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This paper examines the dynamical behaviour of a nonlinear oscillator which models a two-degree-of-freedom
quarter-car system forced by the road profile. The influence of two time delays in the system, which is generally
due to the inherent dynamics of the actuator, is studied. The asymptotic and technical stability domain is obtained
by using Bogusz’s stability criterion for a two-degree-of-freedom system. The results obtained from Lyapunov’s
and Bogusz’s stability criterions are compared. The numerical results obtained are found to be in good agreement
with the analytical predictions.

1. INTRODUCTION

Li et al. investigated a possible chaotic motion in a non-
linear vehicle suspension system, which is subject to a multi-
frequency excitation from a road surface.5 Litak et al. investi-
gated global homoclinic bifurcation and the transition to chaos
in the case of a quarter-car model excited kinematically by a
road surface profile.6 Siewe Siewe investigated resonance, sta-
bility, and the chaotic motion of a quarter-car model excited by
a road surface profile.11 All controllers exhibit a certain time-
delay during operation. Many researchers have studied the be-
haviour of delayed differential equations. Zhang et al. studied
the stability of the delayed differential equations.13 Wirkus
and Rand investigated the dynamics of two van der Pol oscilla-
tors with delay velocity coupling with special attention to the
bifurcation accompanying the change in number and the sta-
bility of the solutions.9 Gohary studied the vibration suppres-
sion of a dynamical system to multi-parametric excitations via
a time-delay absorber.3 Naik & Singru studied the stability of
a single-degree-of-freedom system.8

The dynamics of a quarter-car model with nonlinear sus-
pension characteristics was studied by Li et al. and Shen et
al.4, 10 Recent efforts by Borowiec et al. have been focused on
the excitation of the automobile by a road surface profile with
harmful noise components.2 Hysteretic nonlinear suspension
was studied by Yang et al.12

This paper deals with the dynamics of a quarter-car model
with an active vehicle suspension system. The influence of
delay in the system, which is generally due to the inherent dy-
namics of the actuator, is studied. The time delay systems are
usually of infinite dimension; an attempt is made to reduce
them to a finite dimension since the operating time delays in
the system under consideration are small (Processing Time &
Actuator Delays). The technical stability domain is obtained
by using Boguszs stability criterion on the finite time domain.
The asymptotic stability is derived for unequal time delays.

Figure 1. The quarter-car model active control.

The stability of the two models are investigated, and the results
are compared. The results are validated by numerical simula-
tions.

2. TWO-DEGREE-OF-FREEDOM QUARTER-
CAR SYSTEM

Figure 1 shows the closed-loop active control for the vehi-
cle system. This system represents an active vehicle suspen-
sion system with non-linearity in the dampers; the parameters
considered are similar to that of the single-degree-of-freedom
system considered in the previous section.

The equation of motion is assumed to have the following
form:

mu Z̈u − k(Zs − Zu)− kt(Z0 − Zu) + U(t) = 0;

ms Z̈s + k(Zs − Zu)− U(t) = 0; (1)
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where U(t) is the active control force

U(t) = −C2(Żs − Żu)3 +KAuZu(t− τ1)+

KAsZs(t− τ2) + ...

+CAuŻu(t− τ1) + CAsŻs(t− τ2)− C1(Żs − Żu); (2)

ω2
u =

(
k+kt
mu

)
; ω2

s =
(
k
ms

)
; K1 =

(
k
mu

)
; C1 =

(
c1
mu

)
;

C2 =
(
c2
mu

)
; K1u =

(
KA1

mu

)
; K2u =

(
KA2

mu

)
; C1u =(

CA1

mu

)
; C2u =

(
CA2

mu

)
; C3 =

(
c1
ms

)
; C4 =

(
c2
ms

)
; K1s =(

KA1

ms

)
;K2s =

(
KA2

ms

)
; and C1s =

(
CA1

ms

)
; C2s =

(
CA2

ms

)
;

where ωu = unsprung mass natural frequency, ωs = sprung
mass natural frequency, KAu are semi-active stiffness for un-
sprung mass, KAs are semi-active stiffness for sprung mass
CAu semi-active damping for unsprung mass, CAs semi-active
damping for sprung mass, τu, τs are the time-delays associ-
ated with unsprung and sprung mass, and the parameters are
as follows:1 ms = 200 kg; mu = 40 kg; k = 9000 Nm-1 ;
kt = 160,000 Nm-1; k2 = -300,000 Nm-3; c1 = 10,000 Nsm-1;
c2 = -25,000 Ns3m-3;CAs =1000 Nsm-1;CAu =-10,000 Nsm-1;
KAs = 250000 Nm-1; KAu = 50000 Nm-1.

3. LYAPUNOV STABILITY FOR TWO-
DEGREE-OF-FREEDOM-SYSTEM

The asymptotic stability as t → ∞ is studied for the two-
degree-of-freedom system, and the results are compared with
the technical stability criterion. The time-delay systems are
usually infinite dimensional. An attempt is made to reduce
them to a finite dimension since the operating time delays in
the system under consideration are small (Processing Time &
Actuator Delays).

Expanding the function U(t) into Taylor’s series including
only the first term of the function U(t):

U(t) = −C2(Żs − Żu)3 +KAuZu(t) + τuKAuŻu(t)

+KAsZs(t) + τsKAsŻs(t) + ...

+CAuŻu(t) + τuCAuZ̈u(t) + CAsŻs(t)

+τsCAsZ̈s(t)− C1(Żs − Żu). (3)

Since the non-homogeneous equation’s stability is preserved
when the stability of the homogeneous equations hold, the sta-
bility of the homogeneous equations are investigated, and we
neglect the third power. Substituting Eq. (3) into Eq. (1) and
considering only linear terms we obtain:

(1 + τuC1u )Z̈u + (K1u + ω2
u)Zu(t)

+(C1 + C1u + τuK1u)Żu(t) + (K2u −K1)Zs(t)+

+(τsK2u − C1 + C2u)Żs(t) + τsC2uZ̈s(t) = 0; (4)

(1− τsC2s)Z̈s + (ω2
s −K2s)Zs

+(C3 − τsK2s − C2s)Żs(t)− (C3 + τsK1s + C1s)Żu(t)+

+(K1s − ω2
s)Zu − τuC1sZ̈u(t) = 0;

(5)

Z̈u + α1 Zu(t) + α2 Żu(t) + α3 Zs(t)

+α4 Żs(t) + α4 Z̈s(t) = 0; (6)

Z̈s + β1Zs + β2Żs(t) + β3 Żu(t) + β4Zu + β5 Z̈u = 0;

(7)

where α1 =
(K1u+ω2

u)
(1+τuC1u ) , α2 = (C1+C1u+τuK1u)

(1+τuC1u )

α3 = (K2u−K1)
(1+τuC1u ) , α4 = (τsK2u−C1+C2u)

(1+τuC1u ) and α5 =
τuC2u

(1+τuC1u )

and β1 =
(ω2

s−K2s)
(1−τsC2s) , β2 = (C3−τsK2s−C2s)

(1−τsC2s)

β3 =
(K1s−ω2

s)
(1−τsC2s) , β4 = (C3+τsK1s+C1s)

(1−τsC2s) and β5 = τsC1s

(1−τsC2s) .
Substituting Eq. (6) into Eq. (7) we obtain:

Z̈u = a1 Zu + a2 Zs + a3 Żu + a4 Żs. (8)

Substituting Eq. (7) into Eq. (6) we obtain:

Z̈s = b1Zu + b2Zs + b3 Żu + β4 Żs; (9)

where a1 = −
[
α1−α5 β4

1+α5 β5

]
, a2 = −

[
α2+α5 β3

1+α5 β5

]
a3 = −

[
α3−α5 β1

1+α5 β5

]
, a4 = −

[
α4−α5 β2

1+α5 β5

]
and

b1 = −
[
β4+β5 α1

1+α5 β5

]
, b2 = −

[
β1+β5 α3

1+α5 β5

]
b3 = −

[
β5 α2−β3

1+α5 β5

]
, b4 = −

[
β2+β5 α4

1+α5 β5

]
. In the state space

form

ẋ1 = x3

ẋ2 = x4

ẋ3 = a1 x1 + a2 x2 + a3 x3 + a4 x4

ẋ4 = b1 x1 + b2 x2 + b3 x3 + b4 x4

 (10)

where x1 = Zu, x2 = Żu, x3 = Zs and x4 = Żs, and the
characteristic determinant associated with the Eq. (10) has the
form

W =

∣∣∣∣∣∣∣∣
−λ 0 1 0

0 −λ 0 1

a1 a2 a3 − λ a4

b1 b2 b3 b4 − λ

∣∣∣∣∣∣∣∣.
The determinant takes the form

W = λ4 − (a3 + b4)λ3 − a1 λ
2

+(b2 + a1 b4 − b1 a4)λ

+a2 b3 − b2 a3 + a1 b2 − b1 a2. (11)

The following characteristic equation is obtained:
λ4 +A3 λ

3 +A2λ
2 +A1 λ+A0 = 0,

where
A3 = −(a3 + b4) , A2 = −a1,

A1 = (b2 + a1 b4 − b1 a4)

andA0 = a2 b3−b2 a3+a1 b2−b1 a2. The necessary condition
for the stability of the system is

A3 > 0 , A2 > 0 , A1 > 0 andA0 > 0. (12)

The sufficient conditions of the system require the positiveness
of the determinants

D1 > 0, D2 > 0, D3 > 0 andD4 > 0; (13)
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Figure 2. The stability region AREA I for τu > τs and AREA II for τs > τu
(Lyapunovs Stability).

where D1 = A3, D2 =

∣∣∣∣ A3 1

A1 A2

∣∣∣∣ ,
D3 =

∣∣∣∣∣∣
A3 1 0

A1 A2 A3

0 A0 A1

∣∣∣∣∣∣ andD4 =

∣∣∣∣∣∣∣∣
A3 1 0 0

A1 A2 A3 1

0 A0 A1 A2

0 0 0 A0

∣∣∣∣∣∣∣∣.
Now consider two cases
(i) The time delay associated with the sprung mass dynamics
is greater than that of the unsprung mass dynamics i.e. τs > τu
and
(ii) The time delay associated with the unsprung mass dy-
namics is greater than that of the sprung mass dynamics i.e.
τu > τs,
where the delay difference is φ = τs− τu > 0 for τs > τu and
φ = τs − τu < 0 for τu > τs.

The conditions in Eqs. (12) and (13) are plotted by using
MATLAB 11 by considering the parameters given in Section 3
above. Figure 2 indicates that the stability regions are the areas
below the two curves where A is the amplitude of vibrations.
Comparing both of the curves, one can observe that in the case
of τs > τu, the area below the curve (AREA II) is greater than
the area for τu > τs (AREA I). The domain located below
the curve, where the control is efficient is greater for τs > τu.
Therefore vibration control is efficient for τs > τu. It can
be easily found from Fig. 2 that for the delay difference φ =

τs − τu < 0.24, the control is efficient for τs > τu, and for
τu > τs the control is efficient for φ = τs − τu < 0.11.

The nonlinear differential Eq. (1) is numerically simulated
to obtain the Poincaré section (plot of velocity v/s displace-
ment) by using the dde23 module of MATLAB with a numer-
ical accuracy of 10-8 . Figure 3 indicates the regular motion
of the sprung mass for τu > τs and φ = 0.02 . Figure 4 and
Figure 5 indicate the periodic motion of the sprung mass and
the unsprung mass for τs > τu and φ = 0.2. Figure 6 indi-
cates the chaotic motion of the sprung mass for τs > τu and
φ = 0.24. Figure 7 indicates the chaotic motion of the sprung
mass for τu > τs and φ = 0.15, which is much lower com-
pared to τs > τu. Figure 8 indicates the chaotic motion of the
unsprung mass for τu > τs and φ = 0.15.

Figure 3. Poincaré section of sprung mass for τu > τs, φ = 0.02 (Period
one).

Figure 4. Poincaré section of sprung mass for τs > τu and φ = 0.2 (Period
one).

Figure 5. Poincar section of unsprung mass for τs > τu and φ = 0.2 (Period
one).

Figure 6. Poincaré section of sprung mass for τs > τu and φ = 0.24.
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Figure 7. Poincar section of sprung mass for τu > τs, φ = 0.15.

Figure 8. Poincaré section of unsprung mass for τu > τs, φ = 0.15.

4. TECHNICAL STABILITY FOR TWO-
DEGREE-OF-FREEDOM-SYSTEM

The observation time is often limited and relatively short due
to the type of excitation. In such cases, we are interested in the
first few seconds of the system’s motion.1 From a practical
point of view, the possibility of defining the proximity of the
solutions would be advantageous. Let the initial conditions
field Γ for t = t0 = 0 be:

Γ ≡
{
c1 x

2
1 + c2x

2
2 + c3x

2
3 + c4x

2
4 < r2

0

}
. (14)

The field of acceptable solutions λ for t ≤ T , is assumed as:

λ ≡
{
c1 x

2
1 + c2x

2
2 + c3x

2
3 + c4x

2
4 < R2

0

}
; (15)

while values r0 < R0 so that condition Γ ∈ λ is fulfilled.
Bogusz’s function will take the form of:

V (x1, x2, x3, x4) =
1

2

(
A x2

1 +B x2
2 + C x2

3 +Dx2
4

)
;

(16)
where A > 0, B > 0, C > 0, and D > 0. If there exists a
number C0 such that

C0 = inf
xi∈Γ

[V (x1, x2, x3, x4)]

=
1

2

(
A . r2

1 +B . r2
2 + C . r2

3 +D . r2
4

)
; (17)

Figure 9. The stability region for τu > τs is shown by the solid curve, and
for τs > τu it is shown by the dotted curve.

and a number C1 such that

C1 = sup
xi∈Γ

[V (x1, x2, x3, x4)]

=
1

2

(
A .R2

1 +B . R2
2 + C .R2

3 +D .R2
4

)
; (18)

where
Γ
λ ≡

{
r2
1 < x2

1 ≤ R2
1, r

2
2 < x2

2 ≤ R2
2, r

2
3 < x2

3 ≤ R2
3,

r2
4 < x2

4 ≤ R2
4

}
.

The derivative of Bogusz’s function along the solutions of the
studied system

dV

dt
=
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2 +

∂V

∂x3
ẋ3 +

∂V

∂x4
ẋ4. (19)

Calculating the derivative of Eq. (19) by using Eq. (10) we
obtain:

dV

dt
= C . a3 . x

2
3 + D. b4 . x

2
4 + D. b1 . x1. x4

+(A+ C . a1) . x1. x3

+C. a2 . x2. x3 + (B +D . b2) . x2. x4

+(C . a4 +D . b3) . x3. x4. (20)

The condition of the system’s stability at the stationary state
fulfils the following inequality:

sup

{
dV

dt

}
xi∈Γ/λ, t1≤t≤t1+T

< (C1 − C0)/T. (21)

The technical stability is defined by the factor FT

FT =
(C1 − C0)

T
− dV

dt
. (22)

If FT is maximum (positive) then the system is stable.

Figure 9 shows two curves; τu > τs is shown by the solid
curve, and τs > τu is shown by the dotted curve. The curve
for τs > τu occupies a higher position in the plot, indicating
better stability conditions. Figure 3 indicates that FT is lower
for τu > τs. The control is efficient and is greater for τs > τu.
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5. RESULTS AND DISCUSSION

Technical stability within definite time in Bogusz’s sense
was studied for finite time. Then the asymptotic stability was
studied by using the Lyapunov method. We have considered
two cases (i) τs > τu and (ii) τu > τs, where the delay differ-
ence is φ = τs − τu < 0 for τs > τu.
It was found that the vibration control is efficient for τs > τu
by using the Lyapunov stability criterion. It can be easily found
that for the delay difference φ = τs − τu < 0.24, the control
is efficient for τs > τu, and for τu > τs the control is efficient
for φ = τs− τu < 0.11. Therefore the control domain is better
for τs > τu.

The chaotic and unstable motion of sprung and unsprung
mass was found for τu > τs and φ = τs − τu > 0.11. The
periodic motion of sprung and unsprung mass was obtained
for τs > τu. The stability region is higher for higher a value
of FT in the case of Bogusz’s stability criterion. FT is higher
in the case of τs > τu and lower for τu > τs. The control
is efficient and is greater for τs > τu. The above results are
verified by using numerical simulations.

6. CONCLUSION

We are interested in the stability of the vehicle for finite
time. Vibration control is efficient for τs > τu. Both Lya-
punov’s and Bogusz’s stability criterion are useful for defining
the stability of the given system. The present quarter-car model
is able to capture the major dynamics that occur in the vehicle
system.
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