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The dynamic behaviour of a cracked Jeffcott rotor is investigated in this paper. The crack is located at the midpoint
of the rotor. It is known that when the static deflection dominates the vibration of the rotating shaft, the crack
opens and closes according to the shaft rotation. This phenomenon is known as crack breathing. There are several
models for classifying crack breathing phenomena, such as the switching crack model, harmonic approach model,
and response-dependent breathing crack model. In order to model the breathing of the crack in the response-
dependent breathing crack model, the concept of a crack closure line position (CCLP) is proposed and used by
some researchers. The main scope of this work is to present an improved crack closure line position (ICCLP). By
using several contour plots over the crack’s surface, it is shown that the imaginary line that separates the open and
closed parts of a breathing crack should not be considered perpendicular to the crack tip. It is also shown that the
improved model positively agrees with those proposed in the literature. The effects of ICCLP on the coefficients
of the local flexibility matrix are investigated.

NOMENCLATURE

Symb. Unit Description
I m4 area moment of inertia for the

cross section
kij N/m, N/rad cross-coupled stiffness
dp m disk diameter
e m eccentricity
[k]g global stiffness matrix
ϕ rad initial phase angle
[c]l local flexibility matrix of the

cracked shaft
m kg mass of the disk
ν Poisson ratio
R, d m radius and diameter of the shaft,

respectively
α rad rotor center displacement in

rotational direction
l m shaft length
kx N/m stiffness in x direction
ky N/m stiffness in y direction
ku N/m stiffness in longitudinal direction
kT N/rad stiffness in torsional direction
W Nm strain energy due to crack
U Nm strain energy of uncracked shaft
t s time in seconds
[Cs] total flexibility matrix of the

uncracked shaft
[K]l local stiffness matrix
η0 m location of elemental strip along η′

direction
[H] transformation matrix
h m height of the element strip
Jp m2 polar moment of inertia for the

cross section
q1 N longitudinal force (internal

reaction)
c Ns/m transversal damping coefficient

E N/m2 modulus of elasticity
q4, q5 Nm bending moments (internal

reactions)
cT Ns/rad torsional damping coefficient
γ m crack depth
Ω rpm revolutionary speed
cu Ns/m longitudinal damping coefficient
M(t) Nm external torsional excitation
G N/m2 modulus of rigidity
ωT rpm torsional excitation frequency
A m2 cross sectional area of the crack
x, y m transversal displacements of

center of disk
u m longitudinal displacement of

center of disk
α rad torsional displacement of center

of disk
Fz N longitudinal force (external load)
T Nm torsional moment
J kgm2 mass moment of inertia of the

disk
Ki

I N/m
√

m opening mode of the crack due
to internal load “i”

Kj
III N/m

√
m tearing mode of the crack due to

internal load “j”
KI N/m

√
m total opening mode of the crack

KIII N/m
√

m total tearing mode of the crack
F1, F2, FIII influential functions

1. INTRODUCTION

Many investigations have been conducted concerning the
overall behaviour of cracked shafts in past decades. In gen-
eral, a crack in rotating shafts may be classified in three dif-
ferent ways: opened crack, closed crack, and breathing crack.
In other words, if a cracked shaft rotates under external load-
ing, then the crack opens and closes regularly per revolution,
which could be said to breathe. This phenomenon is produced
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by the stress distribution around the crack.1 This is a very
common situation in large turbine-generator rotors.2 Through-
out the two past decades, the main focus of some studies was
the modelling and explanation of the breathing mechanism in
cracked shafts.3–14 Georgantzinos et al. investigated the time
history of local flexibilities associated with a breathing crack
in a rotating shaft.1 The deflections of a beam with a circular
cross-section presenting a crack of different depths was anal-
ysed using quasi-static approximation with the aid of a refined
nonlinear contact-finite element. The partial contact of crack
surfaces was predicted by using this method. In his excel-
lent review paper, Papadopoulos explained many crack mod-
els, such as the open crack model, switching crack model, sec-
ond moment inertia model, breathing models, and harmonic
model approaches.2 The use of strain energy release rate the-
ory (SERR) and its combination with linear fracture mechanics
and rotor dynamics for calculating the compliance matrix have
been considered in detail.

Dimarogonas and Papadopoulos conducted an analysis of a
cracked rotor neglecting the non-linear behaviour of the crack
by assuming a constant stiffness asymmetry and using the the-
ory of shafts with dissimilar moments of inertia.6 Later, they
derived a complete flexibility matrix of the cross-section con-
taining the crack.7 Grabowski suggested switching the stiff-
ness values, from those of an uncracked rotor (closed crack
state) with those of a cracked rotor (fully open state) at a par-
ticular angular position of the rotor (when the crack edge be-
comes vertical).8 Mayes and Davies suggested sinusoidal stiff-
ness variations to model the breathing in a more sensible way,
as a rotor crack is expected to open and close gradually due
to gravity.9 Papadopoulos and Dimarogonas represented stiff-
ness variation by means of a truncated, four term series us-
ing known stiffness matrices corresponding to half-open, half-
closed, fully open, and fully closed cracks.10 Changhe et al.
represented the crack as a hinge with variable stiffness in two
rotor-fixed lateral directions.11 The crack is introduced at the
node of a finite element model. Ballo investigated the flexural
vibrations of a continuous slender shaft with a crack.12 The
mathematical model of the problem has been formulated by
means of the finite element method. However, the crack was
modelled by a switching crack. It has been shown that the
increase in crack depth causes a decrease in the bending stiff-
ness, whereas the nonlinearity is related to the opening and
closing of the crack faces in the process of flexural vibrations.
Subsequently, the theoretical results have been illustrated by
the calculation of the amplitudes and phases of the second and
third harmonics of the forced shaft flexural vibrations. Darpe et
al. proposed a response-dependent non-linear breathing crack
model, which is called crack closure line position (CCLP).13

Considering all six degrees of freedom per node, the stiffness
matrix in a Timoshenko beam element is modified to account
for the effect of the crack. Using this model, they were able to
study the coupling between longitudinal, lateral, and torsional
vibrations. They observed that motion coupling, together with
the rotational effect of the rotor and non-linearities due to their
proposed breathing model, introduced sum and difference fre-
quency in the response of the cracked rotor. Bachschmid et al.
used a 3D FE model to investigate the breathing mechanism
in a rotating shaft.14 Slant and helicoidally cracks are the two
types of crack shape models that they considered. A simplified
model to determine the open area of a crack is also presented

in their work. This simple model has been used for analysing
the non-linear dynamic behaviour of cracked rotating shafts,
which occurs when breathing is governed by the vibration it-
self. It has been concluded that torsional deflections could be
generated by bending moments due to the coupling effects.

Additionally, the response of a cracked rotor is investigated
in some of the literature. Sekhar investigated the dynamic be-
haviour of a cracked rotor—in particular, that of a rotor with
two open transverse cracks.15 The influence of one crack over
the other was studied using finite element analysis while con-
sidering flexural vibrations. Darpe et al. investigated a simple
Jeffcott rotor with two transverse surface cracks.16 However,
they assumed that one crack remains open while the other is
breathing. Also, the effect of the interaction of two cracks
on the breathing behaviour and on the unbalanced response
of the rotor was studied. They observed significant changes in
the dynamic response of the rotor when the angular orientation
of one crack relative to the other is varied. Darpe et al. pre-
sented a novel way to detect fatigue transverse cracks in rotat-
ing shafts.17 In this technique, a transient torsional excitation
was applied for a very short duration at a specific angular ori-
entation of the rotor, and then the transient features of the reso-
nant bending vibration were revealed using wavelet transform.
Subsequently the sensitivity of the proposed methodology to
the depth of crack is investigated. It is mentioned that this
detection method is very specific to the behaviour of the trans-
verse surface crack in a horizontal rotor. Fortunately, a positive
feature of their proposed method was that the response features
were different from the responses of other common rotor faults
under similar excitation. Lin and Chu investigated the dynamic
behaviour of a slant (45o crack angle) cracked rotor.18 Using
the Jeffcott rotor model, the equation of motion was extracted
in four directions. The global stiffness of the system was ob-
tained from concepts of fracture mechanics and strain energy
release rate. They mentioned that a much longer time is re-
quired to compute the steady responses of a breathing cracked
shaft than that of an open cracked shaft and that this is why al-
most all investigators have adopted the open crack model. The
existence of the frequency of torsional excitation is included in
the longitudinal response, and the combined frequencies of the
rotating frequency and the frequency of torsional excitation in
the transverse response are good indicators for slant crack de-
tection.

By using several contour plots over the crack surface, it is
shown in this paper that the imaginary line (crack closure line)
that separates the open and closed parts of a breathing crack
should not be considered perpendicular to the crack tip. Ac-
cording to these plots, a new breathing model called the im-
proved crack closure line position (ICCLP) is introduced. Us-
ing the proposed model, the dynamic behaviour of a cracked
Jeffcott rotor is considered. The effect of this model on the
flexibility of the cracked shaft is investigated in detail. Subse-
quently, steady state responses and their spectrums are investi-
gated.

2. EQUATIONS OF MOTION

Consider a Jeffcott rotor rotating at speed Ω (Fig. 1). It has
a massless shaft and a disk with mass m. A view of the cross-
section of the disk is shown in Fig. 2. In this figure, XOY is
the stationary coordinate, ξoη is the rotational coordinate with
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Figure 1. Jeffcott rotor model.

Figure 2. Cross-sectional view of crack at midpoint of the shaft.

centre o, and ξ′o′η′ is the rotational coordinate that is attached
at the centre of the disk. Coordinate o′ is the centre of the disk,
c is the centre of mass of the disk, α is the angle that is caused
by torsional vibration, and ϕ is the phase angle of the centre of
mass.

The angle position of the centre of mass is

Θ = Ωt+ α+ ϕ; (1)

then
Θ̇ = Ω + α̇, Θ̈ = α̈. (2)

Using the d’Alambert principle (Fig. 3), the equation of mo-
tion in four directions (two transverse, one torsional, and one
longitudinal) can be established as

mẍ+ cẋ+ kxx+ kxyy + kxTα+ kxuu = −mg +

me (Ω+α̇)
2

cos(Ωt+α+ϕ) +meα̈ sin(Ωt+α+ϕ); (3)
mÿ + cẏ + kxyx+ kyy + kyTα+ kyuu =

me (Ω+α̇)
2

sin(Ωt+α+ϕ)−meα̈ cos(Ωt+α+ϕ); (4)
Jα̈+ cT (Ω+α̇) + kxTx+ kyT y + kTα+ kTuu =

M(t) +mge sin(Ωt+α+ϕ) +meẍ sin(Ωt+α+ϕ)−
meÿ cos(Ωt+α+ϕ); (5)

mü+ cuu̇+ kxux+ kyuy + kTuα+ kuu = 0; (6)

where J is the mass moment of inertia of the disk, about o′.
The damping coefficients in the transverse, torsional, and lon-
gitudinal directions are shown by c, cT , and cu, respectively. It

Figure 3. Forces on the centre of mass of the disk.

Figure 4. Internal reactions on the crack.

should be mentioned that these equations are the same as those
presented in the work of Lin and Chu.18 M(t) and e denote the
torsional excitation and eccentricity of the disk, respectively.
Using Eqs. (3)–(6), the stiffness matrix of the system can be
determined as

[k]g =


kx kxy kxT kxu
kxy ky kyT kyu
kxT kyT kT kTu
kxu kyu kTu ku

 . (7)

3. FLEXIBILITY OF A CRACKED ROTOR

Suppose that the internal reactions on the crack are two
bending moments q4 and q5, one torsional moment T , and one
longitudinal force q1 (Fig. 4). Using Castiglione’s theorem, the
local flexibility of the crack can be written as

[c]l = [G1][∆cij ][G2] + [Cs]; (8)

where

∆cij =
∂2W

∂qi∂qj
, [G1] =

[
l

4
,
l

4
, 1, 1

]
, [G2] =

[
l

4
,
l

4
, 1, 1

]
,

[Cs] = diag

(
l3

48EI
,

l3

48EI
,

l

2GJp
,

l

2AE

)
. (9)

In Eq. (9), W is the additional strain energy due to the crack.
It is obvious that local flexibility of the crack is determined if
additional stain energy due to the crack is known, and it can be
expressed as

W =

∫
A

J(A) dA; (10)
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Figure 5. Crack surface.

Figure 6. Mesh over the crack surface for evaluation of first mode over the
cracked surface.

where J(A) is the strain energy density function. In general,
J(A) is a function ofKI, KII, andKIII, which are the stress in-
tensity factors for the opening mode, sliding mode, and tearing
mode, respectively. But here, KII (sliding mode) is neglected.
Thus,

J =
1

E′
[
K2

I + (1 + ν)K2
III

]
; (11)

where E′ = E
1−ν2 and ν is the Poisson’s ratio. Therefore,

according to Eqs. (10) and (11), the additional strain energy
due to the crack can be written as

W =

∫
A

1

E′
[
K2

I + (1 + ν)K2
III

]
dA; (12)

where A is total surface of the crack for the third crack mode
(KIII), and the opening part of the surface of crack for the first
crack mode (KI).18

The crack surface is shown in Fig. 5. Therefore, the stress
intensity factors (SIF) for a transverse crack are
for q1,

K1
I =

q1
πR2

√
πγF1; (13)

K1
III = 0; (14)

for q4,

K4
I =

4q4η0
πR4

√
πγF1; (15)

K4
III = 0; (16)

for q5,

K5
I =

4q5
√
R2 − η20
πR4

√
πγF2; (17)

K4
III = 0; (18)

and for T ,

KT
I = 0; (19)

KT
III =

2T
√
R2 − η20
πR4

√
πγFIII. (20)

It should be noted that the total effect of q4 is zero.18 Ac-
cording to Tada et al.,19

F1 =

√
tan(λ)

λ

[
0.752 + 1.01

γ√
R2 − η20

+

0.37 (1− sin(λ))
3

]
1

cos(λ)
; (21a)

F2 =

√
tan(λ)

λ

[
0.923 + 0.199 (1− sin(λ))

4
] 1

cos(λ)
;

(21b)

FIII =

√
tan(λ)

λ
; (21c)

where
λ =

πγ

4
√
R2 − η20

. (21d)

Therefore, the total strain density functions are

KI =

(
q1
πR2

F1 +
4q4η0
πR4

F1 +
4q5
√
R2 − η20
πR4

F2

)
√
πγ;

(22)

KIII =

(
2T
√
R2 − x20
πR4

)
√
πγFIII. (23)

After calculating the local flexibility of the cracked rotor, the
local stiffness of the system can easily be calculated as

[K]l = [c]−1l ; (24)

and the global stiffness matrix in the inertia coordinate system
is

[K]g = [H]−1[K]l[H]; (25)

where

[H] =


cos(Φ) sin(Φ) 0 0
− sin(Φ) cos(Φ) 0 0

0 0 1 0
0 0 0 1

 , Φ = Ωt+ α. (26)

4. CONSTANT KI CONTOURS OVER THE
CRACK SURFACE

In order to use the CCLP model, the value of stress inten-
sity factor in the first mode (KI) is evaluated over the crack
tip.13 The change in the sign ofKI shows the position of CCLP,
which is assumed to be perpendicular to the crack tip. There-
fore, CCLP separates the crack area into two parts: open and
closed. In this paper, it is shown that the line that separates the
crack surfaces is not perpendicular to the crack tip. A meshed
example that has been used here for drawing constant KI con-
tours is shown in Fig. 6. According to Eq. (22), it is obvious
that the value of KI is dependent on the values of q1, q4, and
q5. Therefore, in order to draw the contours, one is required
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Figure 7. Contours over the crack surface for (a) 0o, (b) 50o, (c) 100o, (d) 150o, (e) 180o, (f) 250o, (g) 300o, and (h) 360o.
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Figure 8. Open and closed areas in different angular positions.14

Figure 9. Evolution of contact area between the crack surfaces for a transverse
crack under bending.1

to solve the equation of motion. On the other hand, the deter-
mination of the solution needs the computation of q1, q4, and
q5. In fact, drawing the constantKI is an interdependent proce-
dure. This procedure is explained here. Using the Runge-Kutta
numerical method, the equations of motion are solved for ∆t
time intervals, which is related to the time that is needed for
one degree rotation of the rotor. Therefore, the values of forces
on the crack surface are known. So KI is a function of η and γ
which are the distances from the vertical axis (∆1) and crack
depth line (∆2), respectively (see Fig. 6).

Suppose that in the initial situation the crack is closed due
to the weight of the rotor; so in t = 0, the stiffness of the sys-
tem is known, and thus the solving of the equations of motion
is possible. It should be noted that, in general, the stiffness of
a cracked rotor system with a closed crack is not equal to the
stiffness of an uncracked rotor. Figure 7 shows the constantKI
contours over the crack surface for 0o, 50o, 100o, 150o, 180o,
250o, 300o, and 360o. Figure 2(b) shows the length of the crack
depth line. According to this figure, two crack surfaces coin-
cide with each other at the zero rotation angle. In other words,
the crack is closed, and therefore all contours have negative
values, which show that the two crack surfaces are in compres-
sion. Due to an increase in the value of the rotation angle, the
crack opens gradually. Therefore, the values on some contours
are positive while the others are negative. As one can see, the
contour with zero value separates the open and closed parts on
the crack surface. At the 90o rotation angle (which is not pre-
sented here in Fig. 7), the open and closed parts of the crack
separate from each other with a straight line that is perpendic-

ular to the crack tip. In a similar way, due to the increase in the
value of the rotation angle, the contour with zero value travels
to the left side of the crack surface. So at the 180o rotation
angle, all the contours have positive values (which means that
the crack is fully open). By increasing the value of the rotation
angle further than 180o, contours with zero value travel from
the right side to the left side of the crack surface. Here, the
contours that are situated on the right side of the zero contour
have a negative sign, and the contours that are situated in the
left side of the zero contour have a positive sign. This means
that the right side of the crack is closing while the left side of
it is opening. At the 360o rotation angle, the whole crack sur-
face is closed, similar to the zero angle. Figure 7 shows that
the separation boundary is not always a straight line, while this
boundary in the CCLP model has been considered as a straight
line.13 Also, it is obvious that this boundary is not perpendic-
ular to the crack tip as has been assumed for the CCLP model.
Bachschmid et al. investigated the breathing phenomenon in
detail using 3D nonlinear FEM.14 The open and closed parts of
the crack surface during the rotation of the rotor are presented
in their work (Fig. 8). According to this figure, the boundary
between the open and closed parts of the crack surface is not a
straight line. Furthermore, this boundary is not perpendicular
to the crack tip. One can therefore claim that these two results
are in good agreement to those presented in this section. Fig-
ure 9 shows the results that are presented by Georgantzinos and
Anifantis, which is evaluated due to bending moments only.1

It is obvious that the results presented in Fig. 9 are not the
same as those are obtained in this paper. However, the overall
schematic of the results are in good agreement with each other.

5. ICCLP MODEL

As mentioned in the previous section, the contour with zero
value is the separation curve that separates the open and closed
surfaces of the breathing crack from each other. Therefore, the
introduced model can be called crack closure curve position
(CCCP) (Fig. 10).

According to Fig. 10, the integration in Eq. (12) should be
calculated over the ACBD area. Since the determination of the
ACBD curve—from every degree of rotation—is almost im-
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Figure 10. Difference in the location of CCCP, CCLP, and ICCLP.

possible, the curve ACB is approximated by the AB line. This
means that the integration in Eq. (12) should be calculated over
the ABD area. Due to this approximation, a new breathing
model is introduced and is called the ICCLP. Figure 10 shows
the position of CCCP and ICCLP. Figure 11 shows the vari-
ations of the elements of the [∆cij ] matrix for a crack depth
a = D/3 and D = 9.5 mm.

In Fig. 11, the dashed lines express the ICCLP model, and
the continuous lines express the CCLP model. It should be
noted that the horizontal axis shows the variations of the posi-
tion of point A, or the CCLP (Fig. 10). According to Fig. 11,
the values of compliance, which are calculated with the IC-
CLP model, are different from those calculated with the CCLP
model.

As it is shown in Fig. 12, for CCLPs less than 90o, the
amount of the open area of the crack that is bounded by the IC-
CLP model is less than that bound by the CCLP model. There-
fore, compliances that are calculated with the CCLP model are
greater than those calculated with the ICCLP model. Also,
according to Fig. 12, it is obvious that for CCLPs between
90o and 180o, the values of compliance for the ICCLP model
are greater than the values of compliance calculated with the
CCLP model. For CCLPs between 180o and 270o, the values
of compliance that are calculated with the ICCLP model are
greater than those calculated with the CCLP model. However,
for CCLPs between 270o and 360o, it is the reverse. It should
be noted that Fig. 11 shows that the use of the ICCLP or CCLP
models does not change the value of some of the compliance
elements, such as c(1, 3), c(2, 3), and c(3, 4). According to
Eq. (22), it is obvious that T does not contribute in KI, so the
value of c(3, 3) is not sensitive to the position of point A; there-
fore, the value of c(3, 3) for CCLP and ICCLP models is the
same. Similarly, the values of c(1, 3), c(2, 3), and c(3, 4) are
equal to zero for both CCLP and ICCLP models. However, it
should be mentioned that KIII is not zero for c(3, 3), while for
c(1, 3), c(2, 3), and c(3, 4) it is zero.

6. NUMERICAL SIMULATION

The parameters that are needed for solving the equations of
motion are summarised in Table 1.

A program has been written in the MATLAB R© environment
to estimate the response of a transverse cracked rotor using the
ICCLP model for crack breathing. The solution process for us-
ing the model mentioned is presented in Fig. 13. According to
this flowchart, the initial displacement is assumed to be equal
to the static deflection of the uncracked rotor and the initial

Table 1. Characteristics of the studied rotor system.

Speed of revolution Ω = 500 rpm
Torsional excitation freq. ωT = 0.6Ω = 300 rpm
External torsional excitation MT = sin(ωT t)
Transverse damp coefficient c = 41.65 kg/s
Torsional damp coefficient cT = 0.0091 kgm2/s
Longitudinal damp coefficient cu = 146.2034 kg/s
Modulus of elasticity E = 210 GPa
Disk mass m = 0.595 kg
Shaft length l = 0.26 m
Shaft diameter d = 9.5 mm
Disk diameter dp = 76 mm
Initial phase angle ϕ = π/6 rad
Poisson’s ratio ν = 0.3
Eccentricity e = 0.1643 mm

stiffness values correspond to that of the cracked rotor. Rota-
tional speed (Ω) and tmax, corresponding to total time of solu-
tion, are known. Knowing the shaft rotational speed, the time
for one degree rotation can be calculated. Using the procedure
mentioned (Fig. 13), the program evaluates the forces that act
on the crack surfaces. Thus, by using these forces, stress in-
tensity factors (SIFs) are evaluated at points along the crack.
Changes in the sign of the SIF over the crack tip determines
the position of point A.

Elements of the stiffness matrix for the CCLP model can
be evaluated using this point. Also, the position of point B is
identified using the zero contour of KI over the crack surface,
and therefore, the stiffness of the system that is calculated for
the CCLP model is corrected for the ICCLP model. The equa-
tion of motion is solved for the ∆t time interval by using this
stiffness matrix, which is assumed to be constant for one de-
gree of rotation. For the next step, this time increment will in-
crease by ∆t, and then the forces that act on the crack will be
evaluated. The equations of motion will be calculated for the
present step using these forces. This iterative procedure will
be repeated until the total time (“t”) is greater than or equal to
tmax. There are two points that should be mentioned about the
proposed algorithm: the tmax parameter should be adopted in
such a way that guarantees the steady state response of the sys-
tem; the second point concerns the selection of the time step
in the Runge-Kutta numerical method, which should be set in
small increments. The small time steps guarantee insignificant
changes in the response of the system. In Fig. 13, the steps that
are embedded in the program for the ICCLP method are deter-
mined by dashed lines. In fact, if this part is removed from the
flowchart, the remaining algorithm can be used for the CCLP
method. As previously mentioned, in order to determine the
position of point B, the contours of KI should be calculated
for the crack surface. It is obvious that the calculation of these
contours is a time consuming procedure, particularly due to the
fact that it should be carried out for every rotation angle. This
is why the time required for the ICCLP model is greater than
that is for the CCLP model.

Figure 14 shows the non-dimensional position of points A
and B (Fig. 10) versus the rotor rotation angle under steady
state conditions. According to Fig. 14, for rotation angles of
less than 90o (and also between 180o and 270o), the position
of point B is always on the right side of point A, which indi-
cates that the separation line is not perpendicular to the crack
tip. However, for rotation angles between 90o and 180o (and
between 270o and 360o), the position of point B is always on
the left side of the position of point A. For angles equal to 0o,
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Figure 11. Variations of the elements of the [∆cij ] matrix for a crack depth a = D/3 and D = 9.5 mm; continuous line: CCLP model; dashed line: ICCLP.
(a) c(1, 1), (b) c(2, 2), (c) c(3, 3), (d) c(4, 4), (e) c(1, 2), (f) c(1, 3), (g) c(1, 4), (h) c(2, 3), (i) c(2, 4), and (j) c(3, 4).
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Figure 11. (cont.) Variations of the elements of the [∆cij ] matrix for a crack depth a = D/3 and D = 9.5 mm; continuous line: CCLP model; dashed line:
ICCLP. (a) c(1, 1), (b) c(2, 2), (c) c(3, 3), (d) c(4, 4), (e) c(1, 2), (f) c(1, 3), (g) c(1, 4), (h) c(2, 3), (i) c(2, 4), and (j) c(3, 4).

Figure 12. Comparison between ICCLP and CCLP from Darpe et al.13

90o, 180o, 270o, and 360o, points A and B coincide with each
other. This is why the values of the crack compliance matrix
for these angles are the same for the models of CCLP and IC-
CLP. However, for angles of 90o and 180o, the open and closed
parts of the crack area are equal to each other.

Figure 15 shows the time domain steady state responses for
the cracked shaft with a transverse crack for four directions
(i.e. two transverse, one torsional, and one longitudinal). In
Fig. 15, the horizontal axis is the time (in seconds) and the
vertical axis is the magnitude of the responses (in metres for

transverse and longitudinal responses and in radians for the tor-
sional response). These responses are evaluated for a cracked
Jeffcott rotor (α = a/D). Furthermore, a continuous line iden-
tifies the CCLP model and a dashed line identifies the ICCLP
model.

According to Fig. 15, in general, the time responses for the
two models are not the same. In other words, except for the
torsional response, the other responses in transverse and longi-
tudinal directions are different. The response in the torsional
direction is the same for two models, and this can be explained
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Figure 15. Time domain steady state responses for the cracked shaft with a transverse crack. Continuous line: CCLP model; dashed line: ICCLP model.
(a) Vertical displacement, (b) Horizontal displacement, (c) Torsional displacement, and (d) Longitudinal displacement.

by using Fig. 11. According to this figure, the elements that
are related to torsional direction—i.e. c(1, 3), c(2, 3), c(3, 3),
and c(3, 4)—are zero and are thus the same for the two mod-
els. Therefore, the two models show the same behaviour, as
can be seen in Fig. 15(c). Figure 16 displays a comparison be-
tween the amplitude-frequency spectrums of the steady state
responses of the shaft with respect to the two crack breath-
ing models (i.e. CCLP and ICCLP). In this figure, the hori-
zontal axis is the frequency (revolutions per minute), and the
vertical axis is the log scale of amplitude (metres or radians).
According to this figure, the frequency components of the re-
sponses are the same for the CCLP and ICCLP models. Fur-
thermore, there is no difference between the torsional spec-
trums for CCLP and ICCLP models. In fact, they are coinci-
dent with each other. However there is a slight difference in
the amplitude of the spectrums of the responses (except for the
torsional response). It can be seen that by increasing the fre-
quency, the difference between the amplitudes of the responses
calculated by the two models also increases. Figure 17 identi-
fies the reason for this. According to this figure, the difference
between the amplitudes of the frequency components is ob-
servable, especially at high frequencies. In summary, the use
of the two models for crack breathing discussed has no effect
on the frequency components of the responses, but changes in
the amplitude of the spectrums is apparent in some high fre-
quencies.

7. CONCLUSIONS

In this paper, the dynamic behaviour of a cracked Jeffcott
rotor has been investigated. The main scope of this work is

to modify the existing breathing model. Using several con-
tour plots over the crack surface, it has been shown that CCLP,
which separates the open and closed parts of a breathing crack,
cannot be considered perpendicular to the crack tip. A new
breathing model—ICCLP—was introduced and showed that
the results obtained are in good agreement with those proposed
in the literature. The effects of ICCLP on the coefficients of the
local flexibility matrix have also been investigated.

It is concluded that the value of the element of the crack
compliance matrix is not equal for CCLP and ICCLP; it de-
pends on the value of the crack rotation angle when the rotor
in under steady state conditions.

The time response and frequency response of the system
have been compared. It is shown that there are differences
between the responses obtained from the two models. It was
observed that when the value of the frequency increases, the
difference between the amplitudes of the responses computed
from the two models also increases.
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