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Vibration signals are a widely used technique for machine monitoring and fault diagnostics. However, it is nec-
essary to select a suitable pattern that represents the condition of the machine. Wavelet Packet Transform (WPT)
provides a high potential for pattern extraction. Several factors must be selected and taken into account in the
wavelet transform application such as the level of decomposition, the suitable mother wavelet, and which frequency
bands (obtained from the decomposition process) contain the necessary information for the diagnosis system. The
selection of the parameters commented above is a complex task that depends on many factors. Most of the works
found in the literature select these factors based on experience, graphical methods, or trial and error methods. In
this work, a method based on the relative wavelet energy is developed in order to automatically select the param-
eter defined by the WPT. The selection allows for the efficient extraction of the most suitable patterns for a later
classification and fault detection process. In order to prove the soundness of the method proposed, a Jeffcott rotor
model with four crack levels will be developed, and the vibratory signals provided by this model will be used for
the monitoring condition.

NOMENCLATURE
WT Wavelet Transform
FT Fourier Transform
MRA Multirresolution Analysis
ANN Artificial Neural Network
CWT Continuous Wavelet Transform
DWT Discrete Wavelet Transform
WPT Wavelet Packets Transform
Db6 Daubechies 6
RBF Radial Basis Function Neural Network

1. INTRODUCTION

The study of the vibration signal is a main technique in the
study and diagnosis of the failures in rotator and structural ele-
ments, which is one of the main objectives in condition-based
maintenance. The concepts, procedures, and challenges of this
kind of maintenance are consolidating for real industrial prac-
tice.1 There are several methods focused in the fault detec-
tion, mainly with the intention of extracting behaviour patterns
able to identify a failure. Among them, the Wavelet Transform
(WT) is one of the techniques that has been adopted by a vast
amount of applications, frequently replacing the conventional
Fourier Transform (FT); however, sometimes it is still used in
combination with other techniques as intelligent classifiers, as
in the case of Wang and Chen.2 Peng et al. carried out a biblio-
graphical review on the application of WT on vibration signals
to monitoring and fault diagnosis in machines.3 Researchers
such as Douka et al. have developed a method of crack identifi-
cation for structures based on the continuous wavelet analysis.4

Adewusi5 presented an experimental study, using the wavelet
analysis in vibratory signals provided by a rotor. In this previ-
ous work, the configuration was performed in a cantilever and
with a V-notch of 4 mm, propagating a transversal crack.

Specifically for industrial maintenance, the diagnostics of
cracked rotors is a critical subject. This area has focused
the attention of many researchers in the last decades. A lot
of studies about the dynamics of cracked rotating machinery
have been carried out with different methods in order to de-
tect the effects of cracks. Concretely, dynamics and modelling
of cracked shafts have been highly developed; however, the
inverse problem of the identification of cracks has not been
commonly included.6 A lot of studies have tried to character-
ize the behaviour of rotors.7, 8 Some wide reviews about the
behaviour and modelling of cracked rotating machinery can be
consulted,9, 10 as well as more recent studies about this issue.11

The most common cracks are superficial and transversal that
breathe, i.e, that open and close during rotation. There are
a lot of theoretical works that propose models of the breath-
ing phenomena.6 Some classical approximations are the Gash
function12 and the Mayes and Davies function.13 A review of
the classical and modern breathing functions can also be con-
sulted.14

Related to rotatory elements, WT theory combined with in-
telligent classification systems has been applied with success
in the last decade in vibration signals from rotors15 rolling
bearing elements using the Continuous Wavelet Transform
(CWT)16 or Discrete Wavelet Transform (DWT).17, 18 In all
cases, the selection of the mother wavelet for the transfor-
mation is carried out based on experience, and the test of the
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most common mother wavelet is used (Morlet, Haar, and the
Daubechies family). Related to the level of decomposition,
the process is the same, and the authors represent and test dif-
ferent decomposition levels and select the level that presents
the biggest differences between the conditions. With non-
stationary signals, that means that we are not sure if the se-
lection is the optimum for our purpose, and, obviously, if the
machine condition changes (load, rolling element type, or ge-
ometry) the patterns will not be the most representative.

Wavelet Packet Analysis (WPT) is based in the DWT anal-
ysis, and consists of an improvement of the MRA. Wavelet
Packets coefficients can be directly used as features, and they
present a high sensibility to failures.19 In summary, many
kinds of fault characteristics can be obtained, principally with
the Wavelet coefficients or the Wavelet energy. Since the
Wavelet coefficients will highlight the changes in signals,
which often predict the occurrence of the fault, the Wavelet
coefficients-based features are suitable for early fault detec-
tion. However, because slight changes on signals often have
small energy, these changes will be easily masked in Wavelet
energy-based features.

In the present work, the energy of the coefficients obtained
from the WPT will be used in order to automatically select the
feature pattern that better describes the fault condition. The
mother wavelet applied will be the Daubechies 6 (db6). The
coefficients obtained will be used to calculate the energy val-
ues in many frequency bands, which will help to find failure
patterns to make reliable diagnoses. The study also shows a
novel methodology to select the most suitable decomposition
level for all applications. The methodology allows the auto-
matic selection of this level. The method will be applied to
vibratory signals obtained from the startup of a Jeffcott rotor
model that includes the Gash breathing function to model the
cracks.

2. WAVELET PACKETS TRANSFORM

Wavelet packets transform (WPT) is a generalized form of
the Discrete Wavelet Transform (DWT). The DWT of a sig-
nal x = {x[i]} is decomposed simultaneously using a high-
pass filter (h) and a low pass filter (g) with impulse response.
Output gives the detail coefficients (D) from the high-pass fil-
ter and the approximation coefficients (A) from the low-pass
one.20 It is important to note that both filters are related one
to each other, and they are known as a quadrature mirror filter.
However, since half of the frequencies of the signals have now
been removed, half of the samples can be discarded according
to Nyquist’s rule.21 The filter outputs are then downsampled
by two as Eq. (1):

ylow[n] =

N∑
i=0

x[i] g[2n− i];

yhigh[n] =

N∑
i=0

x[i]h[2n− i]; (1)

where N is the size of the signal x. This decomposition has
halved the time resolution since only half of each filter output
characterizes the signal. However, each output has half the
frequency band of the input so the frequency resolution has
been doubled.

Figure 1. WPT coefficients nomenclature for a decomposition level of 3.

The downsampled signals from the low-pass filter and high-
pass filter are referred to as first-level approximation (A) and
detail (D) coefficients, respectively. To get the second-level,
the application of the filters to coefficients A and D gives as
result the approximation of approximation (AA), detail of ap-
proximation (DA), approximation of detail (AD), and detail of
detail (DD) coefficients, the same procedure is repeated for the
rest of levels.

The number of packets generated corresponds to 2k where
k is the decomposition level. As an example, for a decompo-
sition level 3, 8 packets are obtained and for a level 10, 1024
packets will be generated. At every level of decomposition, the
frequency resolution is doubled when filtered while the time
resolution is halved by downsampling operation. This decom-
position is repeated to further increase the frequency resolution
and to reduce the amount of approximation coefficients. This
is represented as a binary tree with nodes in a sub-space with
different time-frequency localization, and it is shown in Fig. 1.

The tree presented is known as a filter bank.17 At each level,
the signal is decomposed into low and high frequencies. For
example, using a sample frequency of 5000 Hz, the bandwidth
that can be reconstructed is 2500 Hz. In this case, the band-
width covered by each packet for decomposition level 3 cor-
responds to 312.5 Hz, while the range of each packet for a
decomposition level 10 is 2.4 Hz, which corresponds to a quite
narrow band. The reduction of bandwidth as the WPT decom-
position level increases can be seen in Fig. 5a. Due to the de-
composition process, the input signal must be a multiple of 2k.

2.1. Relative Wavelet Energy

The energy concept used in the WPT analysis is related to
the known concept derived from the Fourier theory.19 As a
previous step to the energy calculus, the selection of a mother
wavelet ψ(t) and the decomposition level k must be done. The
energy (Ej) of each packet (j) at each decomposition level (k),
is obtained from the energy of the coefficients of each packet
that can be represented as dk

j = {dkj (1), dkj (2), . . . , dkj (n)},
where n is the number of coefficients of each packet j. Then,
the energy of each packet is calculated as shown in Eq. (2):

Ej =

n∑
i=1

∣∣dkj (i)
∣∣2 . (2)
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Figure 2. (a) Schematic of rotor system with a crack at shaft mid-span indicating disc mass imbalance and crack relative orientations. (b) Coordinate system.

Table 1. Jeffcott model parameters.

Case Shaft Diameter Shaft Length Disc Ratio Disc Mass Imbalance Mass Nat. Freq. Flex β ∆K1 ∆K1 (Range)
1

0.0157 m 0.3225 m 0.05 m 1.8 kg 2.10−4 48 Hz

0◦ 0.0 [0.00:0.001:0.011]
2 90◦ 0.05 [0.038:0.002:0.060]
3 180◦ 0.12 [0.108:0.002:0.13]
4 270◦ 0.22 [0.206:0.002:0.228]

In order to obtain the relative energy, the whole signal energy
must be calculated before decomposition by means of Eq. (3):

E =

N∑
i=1

Ej ; (3)

where N is the number of packets and is N = 2k. Finally,
relative energy is defined by Eq. (4):

ρj =
Ej
E
, j = 0, . . . , N − 1; (4)

where: ∑
j

ρj = 1. (5)

3. TEST VIBRATORY SIGNALS

With the aim of obtaining a set of signals to validate the
method proposed, a modified Jeffcott rotor has been mod-
elled.8, 22 The model has been developed with the software
MATLABTM and SimulinkTM. The model includes a crack lo-
calized in the midspan related to the supports.

In Fig. 2a the Jeffcott rotor can be seen. The crack is ori-
ented in the transversal direction. In Fig. 2b, a transversal
section of the crack and the axle is presented. In this figure
besides the coordinate system selected an unbalance M can be
positioned in the 2π rad of the disc. The fault conditions de-
fined are the following: shaft without crack 0%, slight crack
of 12.5% related to the axle diameter, medium crack 25%, and
severe crack corresponding to 50%. The stiffness variation is
represented in Eq. (6):

∆K1 =
∆Kξ + ∆Kη

Ks
; (6)

where ∆Kξ and ∆Kη are the variation of the stiffness in ξ
and η directions respectively. Ks is the full axle stiffness. So,
∆K1 = 0 corresponds to an axle without a crack, ∆K1 = 0.05
to a slight crack, ∆K1 = 0.12 to a medium crack, and
∆K1 = 0.22 to a severe crack. In order to obtain a com-
plete set of signals with the four subset conditions, two param-
eters will be modified in the model: the crack depth (∆K1)
and the unbalance orientation related to the crack (β angulus
in Fig. 2b). In Table 1, the summary of all the simulations car-
ried out is presented. The range of the crack depth has been
modified in increments of 0.002 and several simulations with
four different unbalance orientations have been done.

The four subsets generated are combined with the four un-
balance orientations, which are β = 0; β = π/2; β = π;
β = 3π/2. A total of 195 signals have been obtained from the
different models.

In Fig. 3 the response in y direction of the four conditions
studied in the start-up state (transitory state) are presented ver-
sus the speed ratio with respect to the final velocity to reach. In
all cases, the final velocity is 2.2 times the critical speed of the
system, and the sample frequency used is 5000 Hz (bandwidth
2500 Hz).

4. RELATIVE WAVELET ENERGY ANALYSIS

After discussing the theoretical bases and obtaining a set of
signatures needed for the test and validation, the process pre-
sented in this paper is developed. Vibratory signal corresponds
to the first 10 seconds of the actuator start up (transitory state).
The signal is decomposed by means of WPT using decompo-
sition levels from 3 to 10. At this stage, packets capacity to
contain information to detect and classify defects at any level
k of the WPT is not dismissed. For each packet generated, rela-
tive wavelet energy is calculated. At a descendent sort, feature
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Figure 3. Vibratory signatures from the Jeffcott rotor model for different β values and for each shaft condition. Case (a) corresponding to an unbalance
orientation respect to the crack of 0 rad, (b) corresponding to an unbalace of π/2 rad, (c) and (d) for an unbalance of π and 3π/2 rad, respectively. Notice that the
unbalance orientation of cases (b) and (d) present higher amplitudes.

vectors are generated by the wavelet coefficients included in
the first four packets with greater increments in energy. The
greater increments in energy are calculated as the bigger dif-
ferences between the energy of the signals of all the crack con-
ditions studied regarding the case of healthy shaft. These in-
crements of energy when a crack appears are called ∆e.

Table 2 shows the procedure for a WPT decomposition level
range from 3 to 10, where characteristic patterns are obtained,
and ordered by importance. The first column represents the
levels of decomposition, the column labeled “First...” which is
divided into two columns, corresponds to the packet with the
higher relative energy with his frequency band in Hz. At WPT
level 3, the biggest changes in the relative energy occur in the
package of approximation coefficients or the also called zero
level (0). This is because the band has the highest concentra-
tion of the most important information, which is at low fre-
quencies, while high frequencies are the details or nuances of
the signal. For example, in the case of the human voice, if high
frequency components are removed, the voice sounds differ-
ent, but its message is understood. However, if low frequency
components are deleted, the message becomes unrecognizable.
In this work, the nuances are due to the presence of cracks, and

in the transformation they are transferred to the high frequency
or levels of detail. The level of detail most affected by the
presence of the crack will therefore absorb this energy, which
indicates the presence of a defect or phenomenon to mention
in general. After zero level the following packages with the
higher relative energy are 1, 3, and 6 (in the case of WPT level
3). The decomposition continues until level 10 is reached. For
the signals used and processed by this method, the levels with
higher relative energy changes are 8, 9, and 10.

As can be observed, discarding the zero level in high de-
composition levels where the bandwidth is narrower, it can be
affirmed that the bigger increments in energy when a crack ap-
pears are always in the packet that holds the natural frequency
of 48 Hz. The cell that contains the natural frequency at each
decomposition level is shaded in all cases in Table 2.

Based on the results, an ANN is used in order to make a
smart sort and validate both the performance and efficiency for
each decomposition level. In this work a Radial Basis Neu-
ral Network (RBF) has been designed23 to measure the poten-
tial of the selected patterns. The training has been conducted
with a distribution of input patterns (obtained from the Jeff-
cott rotor model) corresponding to 75% for training and 25%
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Table 2. Coefficient number and bandwidth for the four packets with the higher ∆e regarding the healthy condition for different decomposition levels.

First ∆e packet Second ∆e packet Third ∆e packet Fourth ∆e packet

WPT level 1st WideBand [Hz] 2nd WideBand [Hz] 3rd WideBand [Hz] 4th WideBand [Hz]

3 d30 0–312.5 d31 312.5–625 d33 625–937.5 d36 1250–1562

4 d40 0–156.3 d41 156.3–312.5 d43 312.5–468.8 d42 468.8–625

5 d50 0–78.1 d51 78.1–156.3 d53 156.3–234.4 d57 390.6–468.8

6 d60 0–39.1 d61 39.1–78.1 d63 78.1–117.2 d62 117.2–156.3

7 d70 0–19.5 d73 39.1–58.6 d71 19.5–39.1 d77 97.7–117.2

8 d80 0–9.8 d86 39.1–48.8 d82 29.3–39.1 d87 48.8–58.6

9 d90 0–4.9 d913 43.9–48.8 d912 39.1–43.9 d95 29.3–34.2

10 d100 0.00–2.4 d1026 46.4–48.8 d1027 43.9–46.4 d1010 29.3–31.7

for testing. In Fig. 4, the process of optimization of the RBF
neural network can be observed. The network is trained with
22 neurons in the hidden layer and a spread value of 1. The
percentage of efficiency is determined for the first three bands
with higher ∆e, deleting the first one or approximation band,
which contains information of energy that lately can be trans-
ferred to higher levels. Figure 4a shows the bandwidth for each
level of decomposition of the range selected. As can be seen,
when the decomposition level increases, the band is reduced
(narrowed), refining the area with the highest energy change.
In Fig. 4b the success rates of classification depending on the
decomposition level are presented. The classification for level
N = 3 achieved about a 25% success rate for the three optimal
bands. There is an improvement in the levels N = 4, 5, 6. For
the level N = 7 the results are about 97% for the first band
and are 100% for the second and third. After that, for levels 8,
9, and 10, a success rate of 100% is achieved also for the first
and third band, and 97% for the second one.

The bandwidth is more different with respect to the healthy
rotor, in terms of energy, and is 46.4–48.8 Hz. This range cov-
ers very precisely the natural frequency of the system, which
is 48 Hz. It can be concluded that the presence of a crack sig-
nificantly affects the energy nearby the natural frequencies.

As the decomposition level decreases, less information is
available to detect failure patterns, but also the computational
cost is reduced. For this reason, the optimal decomposition
level to achieve is the lowest possible that gives a success rate
in the classification higher than a limit imposed and that al-
lows locating the failure in a narrow enough bandwidth. For
example, in this case, if the limit of classification is set to 98%,
and a bandwidth of less than 10 Hz is imposed, the optimal
decomposition level is 8.

5. CONCLUSIONS AND FUTURE WORK

In this paper, the extraction and automatic selection of pat-
terns through the application of the WPT and analysis of the
relative energy of wavelet packets for either incipient fault
level or higher has been presented. The method lets select-
ing the approximation and detail level that can discretize the
problem by creating defects codes that are easily adaptable to
automatic diagnosis and classification.

This demonstrates that the WPT technique is an excellent
tool for the extraction of characteristic patterns of vibration
signals, even in the incipient fault diagnosis. Concretely, the
energy of WPT has proven its reliability, because the frequency

band that holds bigger differences with the healthy rotor corre-
sponds to the natural frequency, as could be predicted.

Intelligent classification systems are used to optimize the
process of analysis and selection of patterns, making compar-
isons with high sensitivity levels. The best patterns extracted
from vibration signals are processed by WPT and classified ef-
ficiently using RNA levels of accuracy above 97%.

As future work, the authors think that it would be very in-
teresting to prove the reliability of this method in experimental
signals obtained from real systems in order to improve the pre-
dictive maintenance of turbomachinery. Also it would be very
useful to prove the effectiveness of this methodology in sys-
tems that do not reach high speeds.
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