdx

 q2j

+ Ω2

r
 L∫

0

Jρ11(L− x)φ
′

2iφ
′

2jdx

 q2j +

 L∫
0

Jρ11
2

(L2 − x2)φ
′

2iφ
′

2jdx

 q2j


+ 2Ω

 L∫
0

Jρ11φ2iφ1jdx

 q̇1j

 = 0;

(25)

µ3∑
j =1

 L∫
0

Jρ11φ3iφ3jdx

 q̈3j +

JE22,yy L∫
0

φ
′′

3iφ
′′

3jdx

 q3j

+ Ω2

r
 L∫

0

Jρ11(L− x)φ
′

3iφ
′

3jdx

 q3j +

 L∫
0

Jρ11
2

(L2 − x2)φ
′

3iφ
′

3jdx

 q3j


 = 0;

(26)

µ2∑
j =1

 L∫
0

Jρ11φ2iφ2jdx

 q̈2j − Ω2

 L∫
0

Jρ11φ2iφ2jdx

 q2j +

JE22,zz L∫
0

φ
′′

2iφ
′′

2jdx

 q2j

+ Ω2

r
 L∫

0

Jρ11(L− x)φ
′

2iφ
′

2jdx

 q2j +

 L∫
0

Jρ11
2

(L2 − x2)φ
′

2iφ
′

2jdx

 q2j


 = 0;

(32)

µ2∑
j =1

Jρ11L4

T 2

 1∫
0

ψ2iψ2jdζ

 θ̈2j + JE22,zz

 1∫
0

ψ”2iψ”2jdζ

 θ2j

+
Jρ11L

4

T 2
γ2

δ
 1∫

0

(1− ζ)ψ′
2iψ

′
2jdζ

 θ2j +
1

2

 1∫
0

(1− ζ2)ψ′
2iψ

′
2jdζ

 θ2j −

 1∫
0

ψ2iψ2jdζ

 θ2j


= 0.
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(42)

µ3∑
j =1

Jρ11L4

T 2

 1∫
0

ψaiψbjdζ

 θ̈3j + JE22,yy

 1∫
0

ψ”aiψ”bjdζ

 θ3j

+
Jρ11L

4

T 2
γ2

δ
 1∫

0

(1− ζ)ψ′
aiψ

′
bjdζ

 θ3j +
1

2

 1∫
0

(1− ζ2)ψ′
aiψ

′
bjdζ

 θ3j


 = 0;

µ3∑
j=1

[
M33
ij θ̈3j +KB3

ij θ3j + γ2KG3
ij θ3j

]
= 0. (43)

Table 1: Properties of metallic (Steel) and ceramic (Alumina)
materials.

Properties of materials Steel Alumina(Al2O3)
Youngs modulus E [Gpa] 214.00 390.00

Material density ρ [ kg
m3 ] 7800.00 3200.00

Table 2: Comparison of natural frequencies of a metallic
(Steel) cantilever beam (Hz).

Present Approach Analytical28 Experimental28

96.9 96.9 97.0

607.3 607.6 610.0

1700.4 1699.0 1693.0

Example 1
In Table 2, the first three chord-wise bending natural fre-

quencies of the functionally-graded beam were obtained us-
ing the present modelling method. They were then compared
with those from earlier works, based on the finite element
method28 and experimental data.29 The assumptions in the
study were that the beam was metallic with a power law in-
dex, n → inf (i.e., steel), and had the following geometri-
cal dimensions: breadth = 22.12mm, height = 2.66mm, and
length = 152.40mm. The material properties are provided in
Table 1.

At zero rotational speed, with clamped free (clamped at
x = 0 and free at x = L) boundary conditions, the chord-wise
bending natural frequencies were calculated with ten assumed
modes to obtain the three lowest natural frequencies. The mass
matrix and stiffness matrix are presented in the appendix. A
comparison of the results obtained with those reported in the
literature28, 29 indicated that deviation was less than 0.5%.

Example 2
A functionally-graded non-rotating beam with dimensions

length L = 1000mm, breadth = 20mm, and height = 10mm

was considered for this analysis. Steel was considered as the
metallic constituent, and alumina was used as the ceramic con-
stituent (the mechanical properties are given in Table 1).

In Fig. (2), the variation of the lowest three chord-wise bend-
ing natural frequencies of a functionally-graded beam with re-
spect to the power law index, n, was presented and compared
to the results.28 It was observed that chord-wise bending nat-
ural frequencies decreased while n value increased. When the
beam composition approached a more metallic state, the fre-
quencies became asymptotic to the power law index axis. The

Figure 2: Varaition of chord-wise bending natural frequencies
of non rotating functionally-graded beam.

present observations were in conformity with the results re-
ported, wherein the shear effect was considered.28 Although
the present approach did not take into account the shear com-
ponent, the present observations were in conformity with those
made in earlier studies, where, it had been reported that the in-
fluence of the shear was negligeble at the lower order frequen-
cies.14, 30

From the above examples, it may be concluded that the
present modelling method is appropriate for further evaluation.
In this light, further analysis has been carried out for a beam
with the same dimensions and functionally-graded properties
as in Example 2.

In Figure (3), the variation of the chord-wise bending nat-
ural frequencies were plotted against the angular speed of ro-
tation of the beam for the power law index, n = 0 (the beam
was made of ceramic metal). It has been observed that, the
frequencies increased along with an increase in angular speed,
for all hub radii ratio. However, the increase in frequencies,
as well as rate of increase, has been found to be higher in re-
spect to higher hub radii ratio. The observed behaviour can be
attributed to an increase in the centrifugal inertia force, due to
increases in hub radius and angular speed.

The relationship between the chord-wise bending natural
frequency and the power law index for the different hub radii
ratio, at constant angular speed, is presented in Fig. (4). In
general, it was observed that the chord-wise bending natural
frequencies increased along with an increase in the hub radius
ratio; i.e., for a given power law index, a higher hub radius ra-
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Figure 3: Variation of chord-wise bending natural frequencies
with angular speed.

Figure 4: Variation of chord-wise bending natural frequencies
with power law index.

tio (delta value) resulted in higher frequency. This behaviour
becomes predominant in the following order: third frequency,
which was greater than the second frequency, and greater than
first frequency. The chord-wise bending natural frequencies
of the functionally-graded, rotating beam decreased rapidly as
the power law index changed from zero to two. When the
beam composition approached fully metallic, the frequencies
become asymptotic to the power law index axis.

As the rotating speed of the functionally-graded beam in-
creased, the chord-wise bending natural frequencies increased
and the rate of increase in the natural frequency was predom-
inant for the beams with higher power law index, as seen in
Fig. (5).

In Table 3, the chord-wise bending natural frequencies were
compared to the flap-wise bending natural frequencies. The
flap-wise bending natural frequencies obtained from Eq. (43)
aligned well with those obtained from the relationship origi-
nally introduced.1

The variation of the lowest three flap-wise bending natu-
ral frequencies of a functionally-graded beam, with respect
to the power law index, n, are presented in Fig. (6). It was
observed that the flap-wise bending natural frequencies of the
functionally-graded rotating beam decreased rapidly up to a
value of the power law index, and then the frequencies become

Figure 5: Variation of chord-wise bending natural frequencies
with angular speed.

Figure 6: Variation of flap-wise bending natural frequencies of
non rotating functionally-graded uniform beam.

asymptotic to the power law index axis. As the rotating speed
of the functionally-graded beam increased, the flap-wise bend-
ing natural frequencies increased and the rate of increase in
natural frequency was predominant for the beams with a higher
power law index, as presented in Fig. (7).

For the speed variation between 0 to 100rps, the rate of in-
crease of chord-wise and flap-wise bending natural frequencies
has been evaluated for different values of the power law index,
and presented in Figs. (8) and (9) respectively. It has been ob-

Figure 7: Variation of flap-wise bending natural frequencies
with angular speed.
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Table 3: Comparison of the first chord-wise natural frequencies (Hz) and the first flap-wise natural frequencies (Hz) at n = 0, 4

and 8, for the beam b = 20mm d = 20mm and L = 1000mm.

ρ ↓ Chord-wise Flap-wise from Eq. (36)
N (rps) n→ 0 4 8 0 4 8

0.0 35.67792 19.46406 18.30947 35.73393 19.56654 18.41838

2 0.5 35.72192 19.54458 18.39505 35.77786 19.64665 18.50345

2.0 35.85359 19.78417 18.64939 35.90933 19.885 18.75633

0.0 37.26551 22.05061 21.00614 44.87447 33.33511 32.65361

25 0.5 43.3133 31.10963 30.36529 50.01042 39.91001 39.33257

2.0 57.72327 49.00565 48.5085 62.9045 55.01413 54.57174

0.0 41.1941 26.48727 25.87316 64.7839 56.77268 56.2976

50 0.5 60.15645 51.10753 50.55035 78.22275 71.49811 71.1009

2.0 96.63529 90.70758 90.34597 108.8043 103.5754 103.2589

Figure 8: Percentage variation in chord-wise bending natural
frequencies with power law index.

Figure 9: Percentage variation in flap-wise bending natural fre-
quencies with power law index.

served that the increase in frequencies was greater at the lower
power law indices. In addition, the effect was predominant in
the lower order frequencies. It has also been noted that the per-
centage increase in the chord-wise bending natural frequency
was smaller, when compared to that in flap-wise frequency. At
higher values of the power law index, the rate of variation of
frequencies with respect to power law index, n, were observed
to remain nearly constant.

6. CONCLUSIONS

In this work, the equations of motion were derived for a ro-
tating, functionally-graded, cantilever beam attached to a rigid
hub. With the coupling effect ignored, the effects of the power
law index, angular speed, and hub radius on the natural fre-
quencies of a functionally-graded, rotating beam were inves-
tigated for the bending configuration in chord-wise and flap-
wise modes. This was first completed through a numerical
study, and then a comparison with the numerical results re-
ported in the literature was conducted. The results showed
that the chord-wise and flap-wise bending natural frequen-
cies increased along with the increase in angular speed, due
to an increase in the centrifugal inertia force, which increased
along with the increase in the angular speed and hub radius
ratio. Both the chord-wise and flap-wise bending natural fre-
quencies of the functionally-graded, rotating beam decreased
rapidly when the beam morphology changed from ceramic to
a ceramic-metal structure. It was also noticed that the increase
in the angular speed had a cumulative effect on both the natural
frequencies, and was more dominant on the lower frequency
modes with a low value of power law index. It was decided that
the present modelling approach can usefully be employed for
the design and analysis of rotating, functionally-graded beam
structures.
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Kij =

1∫
0

ψ”aiψ”bjdζ + γ2

δ 1∫
0

(1− ζ)ψ′
aiψ

′
bjdζ +

1

2

1∫
0

(1− ξ2)ψ′
aiψ

′
ajdξ

 ; (A2)

where i, j = 1, 2, 3 . . . 10.

M =



1.0000e+00 2.6724e-09 8.9146e-10 1.7774e-09 -2.9703e-10 -2.2329e-12 -8.3807e-12 -2.8567e-11 -4.4917e-11 1.8673e-09

2.6724e-09 1.0000e+00 -1.3992e-09 -1.7475e-09 2.6855e-10 1.6532e-11 1.0925e-12 2.8145e-11 3.6804e-11 -1.6434e-09

8.9146e-10 -1.3992e-09 1.0000e+00 2.7141e-09 -4.2182e-10 3.7260e-11 -2.8419e-11 -9.0184e-12 -4.1115e-11 1.4541e-09

1.7774e-09 -1.7475e-09 2.7141e-09 1.0000e+00 5.5667e-10 -3.5111e-10 1.5390e-10 -1.0486e-10 2.2785e-11 1.2263e-09

-2.9703e-10 2.6855e-10 -4.2182e-10 -5.5667e-10 1.0000e+00 -2.4532e-10 7.7767e-11 -5.7360e-11 -4.0586e-13 1.0693e-09

-2.2329e-12 1.6532e-11 3.7260e-11 3.5111e-10 -2.4532e-10 1.0000e+00 1.9502e-11 9.1972e-12 2.2916e-11 -9.2911e-10

-8.3807e-12 1.0925e-12 -2.8419e-11 -1.5390e-10 7.7767e-11 1.9502e-11 1.0000e+00 -1.7600e-11 -1.5859e-11 7.8972e-10

-2.8567e-11 2.8145e-11 -9.0184e-12 1.0486e-10 -5.7360e-11 9.1972e-12 -1.7600e-11 1.0000e+00 1.2049e-11 -6.6831e-10

-4.4917e-11 3.6804e-11 -4.1115e-11 -2.2785e-11 -4.0586e-13 2.2916e-11 -1.5859e-11 1.2049e-11 1.0000e+00 5.7914e-10

1.8673e-09 -1.6434e-09 1.4541e-09 -1.2263e-09 1.0693e-09 -9.2911e-10 7.8972e-10 -6.6831e-10 5.7914e-10 1.0000e+00


; (A3)

K =



1.2362e+1 6.7005e-8 -2.2947e-8 5.5941e-8 -3.7640e-8 3.3940e-8 -3.4069e-8 3.3543e-8 -3.4256e-8 6.8658e-8
6.7005e-8 4.8552e+2 -1.9098e-6 3.8206e-7 -1.1001e-6 1.2385e-6 -1.2300e-6 1.2466e-6 -1.2217e-6 3.1009e-8
-2.2947e-8 -1.9098e-6 3.8065e+3 1.3748e-5 -5.0220e-6 3.5581e-6 -3.5240e-6 3.3661e-6 -3.5113e-6 1.1726e-5
5.5941e-8 3.8206e-7 1.3748e-5 1.4617e+4 -3.4062e-5 3.1058e-5 -2.8177e-5 2.7509e-5 -2.6460e-5 -1.2573e-6
-3.7640e-8 -1.1001e-6 -5.0220e-6 -3.4062e-5 3.9944e+4 -2.1626e-5 1.4937e-5 -1.4231e-5 1.2274e-5 5.2677e-5
3.3940e-8 1.2385e-6 3.5581e-6 3.1058e-5 -2.1626e-5 8.9135e+4 1.9759e-6 7.8093e-7 1.4227e-6 -1.2468e-4
-3.4069e-8 -1.2300e-6 -3.5240e-6 -2.8177e-5 1.4937e-5 1.9759e-6 1.7388e+5 -4.8040e-6 7.1768e-8 2.0511e-4
3.3543e-8 1.2466e-6 3.3661e-6 2.7509e-5 -1.4231e-5 7.8093e-7 -4.8040e-6 3.0821e+5 -6.5849e-7 -3.0665e-4
-3.4256e-8 -1.2217e-6 -3.5113e-6 -2.6460e-5 1.2274e-5 1.4227e-6 7.1768e-8 -6.5849e-7 5.0848e+5 4.3866e-4
6.8658e-8 3.1009e-8 1.1726e-5 -1.2573e-6 5.2677e-5 -1.2468e-4 2.0511e-4 -3.0665e-4 4.3866e-4 7.9340e+5


; (A4)

K =



3.3646e+2 -1.4873e+2 -2.8537e+2 -2.2280e+2 -1.9229e+2 -1.6305e+2 -1.4327e+2 -1.2651e+2 -1.1381e+2 -1.0299e+2

-1.4873e+2 2.6985e+3 3.8380e+2 -2.8297e+2 -7.7886e+2 -8.1031e+2 -7.0940e+2 -6.7090e+2 -6.0629e+2 -5.6722e+2

-2.8537e+2 3.8380e+2 1.0294e+4 1.9388e+3 -1.9860e+3 -1.3953e+3 -1.7091e+3 -1.4798e+3 -1.4951e+3 -1.3559e+3

-2.2280e+2 -2.8297e+2 1.9388e+3 2.8025e+4 4.5293e+3 -3.0033e+3 -1.8492e+3 -2.6447e+3 -2.2350e+3 -2.3990e+3

-1.9229e+2 -7.7886e+2 -1.9860e+3 4.5293e+3 6.2818e+4 8.1089e+3 -4.0607e+3 -2.1556e+3 -3.5924e+3 -2.9399e+3

-1.6305e+2 -8.1031e+2 -1.3953e+3 -3.0033e+3 8.1089e+3 1.2403e+5 1.2670e+4 -5.1560e+3 -2.3226e+3 -4.5405e+3

-1.4327e+2 -7.0940e+2 -1.7091e+3 -1.8492e+3 -4.0607e+3 1.2670e+4 2.2336e+5 1.8210e+4 -6.2919e+3 -2.3589e+3

-1.2651e+2 -6.7090e+2 -1.4798e+3 -2.6447e+3 -2.1556e+3 -5.1560e+3 1.8210e+4 3.7483e+5 2.4724e+4 -7.4703e+3

-1.1381e+2 -6.0629e+2 -1.4951e+3 -2.2350e+3 -3.5924e+3 -2.3226e+3 -6.2919e+3 2.4724e+4 5.9480e+5 3.2213e+4

-1.0299e+2 -5.6722e+2 -1.3559e+3 -2.3990e+3 -2.9399e+3 -4.5405e+3 -2.3589e+3 -7.4703e+3 3.2213e+4 9.0198e+5


. (A5)

APPENDIX

For the vibration analysis, several assumed modes that
which satisfy the boundary conditions of the cantilever beam
can be used to construct the mass and stiffness matrices in
Eqs. (36) and (45).

For the functionally-graded beam considered in the first ex-
ample, the elements of mass matrix and the stiffness matrix for
ten modes can be estimated from: the relations

Mij =

1∫
0

ψ2iψ2jdζ; (A1)

where i, j = 1, 2, 3 . . . 10; and from Eq. (A2) (see above).
Using the Eqs. (A1) and Eq. (A2), the mass matrix and the

stiffness matrix for a non-rotating, cantilever beam can be ob-
tained as Eqs. (A3), and (A4).

The stiffness matrix for the rotating functionally-graded
beam at N = 100rps, n = 0, and δ = 2.0 was Eq. (A5)
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