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Editor’s Space

The Fourier Transform in Sound and Vibration Analysis

During my years as a researcher
and lecturer, I have frequently en-

countered the Fourier Transform, particularly in terms of the
Discrete Fourier Transform (DFT), which is defined for sam-
pled signals and is generally computed using the computation-
ally efficient FFT (Fast Fourier Transform). The Fourier Trans-
form is a fundamental tool in numerous signal processing ap-
plications, and it is extensively used in sound and vibration
analysis where it concerns rotating machinery analysis, con-
dition monitoring, experimental modal analysis, noise source
identification, transfer path analysis, etc.

My experiences in the sound and vibration areas con-
cerning the application of the DFT emphasizes the impor-
tance of producing relevant and accurate spectrum estimates
- power spectrum (Unit of signal2), power spectral den-
sity (Unit of signal2/Hz) and energy spectral density (Unit
of signal2/Hz*s).

Generally, when measuring physical quantities in practice,
equipment like the sensors, amplifiers, A/D converters, etc. all
introduce noise to the acquired signal. In other words, the ac-
quired signals usually display random properties. This sug-
gests that the production of spectrum estimates for sound and
vibration signals has to be based on a statistical approach to
enable spectrum estimates having sufficiently low bias errors
and variance as well as accessible statistical confidence.

From this point of view, I think it is appropriate to post a
warning that a frequency spectrum produced as the direct out-
put from the DFT of a time series of a measured sound or vi-
bration will, in general, not be useful, relevant, or accurate.

In general, the spectrum estimator, used for producing an
estimate of a spectrum, is related to the signal content of in-
terest, such as periodic, random, or transient. Periodic signals
are characterised by showing a discrete power distribution in
the frequency domain, while random signals have a continu-
ous power distribution in the frequency domain, and transient
signals have a continuous energy distribution in the frequency
domain. Estimates of their spectra are generally based on so-
called Periodograms. A Periodogram for a signal time series
is basically produced by the squared magnitude of the DFT
of the signal or a signal segment. This makes sense since we
are discussing power and energy distributions in the frequency
domain.

In the “early days,” spectrum analyses of signals were car-
ried out by using an analogue bandpass-filter with adjustable
centre frequency, for example. A spectrum was produced by
successively adjusting the centre frequency of the filter and,
for each selected centre frequency, the power of the filter’s out-
put signal was measured via a time average (integration) of the
squared output signal of the filter.

In fact, this is related to the modern DFT, which can be un-
derstood in terms of a filter bank consisting of N bandpass-
filters whose centre frequencies are defined by the discrete fre-
quencies of the DFT. The output of the filter bank will be the
N complex values of the DFT for each signal segments of N
samples of the input signal. Each of the N bandpass-filters
will consequently produce an output signal with complex val-
ued samples. Observe that when sampled sound or vibration
signals display random properties the output signals from the
DFT filter bank of such signals will also have random proper-
ties! Thus, a frequency spectrum produced as the direct output
from the DFT or FFT of a time series will, in general, not
make any sense!

But if time averaging is applied on the squared magnitude of
respective bandpass-filters output signal samples, it will yield
an average of the Periodogram at each discrete frequency of the
DFT. If the input signal to the DFT fulfil sufficient ergodicity
conditions, the variance of the average of the Periodogram will
decrease with an increasing number of averages!

The number of averages required to obtain sufficiently low
variance depends on the degree of randomness of a signal, and
this is inversely proportional to its correlation length, which,
in turn, is approximately inversely proportional to the signal’s
bandwidth.

For periodic and random input signals to the DFT, signal
segments of N samples are generally cut out or windowed
and used for the production of each output sample of the DFT
filters. On the other hand, if the input signal to the DFT is
transient, N is selected to include the complete transient, a sig-
nal segment is not cut out, and no windowing is carried out.
The DFT length N and selected window type will usually have
a direct influence on the bias errors introduced in a spectrum
estimate. On the other hand, if the complete signal fits within
the N samples, no windowing is used and the filter bandwidth
may be considered infinitely narrow and no bias errors will be
introduced.

The proper spectrum estimator for a periodic signal is the
power spectrum estimator; for a random signal, it is the
power spectral density estimator; and for a transient signal,
it is the energy spectral density estimator.

Lars Håkansson
Director, IIAV
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News

New IIAV Officers and Directors

New IIAV Vice-President for Communications

Mark Asselineau

Marc Asselineau has been a
consulting engineer with Peutz &
Associates acoustical consultants
in France for the past 27 years.
He is currently a senior engineer
in the firm, which is active in the
fields of building and room acous-
tics, as well as occupational noise
assessment and control. He is a
member of the French Acoustical
Society and the Canadian Acous-

tical Association. Previously, he served for three years as an
assistant at Laval University in Quebec, Canada. He gradu-
ated in 1987 with a PhD in applied acoustics, and he speaks
English, and some Dutch and Russian. Dr. Asselineau has un-
dertaken engineering projects in several countries and has also
been involved in international standardization in the fields of
occupational noise and building acoustics in various working
groups (ISO, EU). He has also written papers (some of them
invited) and presented them at a number of conferences around
the world. He was in charge of the building acoustics part of
the French Congress of Acoustics held in 2010 in Lyon, and
is an associate editor of the journal Advances in Acoustics and
Vibrations. He was awarded the Canac prize by the French
Society of Acoustics in 2004.

New IIAV Directors

Bela Buna

Bela Buna has served as head
and main owner of a com-
pany concerned with environmen-
tal protection since 1994. His
main focus is in acoustics, noise,
and vibration control. He is a
member of the Acoustical Com-
mittee of the Hungarian Academy
of Science, a member of the Ger-
man and French Acoustical Soci-
eties, and a fellow of the UK In-

stitute of Acoustics. Previously, he worked for 27 years at the
Institute of Transport Sciences, Budapest. He received a MS

in traffic engineering and later in electrical engineering (in-
struments and process control). He speaks English, German,
and some French. His PhD thesis was concerned with the pre-
diction of road transport noise. Dr. Buna has been involved
in international studies and study tours, and has represented
Hungary in various working groups (ISO, ECE, EU, and the
EU WG6 Railway Noise). He has published more than 55 ar-
ticles in various journals (e.g., ATA, Applied Acoustics, Noise
Control Engineering, Vehicle Design) and presented papers at
international conferences. He has written four books and book
chapters (in Verminderung des Verkerslärms of Springer Ver-
lag and the Transportation Noise Reference Book of Butter-
worths. Dr. Buna recently organised a workshop in Hungary
on the application of numerical methods in acoustical plan-
ning under the Hungarian Academy of Science. He has also
taken part in different European common projects and regu-
larly writes book reviews for the IJAV.

Maria de Diego

Maria de Diego received her
degree in telecommunications en-
gineering from the Universitat Po-
litecnica de Valencia in Valencia,
Spain, in 1994 and her PhD from
the same university in 2003. Her
dissertation was on active noise
conformation of enclosed acous-
tic fields. She is currently serving
as an associate professor in digi-
tal signal processing and commu-

nications. Dr. de Diego has been involved in different research
projects including active noise control, fast adaptive filtering
algorithms, sound quality evaluation, and sound reproduction,
in the Audio and Communications Signal Processing (GTAC)
group of the Institute of Telecommunications and Multimedia
Applications (iTEAM) of Valencia. She has published more
than 70 papers in journals and conferences about signal pro-
cessing and applied acoustics. Her current research interests
include signal processing of arrays, multichannel adaptive sig-
nal processing, and distributed signal processing. She is also
conducting research on non-linear adaptive filtering, and its
parallel implementation as well as applications to active noise
control and listening-room compensation systems. She orga-
nized a special session at the 19th European Signal Processing
Conference in 2011 in Barcelona and is a member of the In-
stitute of Electrical and Electronics Engineers (IEEE) and the
IIAV.
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News
Mohammed Hussein

Dr. Mohammed Hussein is an
associate professor in the College
of Engineering at Qatar Univer-
sity. His main area of expertise is
structural dynamics, and he has a
particular interest in the topics of
railway dynamics, soil-structure
interaction, and human-structure
interaction. He has been a mem-
ber of the IIAV since 2003 and
a fellow of the Higher Education

Academy since 2013. He joined Qatar University in Septem-
ber 2014 after the Institute of Sound and Vibration Research
(ISVR) at the University of Southampton where he served as a
senior lecturer from July 2013 to August 2014. Previously, he
worked at the University of Nottingham as a lecturer and at the
University of Cambridge as a postdoctoral research associate.
Dr. Hussein completed his PhD at the University of Cambridge
in July 2005. His work has resulted in more than 80 publica-
tions (including 30 journal papers). He is a co-developer of
the PiP software ¡www.pipmodel.com¿ for calculating vibra-
tion from underground railways. Dr. Hussein has supervised
six PhD students and more than 40 MS students. He is a re-
cipient of major grants, a member of a number of professional
committees, and a reviewer for more than ten major journals in
the field of dynamics and vibration.

Giuseppe Miccoli

Giuseppe Miccoli graduated
with a degree in physics from the
University of Ferrara in Italy in
1979. Since 1985, he has been a
senior researcher of the National
Research Council’s (C.N.R.) In-
stitute for Agricultural and Earth-
moving Machines (IMAMOTER)
where he is the scientific manager
of research activities including ac-
tive and passive noise & vibration

control; system/structure computational and experimental dy-
namic analysis; and system/machine component vibroacoustic
numerical simulation, experimental validation, and optimiza-
tion; and fluid/structure interaction by CAD-FEM/BEM inte-
grated computation methods. He is a member of the Italian
Acoustics Association (AIA) and has served as the scientific

director of the Analisi e Calcolo (A&C) Review from 2003-
2008. He was also a member of the Technology Network Al-
liance (TechNet), a service and distribution network for high
technology products, from 2004-2006 and served on the Board
of Directors of IIAV from 2004-2008. He is also a member of
the Board of Directors of NAFEMS (the International Asso-
ciation for the Engineering Analysis Community) since 2003,
and he is the Manager of the NAFEMS Italia Association. He
is the author of more than 200 papers and technical reports.

Konstantinos E. Vogiatzis

Konstantinos Vogiatzis is an as-
sociate professor of public trans-
portation, environmental engi-
neering & environmental acous-
tics, environmental impact assess-
ment, and environmental manage-
ment for transportation networks
at the University of Thessaly. He
graduated with an MS degree in
rural and surveying engineering
from the National Technical Uni-

versity of Athens (UNTA) in 1977. He also obtained an MS
in civil engineering (transportation planning) from UNTA in
1980. In addition, he obtained a post-graduate diploma in ur-
ban and rural planning from the Centre of Research in Paris
in 1980 and a PhD from the Doctorat University of Paris 1
Pantheon-Sorbonne in January 1981. His professional and sci-
entific memberships include enterprise directorate (general) of
a working group on road traffic noise WG 8, European Com-
mission; former General Secretary of the Acoustical Society
of Greece; Hellenic Institute of Transportation Engineers; and
Consultant in Ministry of Environment in France - Programs
GEUS I & II (Gestion d’ Environnement Urbain Sonore). He
has served as a member of the International Scientific Commit-
tees for ICSV 12, ICSV 13, ICSV 14, ICSV 16, and ICSV 17
and of the Management Committee of the European projects
QCity and City Hush. His most important research interests fo-
cus on the protection of the urban acoustical environment and
transportation noise with an emphasis on airborne and ground-
borne noise and vibration. He is also interested in the mass
urban transportation networks as well as airport operation, ur-
ban and semi-urban road transportation infrastructure with a
focus on the integrated environmental, and land use planning
management. He received an award for Academic and Scien-
tific Excellence from the Greek Ministry of Education in 2012.
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News

Student Award Winners

Giulio Dolcetti

Giulio Dolcetti received his MS
in mechanical engineering from
the University of Ferrara, Italy.
He is currently working towards
his PhD at the Department of Me-
chanical Engineering at the Uni-
versity of Sheffield, UK. His re-
search is focused on the scatter-
ing of airborne acoustic waves
by composite dynamic rough sur-
faces, characterisation of the air-

water interface in shallow water flows, and non-contact mea-
surement devices in open-channel flow and pipe flow.

Daipei Liu

Daipei Liu is a PhD candi-
date at the School of Mechani-
cal and Manufacturing Engineer-
ing at University of New South
Wales Australia, Sydney, Aus-
tralia. After completing his BS in
2006, Daipei worked as a project
manager for five years in China.
Daipei received his MS at UNSW
Australia in 2013. He joined
UNSW’s vibration and acoustics

group and started his PhD study in 2014. His current research
focuses on the numerical prediction of surface contributions to
far field radiated and scattered sound.

Dario Vignali

Dario Vignali graduated from
the University of Southampton
in 2011 with his MS in acous-
tical engineering. While work-
ing toward his degree, he took
a year out to work as an acous-
tic consultant undertaking a num-
ber of projects dealing with build-
ing acoustics. His final thesis fo-
cused on signal processing meth-
ods with particular attention to bi-

ological signals. Currently, he is undertaking a PhD project

on modelling cochlear mechanics in the Signal Processing and
Controls Group (SPCG) of the Institute of Sound and Vibration
Research (ISVR), University of Southampton.

Stanislaw Wrona

Stanislaw Wrona was born in
Katowice, Poland, in 1988. He
obtained his MS in automatic con-
trol and robotics in 2012 from
the Silesian University of Tech-
nology, Poland, where he is cur-
rently a PhD student. He also
gained professional experience at
universities in the Czech Repub-
lic, Spain, and the Netherlands.
He is involved in teaching stu-

dents subjects related to modelling and signal processing, in-
cluding acoustic signal processing, and bioacoustics. He is a
co-author of over a dozen journal and proceeding papers and
of three patent applications. He has received awards for his
research from the Acoustical Society of the Netherlands, from
the Programme Committee of an international conference on
control (MMAR), and from a domestic institution for techno-
logical development (Technopark). The research he conducts
for his PhD dissertation is focused on the reduction of device
and machinery noise by controlling the vibration of their cas-
ings through mathematical modelling, acoustic signal process-
ing, synthesis, and analysis of active control systems.
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Obituary Notice

Obituary Notice of Geoffrey Lilley, 1919–2015

Geoffrey Lilley who died on 20 September 2015 was born
in Isleworth, England, on 16 November 1919. He was the
youngest of four children. His father, Micholl Morland
Dessau, made his fortune as an American inventor and rub-
ber magnate, but lost it during the Great Depression. Later, his
father deserted the family and Lilley took his mother’s maiden
name as his own.

Lilley attended Isleworth Grammar School, but left in 1934
at the age of 15 hoping to join the Royal Air Force and become
a pilot; however, he failed the vision test and instead became
an apprentice engineer with Kodak in 1936.

In 1940 Lilley joined Vickers-Armstrongs Limited at Wey-
bridge and Supermarine Aviation, where he worked briefly
with Sir Barnes Wallace, inventor of the “bouncing bomb.” Lil-
ley continued this work on aircraft design during World War
II, in addition serving in the Home Guard in London. He also
took evening classes to work toward his bachelor’s degree. He
subsequently earned his MS from Imperial College, London in
1945. After the war, he worked on the design of wind tunnels,
one of which remains in use by British Aerospace.

Lilley became known as one of the founders of aeroacoustics
and helped establish the College of Aeronautics at Cranfield
in 1946, where he was appointed Professor of Experimental
Fluid Mechanics in 1961 because of his work on aircraft. He
and Bob Westley carried out the first experiments on jet noise
that provided early confirmation of the “eighth power law” of
Sir James Lighthill, which states that the acoustic power of a
jet engine is proportional to the eighth power of the jet exhaust
velocity. Lilley made a crucial extension to Lighthill’s theory
by improving the description of the separation of sound and its
sources inside a flow: the equation known as Lilley’s equation
considers propagation expressed by linear terms in the turbu-
lent flow fluctuations. The approach is widely used.

In 1963 Lilley was appointed Professor of Aerodynamics
and Astronautics at Southampton University the same year that
Malcolm Crocker began his master’s degree studies at the In-
stitute of Sound and Vibration also at Southampton.

Perhaps Lilley’s greatest contribution to aviation was made
as leader of the Concorde technical team. When in 1971
the United States cancelled orders for the American super-
sonic Boeing 2707, and when five years later the US Congress
banned Concorde landings because of concern over sonic
booms, Lilley and his team worked to counter US technical ob-
jections line-by-line and succeeded in persuading the Port Au-
thority of New York that the new Anglo-French supersonic air-
craft would meet strict US noise regulations. Had they failed,
Concorde would have been discontinued at that time.

Lilley is one of the very few who have flown the Gos-
samer Condor human-powered aircraft operated solely by
pedal power. In his later years he became interested in how
owls can fly so silently and how light propagates through the
cosmos.

Lilley was awarded an OBE (Order of the British Empire)
in 1981 for services to the British government. In 1983 he
was awarded the Gold Medal of the Royal Aeronautical Soci-
ety and the Aeroacoustic Medal of the American Institute of
Aeronautics and Astronautics.

After his retirement in 1983, Lilley was appointed to several
visiting professorships, and worked for NASA at the institute
for Computer Applications in Science and Engineering. He
was named an honorary fellow of the International Institute of
Acoustics and Vibration in 2009. We shall always remember
Lilley’s remarkable contributions to aeroacoustics, and in par-
ticular jet noise theory.
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Active Control Experiment Study of a Flexible
Beam with Multiple Time Delays
Chen Long-Xiang and Cai Guo-Ping
Department of Engineering Mechanics, Shanghai Jiaotong University, Shanghai 200240, P.R. China

(Received 25 April 2013; accepted 3 March 2014)

In this paper, active control for vibration of a flexible beam with multiple time delays is studied numerically and
experimentally. Piezoelectric (PZT) patches are used as actuators, and foil gauges were used as sensors. Firstly the
motion equation of a flexible beam with multiple time delays and Piezoelectric patches is presented and written into
a state space form. Then the state equation is discretized and transformed into a standard form without any explicit
time delay by a particular augmentation for state variables. So time-delay controller could be designed based on
the standard state equation using the discrete active control method. Finally, numerical and experimental studies
are presented to verify the validity of the time-delay processing method using the discrete optimal control method
and the discrete variable structure control method, respectively. An experimental setup is constructed using DSP
TMS320F2812. The numerical and experimental results show that the proposed time-delay controller is effective
in suppressing the beam vibration. It is also applicable to both short- and long- time delays.

1. INTRODUCTION

Time delay exists inevitably in active control systems. It
may make the actuator input energy into the controlled systems
when energy is not needed. This may cause the degradation of
control efficiency or even the instability of control systems.1

Therefore, the research on time delay is of important theoreti-
cal significance and practical value.

Generally, the investigations on time delay may be divided
into two classes: elimination and utilization technologies. At
first, time delay was regarded as a ”bad” factor that had only
negative side effect on control systems. In order to eliminate
or weaken the effect of time delay, some methods were sub-
sequently proposed, including Taylor series expansion, phase
shift technique and state pre-estimation.2–4 These methods can
deal effectively with some short time delay problems in control
systems, but awkwardly with long ones. Cai and Huang have
proposed a new time-delay controller.5, 6 This controller is de-
signed directly from time-delay differential equation without
any hypothesis in whole process of controller design, applica-
ble for both short and long time delays. Chen proposed a the-
oretical method for a flexible beam with multiple time delays
using the discrete optimal control.7 Sun has recently proposed
a continuous time approximation method for linear and nonlin-
ear dynamical systems with time delay.8 The key point of the
methods mentioned above to eliminate the negative effect of
time delay is so-called time-delay elimination technology or
time-delay compensation technology. Its main function is to
eliminate or weaken the negative effect of time delay on con-
trol efficiency. On the other hands, recent investigations have
shown that voluntary introduction of delay into control sys-
tems can also benefit the control. For example, in nonlinear
dynamics area, achievement is remarkable using time delay

to control chaos motion.9 Daqaq, Alhazza and Arafat stud-
ied the effect of feedback delays on the non-linear vibration
of a cantilever beam.10 In structural control area, Hosek and
Olgac developed a time-delay resonator that may be used for
vibration control of structures.11 Cavdaroglu and Olgac con-
sidered the cart-and-pendulum system as research object, this
study shows that systems with multiple delays may exhibit bet-
ter performance by increasing the delays to more desirable lev-
els.12 Liu, Haraguchi, and Hu presents a reduction-based lin-
ear quadratic control for the dynamic system with a constant
or a slowly time-varying input delay.13 In robotics area, Cai
and Lim designed a time-delay controller for a flexible manip-
ulator and their results show that delayed feedback control de-
sign may possibly achieve much better control efficiency than
the no-delay control design.14 In control system of pipeline
transport, time delay may be utilized to enhance steady criti-
cal speed of flowing liquid.15 Time delay may be also used to
improve system stability.16, 17 Those researches above involv-
ing the active utilization of time delay is so-called time-delay
utilization technology, which assumes time delay as a design
parameter to obtain good control performance. Although up to
now researches have been done much on the elimination and
utilization of time delay, most of work is theoretical one but
few on experiment.

In this paper, Piezoelectric (PZT) patches are used as ac-
tuators, foil gauges as sensors, active control for vibration of
a flexible beam with multiple time delays is studied numeri-
cally and experimentally. The controller with time delays is
designed using the discrete optimal control method and the
discrete variable structure control method, respectively. The
feasibility and efficiency of the time-delay controller are veri-
fied theoretically and experimentally. This paper is organized
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Figure 1. Cantilever beam model and the locations of PZT patches.

as follows. Section 2 presents the motion equation of flexible
cantilever beam with time delays. The design of time-delay
controller is described in Section 3. Section 4 gives the exper-
imental scheme. The numerical and experimental results are
shown in Section 5 in the consideration of the time-delay con-
troller in this paper. Finally, concluding remarks are given in
Section 6.

2. MOTION EQUATION

The transverse vibration of a flexible cantilever beam is con-
sidered, as shown in Fig. 1. The beam has a constant cross-
section area with every center inertia axis being in the same
plane, xoy. One PZT patch is used as exciter to initiate beam-
forced vibration, and two PZT patches were used for control-
ling the vibration. The control forces produced by the two PZT
actuators have different delays λ1 and λ2. Based on the Euler-
Bernoulli hypothesis and using modal orthogonality, the i-th
modal equation may be deduced as

ϕ̈i(t) + 2ζiωiϕ̇i(t) + ω2
i ϕi(t) =

2∑
j=1

Kz[Y
′
i(x̃ja)− Y ′i(x̃jb)]Vj(t− λj)

+Kz[Y
′
i(x̃pa)− Y ′i(x̃pb)]Vp(t); (1)

i = 1, 2, · · · ,∞ where ϕi(t) is the i-th modal coordinate; ωi
is the natural frequency of the i-th mode; ζi is the i-th modal
damping ratio; Yi(x) is the normalized modal shape corre-
sponding to the i-th mode; x̃ja and x̃kb are the locations of
the j-th PZT actuator on the beam, j = 1, 2; Vj is the applied
voltage on the j-th PZT actuator; x̃pa and x̃pb are the locations
of the PZT exciter; Vp is the applied voltage on the PZT ex-
citer; and Kz is the constant value related to the physics and
geometry characteristics of PZT material, may be found in.7, 18

3. DESIGN OF MULTIPLE TIME-DELAY
CONTROLLER

The first two vibration modes are considered to be controlled
using the two PZT actuators in this paper. So, the modal equa-
tion can be written as

Φ̈(t)+CΦ̇(t)+KΦ(t) =
2∑
j=1

HjVj(t− λj)+Hp Vp(t); (2)

where Φ(t) = [ϕ1(t), ϕ2(t)]T,
C = diag(2ζ1ω1, 2ζ2ω2),
K = diag(ω2

1 , ω
2
2),

Hj = Kz[Y
′
1(x̃ja)− Y ′1(x̃jb), Y

′
2(x̃ja)− Y ′2(x̃jb)]

T, and
Hp = Kz[Y

′
1(x̃pa)− Y ′1(x̃pb), Y

′
2(x̃pa)− Y ′2(x̃pb)]

T.

In the state-space representation, Eq. (2) becomes

Ż(t) = AZ(t) +
2∑
j=1

BjVj(t− λj) + BpVp(t); (3)

where Z(t) =

[
Φ(t)

Φ̇(t)

]
, A =

[
0 I

−K −C

]
,

Bj =

[
0

Hj

]
, Bp =

[
0

Hp

]
.

3.1. Discretization and Standard of Multiple
Time-Delay Control Equation

Equation (3) is a time-delay differential equation that is in-
convenient for control design. Here we consider the discretiza-
tion and standard of this equation. The time delay λj can be
written as

λj = lj T̄ ; (4)

where T̄ is data sampling period and lj > 1 is a positive inte-
gral number.

Zero-order holder is used in the structure, i.e.

Vj(t) = Vj(k), kT̄ 6 t < (k + 1)T̄ ; (5)

where k represents the k-th step of control and Vj(k) denotes
Vj(kT ). Equation (5) represents that the actuators exert con-
stant control forces on the beam during two adjoining sampling
points. This is feasible because data sampling period is usually
very small.

Using Eq. (5), Eq. (3) becomes7, 19

Z(k + 1) = FZ(k) +
2∑
j=1

GjVj(k − lj) + GpVp(k); (6)

where F = eAT̄ , Gj =
∫ T̄

0
eAηdηBj , Gp =

∫ T̄

0
eAηdηBp,

and G11 =
∫ T̄

0
eAηdη.
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Augmenting the state variables in Eq. (6) as

Z4+1(k) = V1(k − l1)

...

Z4+l1(k) = V1(k − 1)

Z4+l1+1(k) = V2(k − l2)

...

Z4+l1+l2(k) = V2(k − 1)

; (7)

and defining a new state vector as

Z̄(k) = [ Z(k), Z4+1(k), · · · , Z4+l1+l2(k) ]T; (8)

Thus Eq. (6) can be changed into the following standard dis-
crete form without any explicit time delay:

Z̄(k + 1) = F̄Z̄(k) + ḠV(k) + ḠpVp(k); (9)

where V(k) = [V1(k), V2(k)]T,

F̄ =



F G1 0 · · · 0 G2 0 · · · 0

0 0 1 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
... · · ·

...
0 0 0 · · · 1 0 0 · · · 0

0 0 0 · · · 0 0 0 · · · 0

0 0 0 · · · 0 0 1 · · · 0
...

...
... · · ·

...
...

...
. . .

...
0 0 0 · · · 0 0 0 · · · 1

0 0 0 · · · 0 0 0 · · · 0


,

Ḡ =



0 0

0 0
...

...
0 0

1 0

0 0
...

...
0 0

0 1


, Ḡp =



Gp

0
...
0

0

0
...
0

0


.

Equation (9) is a standard discrete state equation that con-
tains no time delay. The sufficient condition for stability of
Eq. (9) is that all the eigenvalues of F̄ is within a unit cir-
cle. The system (9) is controllable provided that the matrix
[F̄, Ḡ] is controllable. When the system is controllable, the
controllers can be designed. Next, the optimal control method
and the variable structure control method will be used to design
the controllers. Compared to other controller method, these
two controllers can be simply designed. In addition, the op-
timal control can guarantee optimal control efficiency of sys-
tems, and the variable structure control method has strong ro-
bustness, and is insensitive for system parameters and external
disturbances, and this method has good stability.

3.2. Controller Design using Optimal
Control Method

Here we consider the controller design using the classical
optimal control strategy. In the optimal controller design, ex-
ternal excitation term is neglected. The following performance
index is used:

J =

∫ ∞

0

[ZT(t)Q̄1Z(t) + VT(t)Q̄2V(t)]dt; (10)

where Q̄1 is non-negative definite symmetric matrix and Q̄2 is
positive definite symmetric matrix. The performance index is
a continuous form so as to guarantee good response efficiency
of systems not only on every sampling point but also between
any two adjacent sampling points. However, the discrete per-
formance index can only guarantee good efficiency on every
sampling point and surge behavior may possibly exist between
sampling points. So the continuous performance index is used
as the objective function in this paper. Now the task of con-
trol design is to design controller for the system Eq. (3) such
that the performance index in Eq. (10) attains minimum. In the
above, Eq. (3) has been discretized and changed into the stan-
dard discrete form without any explicit time delay. Below the
performance index will be discretized and changed to be the
function of the augmented state.

Equation (10) may be written as the following discrete form

J =
∞∑
k=1

Jk, Jk =

∫ (k+1)T̄

kT̄

[ZT(t)Q̄1Z(t) + VT(t)Q̄2V(t)]dt; (11)

The performance index in (11) may be rearranged as the fol-
lowing form:7, 19

J =

∞∑
k=0

[Z̄T(k)Q̂1Z̄(k) + VT(k)Q̂2V(k)]; (12)

where Q̂1 and Q̂2 are given by

Q̂1 =


Q1 Q01 0 Q02 0

QT
01 Q11 0 Q12 0

0 0 0 0 0

QT
02 Q21 0 Q22 0

0 0 0 0 0

 , Q̂2 = Q2; (13)

where

Q1 =

∫ T̄

0

FT(t)Q̄1F(t)dt, Q2 = Q̄2T̄

Q0i = [

∫ T̄

0

FT(t)Q̄1G11(t)dt]Bi, i = 1, 2

Qij = BT
i [

∫ T̄

0

GT
11(t)Q̄1G11(t)dt]Bj , i, j = 1, 2

;

(14)

and where F(t) = eAt and G11(t) =
t∫

0

eAτdτ .
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Equation (12) is a standard discrete form of performance
index. So the next work is to design an optimal controller for
the system in (9) by minimizing the objective function given
by Eq. (12). This controller may be designed using the discrete
optimal control method, given by

V(k) = −LZ̄(k)

= −L1Z(k)− L2V1(k − l1)− · · · − Ll1+1V1(k − 1)

− Ll1+2V2(k − l2) · · · − Ll1+l2+1V2(k − 1)

;

(15)
where L1(i = 1, · · · , l1+l2+1) are the component matrices of
L. We can observe from Eq. (15) that the controller contains
not only the current step of state feedback term, but also the
linear combination of some former steps of controls. Since
the time-delay controller is designed directly from the time-
delay differential equation and no approximation or hypothesis
involved, it tends to guarantee the stability of control systems,
and is suitable for both small time delay and large time delay.

3.3. Controller Design using Variable
Structure Method

The variable structure control method is known as the slid-
ing mode control method, where sliding mode is the remark-
able characteristics of this control method. The controller can
be obtained by using the discrete reaching condition. The
phase trajectory of the system will move toward the switch-
ing surface in finite time, and then reaching the origin point or
the equilibrium position until the system reaches stabilization.

In the variable structure control method, a linear switching
function is considered

S(Z̄) = CZ̄; (16)

where C is undetermined coefficient vector of the switching
function. S(Z) = CZ = 0 is the linear switching surface.

The discrete approach law is given by20

S(k + 1)− S(k) = −εT̄ sgn[S(k)]− qT̄ S(k); (17)

where T̄ is the sampling period, ε > 0 , q > 0 and qT̄ < 1.
From Eqs. (9) and (16), the left-hand term of Eq. (17) can

be further written as

S(k+1)−S(k) = C[F̄Z̄(k)+ḠV(k)+ḠpVp(k)]−CZ̄(k);

(18)
Hence the controller can be obtained from Eqs. (17) and (18)
and written as

V(k) = [CḠ ]−1{C(I − F̄− qT̄ I)Z̄(k)

−CḠpVp(k)− εT̄ sgn[CZ̄(k)]}. (19)

The vector C of the switching surface can be obtained
using the pole assignment method or the optimal control
method. When the optimal control method is used, the task
is to design C by minimizing the objective function J =

∞∑
k=0

[Z̄T(k)Q̃Z̄(k)], where Q̃ is a non-negative definite sym-

metric matrix. Similarly, the time-delay controller is designed
directly from the time-delay differential equation and no ap-
proximation or hypothesis is involved, it tends to guarantee the
stability of control systems, and is suitable for both small time
delay and large time delay.

4. EXPERIMENT AND DATA PROCESSING

The feasibility and effectiveness of the proposed time-delay
controller had been proven by simulation results.9 In this pa-
per, PZT patches are used as actuators, foil gauges were used
as sensors, experiments are presented based on a digital signal
processing (DSP) board. Firstly, an experimental setup using
the DSP board is introduced. Subsequently, the measurement
methods for signal and signal difference are presented.

4.1. Experiment System

In the experiment, two PZT patches are used as actuators,
one PZT patch as a vibration exciter, and two foil gauges as
sensors. The control mechanism of free and forced beam vi-
bration are considered. For free vibration, the free end of beam
has an initial displacement 0.04 m while the initial velocity is
zero. For forced vibration, the PZT vibration exciter initiates
beam vibration.

An experimental setup is constructed using DSP board
(TMS320F2812). DSP deals with online computation of con-
trollers in terms of the feedback signal from the foil gauge to
obtain PZT voltage. Fig. 2 shows an experimental flow chart
for forced vibration. For free vibration, the signal generator
and PZT exciter in Fig. 2 are not in use. The details of signal
flow and process are described as follows:

1. Excitation Loop: the signal generator generates an exter-
nal excitation that is amplified by the PZT power ampli-
fier and then goes into the PZT exciter. The flow chart of
excitation loop is shown by the dashed line in Fig. 2.

2. Feedback Signal Loop: the signal collected from the foil
gauge is amplified by a strain signal amplifier and then
enters the analog digital converter (ADC) module in DSP.

3. Control Signal Loop: the voltage signal goes through the
two channels of digital analog converter DAC module into
the PZT power amplifier where it is amplified, and then
channels into the two PZT actuators.

4. The DSP communicates with a computer via the serial
communication interface (SCI) module which transfers
the experimental data to the computer for storage and for
post-processing.
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Figure 2. Flow chart of experiment system.

4.2. Signal Measurement
The controller described in Section 3 depends on the beam

modal coordinate. Hence, a method to extract modal coor-
dinate from the physical sensor measurements of foil gauges
needs to be developed. In addition, the beam tip responses
from foil gauge measurements with and without control will
be compared to determine the efficiency. The methods required
are introduced as follows.

The beam strain-curvature relationship can be expressed as

ε(x, t) =
tb
2
y′′(x, t); (20)

where ε, tb and y are the bending strain, thickness and beam
transverse displacement, respectively. As mentioned, two foil
gauges are used as sensors in the experiment. Since the first
vibration mode has maximum strain at its fixed end while that
of the second mode near the middle of beam, the two foil
gauges are placed at these two positions at x1 = 37 mm and
x2 = 476 mm , respectively. To extract the modal coordi-
nate, the assumed mode method is applied where the beam

response can be represented as y(x, t) =
∞∑
i=1

Yi(x)ϕi(t) Be-

cause the beam response is dominated by its lower-order vibra-

tion modes, y(x, t) ≈
2∑
i=1

Yi(x)ϕi(t) is adopted in this paper.

We can obtain the dominant modes by the modal cost analysis
method to other geometries.21 Using Eq. (20), the estimated
modal displacement can be deduced as in Eq. (21)

After obtaining the modal displacement, the modal veloc-
ity can be determined using the tracking-differentiator given in
Section 4.3. From modal coordinate thus obtained, the control-
ling system can be calculated.

Subsequently, the strain measurements from the two foil
gauges can be transformed into the transverse displacement of
the beam by Eq. (22) Taking x = L in Eq. (22), where L is
the length, the beam tip response can be approximately from
Eq. (21).

4.3. Signal Difference
The states for an active controller system, i.e. displacement

and velocity, are required in the feedback control. Because
the velocity signal (also called the differential signal) cannot
be measured directly from sensors in practice, it should be

estimated from the physical measurements, and then be used
to calculate the control forces. In an early attempt, it was
found that the foil gauge signal may contain high-frequency
noise due to mechanism and electricity disturbances; hence,
the differential signal derived from the classical interpolation
method is disorganized. As a result, the tracking differentia-
tor is adopted and it is able quickly tracking the input signal
and giving out high-quality differential signal. The tracking
differentiator in discrete form is22{

x̄1(k + 1) = x̄1(k) + T̄ x̄2(k)

x̄2(k + 1) = x̄2(k) + T̄ fst(x̄1(k), x̄2(k), u(k), r̄, h̄)
;

(23)
where u(k) is the input signal at the moment k, x̄1 is the track-
ing signal of u(k), x̄2 is the estimated differential signal of
x̄1, T̄ is the sampling period, r̄ is a parameter determining the
tracking speed, and h̄ is a parameter determining the filter ef-
fect when the input signal is polluted by noise. The variable fst
is given in Reference.22

5. NUMERICAL SIMULATIONS AND
EXPERIMENTAL STUDIES

A beam made of aluminum alloy is used in the experiment
shown in Fig. 3. The length, width and thickness are 900 mm,
35 mm, and 1.50 mm, respectively. Material properties of the
beam are as follows: Young’s elastic modulus Ep = 69 GPa,
Poisson’s ratio vp = 0.3 and density ρp = 2.7 × 103 kg/m3.
The first two natural frequencies of the beam determined from
the experiment are 1.4947 Hz and 9.3679 Hz, respectively, and
the corresponding modal damping ratios are 0.012 and 0.0055.

In the experiment, one PZT patch is used as an exciter to ini-
tiate beam vibration and the other two PZT patches are used as
actuators to control vibration. The PZT patches have identical
sizes, 60 mm × 15 mm × 0.5 mm. The PZT exciter is placed
near the root of beam at x̃pa = 77 mm and x̃pb = 137 mm.
One PZT actuator (denoted as Actuator I) was attached to the
other side of the beam at x̃1a = 82 mm and x̃1b = 142 mm.
The time delay of Actuator I is denoted by λ1 . Another PZT
actuator (denoted as Actuator II) was attached near the beam
midpoint at x̃2a = 375 mm and x̃2b = 435 mm, and the time
delay is denoted by λ2 (see Fig. 1). The PZT material param-
eters are: Young’s modulus 63 GPa, Poisson’s ratio 0.35 and
piezoelectric strain constants 1.75×10−10 m/V. For the differ-
entiator, r̄ = 1000 and h̄ = 0.008 are taken.

The inherent delays in the system may have small effect on
control efficiency and can be ignored in control design. From
Fig. 4, we can see that the beam vibration can be effectively
suppressed when the inherent delays in the system are not con-
sidered. So, the experiment system used in this paper may be
regarded as a non-time-delay control system. We think that just
under this condition, the effect of time delay on control sys-
tems and the effectiveness of delayed feedback control method
may possibly be studied. The time delay used in the exper-
imental studies of this paper is voluntarily introduced in the
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ϕ1(t)

ϕ2(t)

]
=

2

tb

[
Y ′′1(x1) Y ′′2(x1)

Y ′′1(x2) Y ′′2(x2)

]−1 [
ε(x1, t)

ε(x2, t)

]
; (21)

y(x, t) =
2

tb

[
Y1(x) Y2(x)

] [
Y ′′1(x1) Y ′′2(x1)

Y ′′1(x2) Y ′′2(x2)

]−1 [
ε(x1, t)

ε(x2, t)

]
; (22)

Figure 3. Photo of experiment beam.

control system by means of adding arbitrary delayed times to
control input.

5.1. Results of Forced Vibration Case
The forced vibration control is investigated in this section.

In the experiment, the signal generator generates a sine volt-
age signal with frequency 1.524 Hz and amplitude 5 V. The
sine signal is amplified fifteen times by the PZT power ampli-
fier and it then goes into the PZT exciter in order to introduce
beam forced vibration. The two PZT actuators are used for
controlling the vibration. The optimal control strategy is ap-
plied as control. From Eq. (10), large Q̄1 means that the cor-
responding state will be quickly suppressed and large Q̄2 will
penalize the control inputs. So increasing Q̄1 or decreasing
Q̄2 within the capacity of the actuator, the better control effect
will be obtained. In the controller design, the weighting ma-
trices in Eq. (10) are chosen as Q̄1 = diag[100, 100, 1, 1] and
Q̄2 = diag[4 × 10−6, 4 × 10−6] because the electrical field
intensity keeps linear relationship with the strain of PZT only
when external electrical field intensity does not exceed 150 V.

The no-delay controller design is applied to control the sys-
tem without time delay. The beam tip responses and the PZT
applied voltage are shown in Fig. 4. The dotted line refers to
the results with no control while the solid line refers to the
results with control. Fig. 4a are the simulation results, and
Fig. 4b are the experimental ones. As observed in Fig. 4b1, the
maximum amplitude without control is 0.0262 m and that with
control is 0.0108 m. The beam vibration could be effectively
suppressed.

The time-delay controller is subsequently investigated here.
Two cases are considered: one with a short time delay (λ1 =

0.05s, λ2 = 0.04s), and another with a long time delay (λ1 =

0.2s, λ2 = 0.1s). A time-delay controller can be designed with
reference to the method described in Section 3.2. The results

using a time-delay controller for controlling beam vibration
are shown in Figs. 5 and 6, where the dotted line donates the
results without control, and the solid line donates the results
with control. Figs. 5b1 and 6b1 show that the amplitudes with
control are 0.0112 m, 0.013 m, respectively. We can observe
that the beam vibration can be suppressed effectively by the
time-delay controller, and the proposed time-delay controller
is also applicable to short and long time delays.

5.2. Results of Free Vibration Case

Further examples for the control of beam free vibration are
presented here to demonstrate the effectiveness of the proposed
time-delay controller. An external force is applied to create an
initial displacement 0.04 m with zero initial velocity at the free
end of the beam. With such conditions, Actuators I and II are
used to control the free vibration. A control strategy based on
the variable structure control method is used. In the controller
design, ε = 0.01 and q = 10 are chosen in Eq. (19). Q̃ is
chosen as Q̃(1, 1) = 100, Q̃(2, 2) = 100, Q̃(4 + l1, 4 + l1) =

5× 10−7, Q̃(4 + l1 + l2, 4 + l1 + l2) = 5× 10−7 with other
elements being zero.

A short time delay (λ1 = 0.05s, λ2 = 0.08s) and a long
time delay (λ1 = 0.2s, λ2 = 0.3s) are considered. A time-
delay controller is designed using the method described in Sec-
tion 3.3. Numerical and experimental results are shown in
Figs. 7 and 8 where the dotted line donates the results with-
out control, and the solid line donates the result with control.
From Figs. 7b1 and 8b1, the logarithmic decay ratios of the
first period are 0.0179 and 0.0145, respectively. As observed
in Figs. 7 and 8, the time-delay controller is able to control
the beam vibration effectively and the experiment results agree
better with respect to simulation.
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6. CONCLUSION

In this paper, delayed feedback control for vibration of
a flexible beam is studied numerically and experimentally.
Time-delay controllers are proposed to suppress the beam vi-
bration. The discrete optimal control method and the discrete
variable structure control method are used for designing the
controllers. An experiment system based on a DSP board is
introduced. The numerical and experimental results show that
the proposed time-delay processing method is effective in sup-
pressing beam vibration. It is applicable to any time delays.
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Figure 4. Tip response of the beam and applied voltages on the two actuators (without time delay; optimal controller): (a) simulation result, (b) experimental
result.
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Figure 5. Tip response of the beam and applied voltages on the two actuators (λ1 = 0.05 s, λ2 = 0.04 s; time-delay optimal controller): (a) simulation result,
(b) experimental result.
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Figure 6. Tip response of the beam and applied voltages on the two actuators (λ1 = 0.2 s, λ2 = 0.1 s; time-delay optimal controller): (a) simulation result, (b)
experimental result.
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Figure 7. Tip response of the beam and applied voltages on the two actuators (λ1 = 0.05 s, λ2 = 0.08 s; time-delay variable structure controller): (a) simulation
result, (b) experimental result.

International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015 205



Ch. Long-Xiang, et al.: ACTIVE CONTROL EXPERIMENT STUDY OF A FLEXIBLE BEAM WITH MULTIPLE TIME DELAYS

Figure 8. Tip response of the beam and applied voltages on the two actuators (λ1 = 0.2 s, λ2 = 0.3 s; time-delay variable structure controller): (a) simulation
result, (b) experimental result.
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The developed MF dampers can be used for diverse applications, including structural vibration mitigation, shock
absorption, and vibration control in various systems. This paper has firstly investigated the mechanical character-
istics of the self-made MR damper through experimentation. Based on the test data, the damper is found to possess
nonlinear hysteresis. Usually, various models, especially the Bouc-Wen model, are proposed to interpret the com-
plex characteristics which have the capability to capture behavior of a wide class of hysteretic systems. However,
the Bouc-Wen model consists of a set of multi-unknown parameters that need to be estimated simultaneously. It is
a burdensome task to effectively identify the exact values of the parameters. In view of this, this paper proposes a
novel hybrid evolutionary algorithm combining Genetic Algorithm with Particle Swarm Optimization (GA-PSO).
By using the GA-PSO, the optimized result would be more effective and accurate than the traditional one, because
it overcomes the drawbacks of low-speed convergence in GA and local optimization in PSO. Finally it is verified
through a large amount of experimental data, which can estimate the multi parameters in the Bouc-Wen model
efficiently and precisely. Also suggested are the implications of the present study on other nonlinear hysteretic
models or other complex mathematical models.

1. INTRODUCTION

Hysteresis is a memory-dependent, non-linear behavior in
which the system output is not only dependent on the instanta-
neous input, but also on the past history of the input.1, 2 This
type of inelastic behavior is encountered in many engineering
fields, such as biology, electronics, ferroelectricity, mechan-
ics, magnetism, etc. For efficient description of such inelastic
systems, over the past years many mathematical models have
been proposed for use in practical applications involving char-
acterization of systems, identification or control.3 The Bouc-
Wen model4 is widely used to describe systems with hystere-
sis and non-linear behavior, especially in civil and mechanical
engineering. In this model, restoring force is related to the
system viscous deformation through a first-order differential
equation, which has a series of undefined parameters. By as-
signing proper values to these parameters, the response of the
model will be in keeping with the actual behavior of hysteretic
systems. Thus, it is pivotal to select an appropriate optimiza-
tion algorithm to perform the task of parameter identification.

Recently, optimization techniques have been most widely
applied to estimate the parameters of the Bouc-Wen model
that characterize hysteretic behavior, such as Gauss-Newton

and modified Gauss-Newton,5 Levenberg-Marquardt,6, 7 Ge-
netic Algorithms,4, 8 Particle Swarm Optimization,9, 10 etc. Tra-
ditional techniques (Gauss-Newton and Levenberg-Marquardt,
etc.) are adequate to identify favorable parameters in the case
of simple problems, since a good initial value can be easily ob-
tained based on previous information. With regard to complex
problems, favorable parameters cannot be identified with ease
by local search algorithms due to the difficulties of setting the
initial value.8 As a result, parameter identification techniques
based on intelligent algorithms are arousing more interest in
modeling and parameter identification. For example, Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO) have
robust features and are suitable for solving multi-objective
problems. However, these methods also have their limitations.
GA generally requires a large number of function evaluations
whose convergence speed is quite slow because the evolution
of solutions depends on evolutionary operators.11 According
to this situation, Liu focuses on the problem of premature con-
vergence in GA, and proposes an adaptive GA based on pop-
ulation diversity.10 Chang proposes an improved real-coded
GA for parameter estimation of nonlinear systems to directly
implement the programming operations.12 Aine states that pa-
rameters of evolutionary algorithms should be appropriately
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controlled for implementing an effective search, and a concept
of dominance among control parameter vectors should be de-
veloped to show how it can be effectively used to reduce the
storage.13 In contrast to GA, PSO was reported to show bet-
ter results in terms of computational time and cost,12 but the
problem of premature convergence is serious due to the lack
of diversity where multiple objective function is concerned.14

It is also sensitive to control parameter choices, especially the
inertia weight, acceleration coefficients and velocity clamping.
Incorrect initialization of these parameters may easily lead to
divergence of cyclic behavior.15

In order to perfect the performance of intelligent algorithms,
there have been some new ideas focusing on the hybrid PSO
algorithm by adding GAs.11, 14, 16 Simulations for a series of
benchmark test functions show that the proposed method pos-
sesses better ability to find the global optimum with a relative
high efficiency.17 In this paper, a hybrid evolutionary algo-
rithm combining the GA with PSO is proposed, called GA-
PSO. In the GA-PSO, the part GA is improved by using an
elitism strategy, and the part PSO is executed by an adap-
tive inertia weighting factor. At the same time, the GA-PSO
is designed with an adaptive termination criteria. After these
improvements are made, the proposed algorithm will achieve
more accurate solutions with higher computational efficiency
than traditional ones. In order to testify that the method is
superior, we applied it to one classic multi-variate and multi-
extremum function (Shubert function) to search for the min-
imum solution. Through comparing the results of the novel
method with the Standard GA, it is found that the proposed
approach is capable of much more accuracy and efficiency. In
addition, parameter estimation of the Bouc-Wen model with
noisy data is also considered, and its results are used to ver-
ify that the proposed approach is prominently robust and reli-
able. Finally, a large amount of experimental data of real MR
damper is utilized to further validate the GA-PSO with satis-
factory parameter estimation results and highly efficient com-
putational capability.

This paper proposes a new promising identification method
for highly nonlinear hysteretic systems described by using the
Bouc-Wen model through adapting a novel hybrid evolution-
ary algorithm (GA-PSO). The paper is organized as follows:
Section 2 introduces the self-made MR fluid damper and in-
vestigates its hysteretic behavior through experiment. Next,
the Bouc-Wen model of the MR fluid damper and its parame-
ter identification is introduced in section 3. In order to imple-
ment parameter identification effectively, a novel hybrid evolu-
tionary algorithm is designed and proposed in Section 4. Sec-
tion 5 discusses the efficiency and accuracy of the proposed
approach. Finally, concluding remarks are given in Section 6.

2. MR FLUID DAMPER

The MR fluid damper is an ideal candidate in semi-active
control for civil engineering structures. As is revealed by the
introduction, the MR fluid damper has complex and dynamic
mechanical characteristics. In this section, an experimental
prototype of the MR fluid damper is designed and performed
to obtain the necessary data for further study on modeling the
hysteretic behavior using an appropriate algorithm.

(a) Cross section of MR damper.

(b) Experimental setup of MR damper performed by MTS.

Figure 1. MR damper test setup.

2.1. Design of the MR Fluid Damper
As is shown in Fig. 1, a self-made MR fluid damper is per-

formed by the Material Test System (MTS) at State Key Labo-
ratory for Strength and Vibration of Mechanical Structures in
China. We can see the schematic representation of the cylin-
drical type of MR damper in Fig. 1a. The MR fluid is housed
within two cylinders: one is installed within the piston de-
vice, and the other is installed within electromagnets and coils.
Within the piston device cylinder, the piston of the MR damper
is driven by a two-way pusher-pull bar. When the magnetic
field changes, the mechanical behavior of MR damper can be
changed. As is exhibited in Fig. 1b, the actual damper is driven
by a mechanical driver, and the generated force is measured by
a force sensor.

2.2. Hysteresis Behavior of the MR Fluid
Damper

By using the setup in Fig. 1, a series of preliminary tests are
conducted to measure the response of the damper under var-
ious loading conditions. Fig. 2a displays partial cases of the
damper’s responses under 0.5 Hz and 2.0 Hz sinusoid excita-
tion with the amplitude range fluctuating gradually from zero
to ±10 mm, and the magnetic field varies as measured by the
currents of 2.0 A.

It should be noted that the displacement-force curves are ba-
sically akin to ellipticals, suggesting that the relationship be-
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(a) Case of 2.0 A Current intensity and 0.5 Hz Frequency with 10 mm displacement amplitude.

(b) Case of 2.0 A Current intensity and 2.0 Hz Frequency with 10 mm displacement amplitude.

Figure 2. Hysteresis characteristic of the MR fluid damper.
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tween displacement and force is nonlinear. Meanwhile as illus-
trated by the velocity-force curves in Fig. 2, their relationship
is linear in high-velocity regions, but not in low-velocity re-
gions centered at zero, appearing to be obvious hysteresis. As
a result, the force-velocity relationship is characterized with
obviously nonlinear hysteresis that should be much more paid
attention. The above complex nonlinear hysteresis should be
described accurately by an advanced model.

3. MECHANICAL MODEL OF THE MR FLUID
DAMPER

The Bouc-Wen model is one of the important models used
extensively for modeling various kinds of hysteretic systems.
It has an important merit of being extremely versatile and can
exhibit a wide variety of hysteretic behavior. In this paper, we
mainly discuss how to make the Bouc-Wen model applicable
to simulate the dynamic characteristic of the MR fluid damper.

3.1. Bouc-Wen Model
The normalized version of the Bouc-Wen model introduced

in [4] relating the output F (t) to the input x(t) is given by

F (t) = cẋ(t) + kx(t) + αz(t) + f ; (1)

where evolutionary variable z is governed by

ż(t) = Ax(t)− βẋ(t)|z(t)|n − γ |ẋ(t)| z(t)|z(t)|n−1; (2)

where c is the viscous coefficient contributing to the scaling re-
lationship of the proportion by force and velocity, k is the stiff-
ness contributing to the scaling relationship of the proportion
by force and displacement, α is a scaling factor, and f is the
initial damper displacement. As seen from the expressions, the
characteristic parameters c, k, α, f, A, β, γ and n are undeter-
mined in advance that should be identified by an optimization
algorithm.

3.2. Parameter Analysis
Considering the nonlinear system governed by Eqs. (1) and

(2), most of the parameters do not have clear physical mean-
ings for damper’s dynamic property.8 When we employ one
parallel algorithm to search for the optimal values of these pa-
rameters, initial settings such as searching ranges. for every
parameter have an important effect upon the convergence rate
and training speed of the algorithm. Moreover, these settings
are generally designed based on their physical meanings to a
large degree. For this reason, it is very imperative to discuss
the contribution of every parameter to the Bouc-Wen model’s
output.

In order to explore the undetermined parameters playing
what part of physical meaning or contribution for the hysteretic
curves, different hysteretic curves are plotted in Fig. 3. The re-
sults are derived from numerical simulation of the Bouc-Wen
model by a 4th order Runge-Kutta method with a time step
∆t = 0.01 s. Herein, assume input x is harmonic displace-
ment x = Bsin(ωt) where ω = π rad/s1 and B = 10. The
variables x, ẋ, z and F and parameters c, k, α, f, A, β, γ and
n in the Bouc-Wen model are temporarily supposed to be di-
mensionless. Various hysteretic curves are drawn in Fig. 3 by
changing the values of every parameter. Based on their varying
pattern, the parameters are analyzed below:

Table 1. Parameter description in Bouc-Wen model.

Parameters Description
c viscous factor
k stiffness factor
α Hysteretic factor
f offset

A, β, γ Shape control factor
n Yield slope factor

• Parameter c: Fig. 3a shows that the original values of pa-
rameters k, f, α,A, β, γ and n are assumed to be fixed at
0.1, 0, 20, 0.1, 2, 2 and 1 respectively. Then, observe the
curves’ transformation along with the change of the pa-
rameter c. When the value of c is increased, we found that
the displacement-force (x− F ) curves become more dis-
tinctly full maintaining a certain slope. On the contrary,
the average slope of the velocity-force (ẋ−F ) curve, de-
picted by Fig. 3a, becomes larger when c does. Parameter
c is susceptible to the relationship of velocity and force,
and therefore it can be named ”viscous coefficient”.

• Parameter k: c, f, α,A, β, γ and n are assumed to be
fixed at 0.1, 0, 20, 0.1, 2, 2 and 1 respectively. The value
of k is susceptible to the relationship of displacement and
generated force, and the average slope of the curve de-
picted by Fig. 3b becomes larger when k does. For this
reason, k is always to represent the average slope of x−F
loops, which can be regarded as stiffness factor.

• Parameter f : The variety of the curves in Fig. 3c seems
obviously simple. The force f is an offset that accounts
for the nonzero mean value observed in the measured
force.

• Parameter α: Its value is dependent on the hysteresis
variable z which is a solution of the hysteresis differential
z. Thus, it is very difficult to obtain an explicit value of
α. The variety of the curves in Fig. 3d shows that α rep-
resents the ratio of linear to nonlinear responses, which is
responsible for hysteretic characteristics.

• Parameters A, β and γ: The deformation of the curves
seems analogous when A, β and γ vary severally (see
Fig. 3e). They do not have a very clear physical mean-
ing in general, which is the main reason that they match a
wide class of hysteretic curves. Hence, we can call them
shape control factors.

• Parameter n: As shown in Fig. 3f, it represents the sharp-
ness of yield which controls the fullness of the hysteresis
loops. In general, its value range is usually from 1 to 3.

Based on the above analysis, it is concluded that the com-
mon definition of these parameters in the Bouc-Wen model is
suitable for the MR fluid damper in Table 1.

3.3. Parameter Identification
The Bouc-Wen model comprises two equations, one of

which is a differential equation concerning the intermediate
variable z . Since the expressions are obviously complex,
for convenience, Bouc-Wen mathematic equations can be de-
scribed by a discrete form, such as

Fsim(k) = f(x(k), ẋ(k), z(k), Θ); (3)
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(a) (b) (c)

(d) (e) (f)

Figure 3. Examples of hysteresis curves generated by the Bouc-Wen model with different parameters.

where Fsim is simulated force and Θ = [c, k, f, α,A, β, γ, n]
is a set of identified parameters of the Bouc-Wen model, and
x/ẋ is the damper displacement/velocity derived from experi-
mental data.

We also assume the responses of one hysteretic system or
device to be a Bouc-Wen model. Then the system can be ex-
pressed by

Fexp(k) = f(x(k), ẋ(k), z(k), Θ0); (4)

where Fexp is damper force derived from experimental data,
and Θ0 is a set of original parameters representing the inherent
characteristics of the hysteretic systems, which must be found
out by an advanced parallel algorithm.

A flow chart on the parallel algorithm for parameter estima-
tion of the Bouc-Wen model is depicted in Fig. 4. Its process
is introduced as follows: At first, experimental data, including
damper displacement x and velocity x̄, were collected and in-
corporated into the Bouc-Wen model formulation expressed in
Eqs. (1) and (2). Accordingly, the simulated MR damper force
Fsim was figured out. During this phase of the parallel algo-
rithm, the objective function was defined as the sum of differ-
ences between the MR damper force of experimental results

Figure 4. The procedure of parameter estimation by Parallel Algorithm.

and those of the simulated results. It can thus be concluded
that, the lower the objective function value, the better the es-
timated parameters. Through appropriate iterative circulation,
the best results will eventually be picked out.

4. HYBRID EVOLUTIONARY ALGORITHM

4.1. Modified GA
As a powerful computational search and optimization tool,

the GAs have been applied successfully to problems in many
fields such as optimization design, fuzzy logic control, neural
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networks, expert systems, scheduling and many others.4, 8, 18

Generally, GA procedure consists of three basic factors: chro-
mosome structure, fitness function, and some control param-
eters (select operator, crossover operator, etc.). The standard
GA implementation was generally in its standard form, using
a fixed number of generations for iteration and with predeter-
mined crossover and mutation rates. However, the algorithm
efficiency was not adequately considered in the GA. With the
development of GA, variations to the traditional procedures
were proposed in a large amount of literature. By setting ap-
propriate control-parameters, they will conspire to make opti-
mization results more accurate and effective. In this paper, a
computationally-efficient GA is proposed firstly.

4.1.1. Chromosome Structure

Chromosome structure mainly depends on the nature of the
problem to be solved. In the case of the solution structure of
parameter estimation of the Bouc-Wen model, there are alto-
gether eight undetermined parameters (c, k, f, α,A, β, γ and
n) in Eqs. (1) and (2). Therefore, the chromosome can be

Θi = {ci, ki, fi, αi, Ai, βi, γi, ni}, i = 1, ..., N ; (5)

where N is the maximum of chromosomes and i is the ith in-
dividual in chromosome.

4.1.2. Elitism Strategy

The lowest fitness obtained in the chromosome during the
GA iteration is stored so as to ensure the offspring of the best
chromosome in subsequent generations.19 Generally, standard
GA uses the roulette wheel strategy to reserve the relative
”good” individuals for next circle based upon the values of in-
dividual fitness function. However, this method easily arouses
some vital problems such as ”low efficiency” and ”local op-
timization,” because of its random search property.20 Draw-
ing on this, we can reserve the fittest individual in each gen-
eration without undergoing crossover and mutation progress,
which can converge to the global optimum. When the genera-
tion evolves, the minimum error (elite individual) will directly
approach the global optimum. That is

ei+1
min ≤ e

i
min; (6)

where eimin is the minimum error (elite individual) at the i th
generation. ”e” can be designed by the distance between the
simulation and experiment results of damper forces. In this
paper, we choose the fitness function as the error ”e” (see
Eq. (10)). As a result of the elitism strategy, the value of the
error function is descending to zero directly. The stored mini-
mum errors cannot increase over iterations.

Unlike the standard GA implementation where the best
individual (chromosome) might be lost due to encountered
stochastic effects, the iterative process in improved GA is al-
ways searching for the universal best solution at the minimum
error rate since the strategy can remove the destructive effect
of the crossover and mutation. Consequently, the tendency of
descending errors is successfully maintained and the efficiency
of the algorithm is greatly enhanced.

4.2. Modified PSO
Swarm intelligence is an exciting new research field still in

its infancy compared to other paradigms in artificial intelli-
gence. A number of computational swarm-based systems have
been developed in the past decade, where the approach is to
model the very simple local interactions among individuals,
from which complex problem-solving behaviors emerge.21

Suppose that the searching space is D-dimensional and n
particles form the colony. The i th particle represents a D-
dimensional vector Xi(i = 1, 2, . . . , n) that stands for the i th
particle location Xi = (xi1, xi2, ..., xiD)(i = 1, 2, ..., n) in
the searching space. In the PSOs, the location vector x(t+1)id

at the next time step is given by

x
(t+1)
id = x

(t)
id + v

(t+1)
id ; (7)

where x(t)id , v(t+1)
id are the location at the current time step and

the velocity at the next time step for the i th particle and d th
dimensional vector.

We should calculate the particle’s fitness value by putting its
location into a designated objective function that is analogous
to the process of GA. When the value of the fitness is higher,
the correspondingXi is more ”excellent”. The velocity vectors
are adjusted to move toward the previous best position of each
particle and that of a swarm, defined as

v
(t+1)
id = ωv

(t)
id + c1r1(Pid − x(t)id ) + c2r2(Pgd − x(t)gd ); (8)

where i = 1, 2, . . . , n, d = 1, 2, . . . , D, r1 and r2 are uni-
formly distributed random numbers (r1, r2 ∈ [0, 1]), and c1
and c2 are learning rates controlling the effects of the personal
and global guides, respectively, while ω is the inertia weight
controlling the balance between exploration and exploitation,
and it is the following decreasing linear function:

ω(t) = ωmax − (ωmax − ωmin)
t

tmax
; (9)

where ωmax and ωmin are the final weight and initial weight
respectively. The equation is meant to decrease the diversifica-
tion characteristic of particles within a certain velocity, which
guarantees the searching point gradually approximate to Pid

and Pgd. In this paper we set the values of ωmax and ωmin

equal to 0.9 at the beginning of the search and 0.4 at the end
of the search respectively, according to the empirical study.5

By using a linearly-decreasing inertia weight, the PSO will be
ameliorated greatly in contrast to the cases where the inertia
weight is a positive constant. Like the improved GA, the fit-
ness function fit is equal to the objective function RMSE as
in Eq. (10).

4.3. Hybrid Evolutionary Algorithm
GA and PSO are basically similar in their inherent paral-

lel characteristics, whereas experiments display that they have
their respective advantages and disadvantages. This paper is
set out to present a hybrid evolutionary algorithm, by combin-
ing the advantages of GA and PSO. This algorithm can high-
light the excellent features of GA and PSO while avoiding the
weaknesses, such as low calculation efficiency in GAs and pre-
mature convergence in PSOs.

In hybrid evolutionary algorithm, the appropriate objective
function and termination rule should be designed as are intro-
duced as below.
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4.3.1. Fitness Function

A fitness function is a measuring mechanism that is used
to evaluate the status of every individual or particle. Each goes
through the same evaluating exercise. The key to directly influ-
encing the final identified results is in designing an appropriate
identified function. This paper employs the Root-Mean-Square
Error (RMSE), herein to be taken as the fitness function, which
is governed by

fit =
1

n

√√√√ n∑
i=1

(Fsim,i − Fexp,i)
2
; (10)

where n is the number of data points, and each sim-
ulation/experimental data point is indexed by subscript
sim, i/exp, i.

4.3.2. Termination Rule

An early evolutionary algorithm generally terminates after
the expiry of a fixed number of terminations. However, when
the solution has already found the minimum error but not yet
arrived at the designated generation, it is undoubtedly time-
consuming to go on iterating. For this reason, an appropriate
termination rule should be created so as to relieve the unneces-
sary computational burden.

The termination strategy in this study is proposed under two
aspects: one is depending on maturity degree of the population
proceeding in a certain generation. Another is in view of the
fittest individuals after iterating a certain generation, control-
ling the real calculation accuracy.

Rule 1: Terminate the GA-PSO if a reduction of minimum
error lower than 20% of maximum error does not arise in fur-
ther generation, which is defined as

ekmin − ek+1
min 6 0.2 max

k
{ekmin}; (11)

where ekmin represents the minimum error in k th generation.
This rule can guarantee that the population should not be di-
versified any more, and the best individual is very close to the
global solution.

Rule 2: Terminate the GA-PSO if the minimum fitness value
is below a threshold emin, which is given by

fitmin 6 emin; (12)

where emin is the designated threshold value of fitness, and
fitmin represents the minimum fitness value in individuals.
This rule can guarantee the final solution’s precision is ade-
quately satisfied.

The flowchart of the hybrid evolutionary algorithm is intro-
duced in Fig. 5. Firstly, the initial population is randomly gen-
erated according to structural optimization problems, and then
the objective function is utilized to evaluate the status of each
individual or particle in the population. Based on the evalua-
tion results, the population is divided into two sub-populations.
Within the population, 50% of the individuals with lower fit-
ness are input to the GA-based identifier to identify the un-
known parameters. Simultaneously, another 50% with higher
fitness are input to the PSO. The above allocation scheme can
ensure improving the convergence speed of GA, while avoid-
ing plunging into local optimum in PSO. The process will be

Figure 5. Flow chart of hybrid evolutionary algorithm.

Figure 6. Shubert functions graph.

repeated until one solution can satisfy the requirement of the
termination rule, and it should be exacted to be the final or
optimal solution.

4.4. Validation in Test Function Problems
The performance of the hybrid evolutionary algorithm was

evaluated by multi-variable, multi-model function problem
that is known as the Shubert function. The test function is as
follows:

Optimize the minimum in f(x1, x2) =

5∑
i=1

i cos[(i+ 1) · x1 + i] ·
5∑

i=1

i cos[(i+ 1) · x2 + i];

x1, x2 ∈ [−10, 10].

The Shubert function graph in Fig. 6 displays multiple
peaks. If Standard GA or PSO is used, the best solution will
usually search for the local minimum value of the function.
Avoiding the problems of ”premature” and ”local optimiza-
tion” is an arduous task that should be settled successfully. In
order to prove the superiority of the proposed approach, we ap-
plied the Standard GA and the GA-PSO respectively to solve
the minimum value of the Shubert function, and their efficien-
cies and accuracies are compared to each other.

Note that the standard GA is performed using the follow-
ing algorithm settings: roulette wheel selection, crossover rate
Pc = 0.85, mutation rate Pm = 0.01, and the maximum gener-
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Table 2. Test data of Shubert function minimization.

min f(x1, x2)
Generation

5 10 25 30 40 50
Standard GA -110.3478 -162.8241 -186.2324 -186.6189 -185.8875 -186.7301

GA-PSO -183.4561 -186.7098 -186.7306 – – –

ationN = 50. Both in the standard GA and GA-PSO, the num-
ber of population/particles is a set of 80. The above-mentioned
approach has been implemented by MATLAB. Simulation is
processed by an Intel Core2 Duo E6300 1.86 processor with
1024M RAM, under Windows 7.

Figure 7 illustrates that the value of the fitness function ex-
periences an approximate descending course as optimization
processes both in the Standard GA and GA-PSO. It is ob-
served in Fig. 7a that the first twelve generations finish more
than 90% of the convergence in the iterative process, and the
further reduction in estimation error is in the region of gentle
slope. There is no more evolution after the 16th generation
when the error is reaching the minimum value. Thus, it is very
crucial to establish an appropriate termination rule which can
get rid of redundant iterative generations in due time. When
GA-PSO adopts the termination Rule 1 and Rule 2, the process
shows a very quickly descending tendency, only experiencing
twenty-five generations, and the best solution (-186.7306) is
found out. Meanwhile, by comparison between the average
solution experiences with standard GA and GA-PSO, the solu-
tion range in GA-PSO is a little farther from the final solution
than result in the standard GA. This is because the average
solution is mainly dependent on the dispersion degree of the
individuals in optimization algorithms. If the individuals were
more diversified, the average solution would be more decen-
tralized. In this sense, the generated individuals in GA-PSO
are much more diversified, resulting in one global optimized
solution. Thus, a more accurate solution in GA-PSO will be
obtained, which is also verified in Table 2.

As illustrated in Table 2, the minimum value of the Shubert
function by using Standard GA is -186.7301 in the 50th gener-
ation. With regard to the GA-PSO, the minimum value main-
tains -186.7306 in the 25th generation. Obviously, a smaller
number of generations are required, and higher accuracy is ob-
tained by the GA-PSO before termination. In view of this, we
recommend the hybrid evolutionary algorithm (GA-PSO) for
solving complex problems because of its high precision and
efficiency.

5. IDENTIFICATION RESULT AND
DISCUSSION

In order to implement numerical calculation for the Bouc-
Wen model, a 4th order Runge-Kutta method is adopted to
solve the differential Eq. (2) with a time step ∆t = 0.02 s. As-
suming that the excitation function is harmonic displacement
x = 10sin(πt) (where the unit is mm), some typical solutions
of the mechanical formulation are shown in Fig. 8.

In this study, the first case that was considered original
values of eight parameters (c0, k0, f0, α0, A0, β0, γ0, n0) are
assumed to be fixed at 0.08 kN·s/mm, 0.01 kN/mm, 0 kN,
20 kN/mm, 0.05, 4 kN·s/mm2.8, 2 kN·s/mm2.8 and 1.8 respec-
tively. Likewise the second case is considered that original
values of parameters are assumed to be fixed at 0.1 kN·s/mm,
0.01 kN/mm, 2.0 kN, 25 kN mm, 0.05, 4 kN·s/mm2.5,
2 kN·s/mm2.5 and 1.5 respectively.

(a) Standard GA.

(b) GA-PSO.

Figure 7. Iterative track of the best and average fitness values.

5.1. Noise-free Estimation

Firstly, we consider noise-free estimation, in which force
data is not corrupted. In order to validate the superiority of the
GA-PSO, it is compared with the Standard GA in terms of the
accuracy and efficiency of the results. The Standard GA is per-
formed using the following algorithm settings: roulette wheel
selection, crossover rate Pc = 0.85, mutation rate Pm = 0.01,
and the maximum generation N = 30.

Statistics of the estimated parameters with case 1 and case
2 are illustrated in Table 3 and Table 4, respectively. Further-
more, we also compare the accuracy and efficiency between
the Standard GA and the GA-PSO in Table 5. The errors in
the GA are 0.1351 kN on average, the process of which is ter-
minated in the 30th generation. Regarding the GA-PSO, how-
ever, the average errors are less than 0.0933 kN , and its pro-
cess is terminated within the 16th generation. Obviously, the
GA-PSO requires a smaller number of generations but obtains
results with much greater accuracy.

As shown in Fig. 9, it is found that the hysteretic loops are in
very close agreement with the simulated hysteresis. Note that
the original curves are plotted by solid lines, and the estimated
results are plotted by a series of small circles. In Fig. 10, the
errors between the original and estimated damper force values
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Case 1: c = 0.08, k = 0.01, f = 0, α = 20, A = 0.05, β = 4, γ = 2, n 1.8.

Case 2: c = 0.10, k = 0.01, f = 2.0, α = 25, A = 0.05, β = 4, γ = 2, n = 1.5.

Figure 8. The hysteresis loops generated by the Bouc-Wen model.

Table 3. Comparisons of estimated parameters from the case 1 by using Stan-
dard GA and GA-PSO.

Estimated by Original Standard GA GA-PSO
c (kN·s/mm) 0.08 0.0849 0.0817
k (kN/mm) 0.01 0.0157 0.0241
f (kN) 0 0.0568 0.0146

α (kN/mm) 20 15.9478 16.7831
A (dimensionless) 0.05 0.0573 0.0673
β (kN·s/mmn+1) 4 1.4041 3.1223
γ (kN·s/mmn+1) 2 2.2604 2.0178
n (dimensionless) 1.8 1.7031 1.7167

RMSE (kN) N/A 0.1425 0.0933

Table 4. Comparisons of estimated parameters from the case 2 by using Stan-
dard GA and GA-PSO.

Estimated by Original Standard GA GA-PSO
c (kN·s/mm) 0.1 0.1087 0.1018
k (kN/mm) 0.01 0.0148 0.0201
f (kN) 2 1.9717 2.0311

α (kN/mm) 25 19.9222 16.2741
A (dimensionless) 0.05 0.0416 0.0774
β (kN·s/mmn+1) 4 3.2460 2.7106
γ (kN·s/mmn+1) 2.00 2.3371 3.1919
n (dimensionless) 1.5 1.5981 1.5362

RMSE (kN) N/A 0.1277 0.074

can also be surveyed, and maintain less than 0.2 kN every-
where.

5.2. Noise Estimation
Next, parameter estimation of the Bouc-Wen model with a

set of noisy data is considered. In the real parameter estima-

Table 5. Comparison of accuracy and efficiency by using Standard GA and
GA-PSO with original data.

Standard GA GA-PSO
RMSE (kN) Generation RMSE (kN) Generation

Case 1 0.1425 30 0.0933 15
Case 2 0.1277 30 0.0740 16

Average 0.1351 30 0.0836 15.5

tion problem of the model, measured data are often corrupted
by noise. Then uncertainty can arise from measurement instru-
ments, system noise, low-accuracy calculation, etc. Thus, the
effect of noise should be taken into account. In this paper, a
series of random values are added to the original data. Assume
x′ is noise data, and then it can be divided two parts:

x′ = x+ xn
Bouc−Wen−−−−−−−−→ F ′ = F + Fn; (13)

where x represents the component of original data, and xn
represents the component of additive noise at each particular
time. Through substituting x′ for x in Bouc-Wen model, a set
of damper force data F ′ is obtained subsequently. Then the
RMSE function Eq. (10) can be replaced by

fit =
1

n

√√√√ k∑
i=1

(Fsim,i − F ′i)
2
; (14)
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(a) Case 1.

(b) Case 2.

Figure 9. Parameter estimation results using the GA-PSO.

(a) Case 1.

(b) Case 2.

Figure 10. Errors by using GA-PSO.

(a) Case 1.

(b) Case 2.

(c) Case 1.

(d) Case 2.

Figure 11. Parameter estimation by the GA-PSO with noisy data at (a),(b)10%
and (c),(d)25% levels of NR.
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In this study, the percentage noise ratio is designed to per-
form optimization for different level noise. The noise ration
(NR) is given by

NR =
1

n

n∑
i=1

(
xi − x′i
x̄

)× 100%; (15)

where n is the number of data points, each data point is indexed
by subscript i, and x̄ represents the average value of original
data .

Some numerical results of hysteretic loops simulated using
GA-PSO with noise data are displayed in Fig. 11, in which the
estimation curves appear to remain quite close to the original
one. This proves that the proposed method is effective, even if
the original data are corrupted by different degrees of noise.

By collecting a large amount of examples shown in Table 6
and Table 7, most of the estimated parameter values differ from
the original values, and there exist different errors under differ-
ent degrees of noise. When the noise ratio becomes bigger, the
error will increase. It should be noted that the errors are basi-
cally below 0.2 kN, even if the noise ratio reaches up to 40%.

5.3. Simulation of a Real MR Damper
In the experiment, the damper behavior of the MR damper is

observed under 0.5 Hz, 1.0 Hz and 2.0 Hz sinusoid excitation
with 10 mm amplitude displacement, and the magnetic field
is varied by different currents ranging from 0 A to 3.0 A. In
Figure 2, the damping curves from experimental data are not
very smooth, which should be interfered by a certain degree of
noises, possibly arising from measurement instruments, sys-
tem noise, etc. The noise existing in hysteretic curves will
impose more difficulties on construction for an effective Bouc-
Wen model with accurate identified parameters. In this paper,
a large amount of experimental data obtained from the MR
fluid damper is utilized to verify that the proposed approach
has the capability to estimate the satisfactory parameters of the
Bouc-Wen model efficiently. We also compare it with Stan-
dard GA in terms of accuracy and efficiency. (Herein the Stan-
dard GA is performed using the following algorithm settings:
roulette wheel selection, crossover rate Pc = 0.85, mutation
rate Pm = 0.01, and the maximum generation N = 60.)

In the proposed method, several sets of identified param-
eters are figured out due to different applied current intensi-
ties, which are shown in Table 8. By using Standard GA, the
average errors are 0.1254 kN, 0.1766 kN and 0.2701 kN un-
der the frequency of 0.5 Hz, 1.0 Hz and 2.0 Hz, respectively.
Regarding the GA-PSO, however, the average errors are less
than 0.1012 kN, 0.1214 kN and 0.2 kN, and their processes
are terminated in the 35th, 40th, and 42th generation, respec-
tively. In GA-PSO, the solution is quite precise, where its er-
rors are consistently below 0.2 kN . In addition, the GA-PSO
represents higher computational efficiency whose iteration are
around forty generations.

In the proposed method, the typical results are drawn in dif-
ferent cases of 0.5 Hz, 1.0 Hz and 2.0 Hz frequency with dif-
ferent current intensities from 0 A to 3 A. Each case has the si-
nusoidal displacement of 10 mm. Part of the calculation values
of the estimated parameters are listed in Table 9. As exhibited
in Fig. 12, it merits great attention that the nonlinear hysteresis
responses are in large agreement with theexperimental data by

Table 6. Estimated parameters from case 1 with noisy data.

NR (%) 10 20 30 40
c (kN·s/mm) 0.0791 0.0837 0.0958 0.0760
k (kN/mm) 0.0228 0.0300 0.0315 0.0015
f (kN) 0.0159 0.0224 0.0379 0.0626

α (kN/mm) 17.4237 27.5348 15.5224 28.6553
A (dimensionless) 0.0492 0.0273 0.0387 0.0412
β (kN·s/mmn+1) 1.0009 2.6252 4.3346 3.6241
γ (kN·s/mmn+1) 4.2481 2.6995 3.9699 3.8054
n (dimensionless) 1.8955 1.7282 1.9878 1.8416

RMSE (kN) 0.1237 0.1345 0.1520 0.1982

Table 7. Estimated parameters from case 2 with noisy data.

NR (%) 10 20 30 40
c (kN·s/mm) 0.0979 0.1101 0.1121 0.1105
k (kN/mm) 0.0092 0.0147 0.0180 0.0083
f (kN) 1.9020 1.9618 1.8989 2.0804

α (kN/mm) 22.0790 23.0376 15.5506 21.7743
A (dimensionless) 0.0592 0.0251 0.0375 0.0234
β (kN·s/mmn+1) 4.7363 2.5276 1.6250 4.9113
γ (kN·s/mmn+1) 2.9286 4.9258 3.1510 3.8106
n (dimensionless) 1.6124 1.6960 1.5912 1.7903

RMSE (kN) 0.1015 0.1304 0.1640 0.1892

using GA-PSO method. It is intended to testify that the results
of the proposed method are very satisfactory.

6. CONCLUSION

This paper reports on an experimental study of the MR
damper, the results of which indicate that the MR damper has
the remarkably nonlinear hysteretic characteristic. Usually the
Bouc-Wen model is utilized to model the hysteretic character-
istic. However, the Bouc-Wen model consists of a set of multi-
unknown parameters that need to be estimated simultaneously.
It is a burdensome task to effectively identify the exact val-
ues of the parameters. In view of this, this paper proposes a
novel hybrid evolutionary algorithm combining Genetic Algo-
rithm with Particle Swarm Optimization (GA-PSO). The sim-
ulation results verify the GA-PSO has the ability to search for
the global optimal solution with remarkable computational ac-
curacy and efficiency. Finally, a series of preliminary data ob-
tained from a real MR damper is used to again testify that the
proposed method is capable of estimating the satisfactory pa-
rameters of the Bouc-Wen model efficiently. It makes sense
to predict that the approaches presented herein can also throw
light on the development and characterization of other complex
hysteretic systems.
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In this paper, the vibrations of a circular plate with a rotationally restrained edge that has concentric rigid ring
support are studied. The influences of the rotational restraint parameter and radius of internal rigid ring support on
the vibration of the plate’s natural frequencies are investigated. Frequencies for the first three modes of vibration
are obtained and plotted graphically. The cross-over radius and the optimum location point of internal rigid ring
support are determined. The results presented in this paper are from exact analysis, and hence can serve as standard
values for estimating the accuracy of results obtained from various approximate methods.

1. INTRODUCTION

In many branches of engineering—such as naval, automo-
bile, and civil—continuous plates are extensively used. There
exists a great deal of literature on the present subject area of
circular plate vibrations, predominantly with free, clamped,
and simply supported edges.1–4 Leissa5–10 has reported natural
frequency results in many of his papers on continuous circu-
lar plates, and other researchers have reported results on the
influence of internal rigid ring supports on the dynamic char-
acteristics of circular plates.

Bodine11 has premeditated the axisymmetric free vibrations
of the circular plates, and Laura, et al.12 presented useful re-
sults on the natural frequencies of axisymmetric modes of vi-
bration. The case of the influence of rigid supports along with
mode switching was studied by Bodine,13 varying the values of
the ring support radius and Poisson’s ratio of the circular plate
material. Ding Zhou14 studied the free vibration of arbitrarily
shaped plates with concentric ring elastic and/or rigid supports.
In realistic circumstances, to fortify the load-carrying capabil-
ity of the plate, occasionally internal stiffeners and/or concen-
tric supports are used. In such cases, vibrational characteristics
of the plate will vary significantly. Hence, the stiffeners’ prop-
erties and concentric support should be included in the analysis
of the circular plates. Many researchers studied the vibration
characteristics of the circular plates with a range of boundary
situation and internal intensification.15–26 Wang26 studied the
problem of fundamental frequency of a circular plate on a ring
and free boundary and presented the results for the fundamen-
tal frequency related to an anti-symmetric mode of vibration
when the support radius is small. Many researchers studied
the problem of vibrations of circular plates with concentric ring
support, as well.27–30

Najafizadeh and Mirkhalaf Valashani31 carried out the vi-
bration analysis of circular plates that have an eccentric circu-
lar perforation and a free edge with an attached concentrated
mass at any arbitrary position on the plate. The Rayleigh-Ritz
variational method was applied to determine the fundamental
natural frequency coefficient for the circular plates with the
eccentric circular perforation and arbitrarily attached concen-

trated mass based on the classical plate theory (CPT). Mirkha-
laf Valashani32 utilized the Rayleigh-Ritz method to investi-
gate the transverse vibration of clamped and simply supported
circular plates with an eccentric circular perforation and at-
tached concentrated mass. Wang33 studied the vibration of a
circular plate with an attached core and clamped, simply sup-
ported, free and sliding boundary conditions.

However, as we know, in practical industrial engineering sit-
uations, we seldom come across such ideal edge conditions.
The review of research on the vibration of circular plates re-
strained against rotation can be found in the studies made by
Laura, et al.,34 Laura and Grossi,35 Narita and Leissa,36 Irie,
et al.,37 and Veera, et al.38 It is well-established that the stipu-
lation on an edge frequently tends to be in between the classi-
cal edge conditions (simply supported, free and clamped) and
may be in contact with elastic restraints, such as rotational re-
straints.39–42 However, there is no other research in the litera-
ture addressing the common boundary conditions with a rota-
tional restrained edge at the plate’s periphery.

In many practical situations such as bolted connections, the
plate edge becomes something between a classical simply sup-
ported edge and a clamped edge. Often, the edge conditions
can be simulated by using a rotational spring. This is exactly
what is attempted in this paper. The main intention of this
paper is therefore to study the effect of a rigid ring support ra-
dius along a concentric circle, and a plate with a rotationally
restrained edge (shown in Fig. 1) using an exact method of so-
lution approach. The natural frequencies of a circular plate for
varying values of rotational restraint along the plate edge, and
the ring support radius for a wide range of non-dimensional
parameters, are presented in graphical form for use in design.

2. ANALYTICAL FORMULATION

Consider a plate of radius R, Poisson’s ratio ν, density ρ,
modulus of elasticity E, and thickness h. Figure 1 shows a
plate which has an outer boundary rotationally restrained and
simply supported (radius R), and a rigid ring support at radius
bR.
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Figure 1. Rotationally restrained circular plate resting on a concentric rigid
sing support.

Subscript I denotes b ≤ r ≤ 1 (outer region) and subscript II
denotes 0 ≤ r ≤ b (inner region). b, 1 denotes the radius of the
inner and outer regions, respectively, after normalizing every
length by R. The following fourth-order differential equation3

describes vibration of plate:

D∇4w + ρh
∂2w

∂t2
= 0. (1)

Here, D represents the flexural rigidity of plate. The general
form of the lateral displacement of the vibration of a plate can
be expressed as w = u(r) cos(nθ)eiωt, where (r, θ) are polar
coordinates, w is the transverse displacement, n is the number
of nodal diameters, ω is the frequency, and t is time. The func-
tion u(r) is a linear combination of Bessel functions Jn(kr),
Yn(kr), In(kr), Kn(kr), and k = R(ρω2/D)1/4 is the square
root of the non-dimensional frequency.3 The general solutions
for regions I and II are

uI(r) = C1Jn(kr) + C2Yn(kr) + C3In(kr) + C4Kn(kr);
(2)

uII(r) = C5Jn(kr) + C6In(kr). (3)

Considering the rotationally restrained and simply supported
edge at the outer region, the boundary conditions can be for-
mulated as

Mr(r, θ) = KR1
∂wI(r, θ)

∂r
; (4)

wI(r, θ) = 0. (5)

The radial moment at the external periphery is expressed as

Mr(r, θ) = −
D

R

[
∂2wI(r, θ)

∂r2
+

ν

(
1

r

∂wI(r, θ)

∂r
+

1

r2
∂2wI(r, θ)

∂θ2

)]
. (6)

From Eqs. (4) and (6) yields the following expression:[
∂2wI(r, θ)

∂r2
+ ν

(
1

r

∂wI(r, θ)

∂r
+

1

r2
∂2wI(r, θ)

∂θ2

)]
=

−R11
∂wI(r, θ)

∂r
. (7)

Equations (5) and (7) yield the following:

u′′I (r) + ν
[
u′I(r)− n2uI(r)

]
= −R11u

′
I(r); (8)

uI(r) = 0. (9)

At the outer region (at r = 1), the boundary conditions are as
follows:

u′′I (1) + ν
[
u′I(1)− n2uI(1)

]
= −R11u

′
I(1); (10)

uI(1) = 0; (11)

where R11 = KR1R
D is the normalized spring constant KR1 of

the rotational elastic spring at outer periphery.
Apart from the rotationally restrained boundary at the outer

edge, the continuity requirements at concentric ring (r = b)
are as follows:

uI(b) = 0; (12)
uII(b) = 0; (13)

u′I(b) = u′II(b); (14)

u′′I (b) = u′′II(b). (15)

The non-trivial solutions to Eqs. (10)–(15) are required. From
Eqs. (2), (3), and (10)–(15), we obtained the subsequent equa-
tions:[

k2

4
P2 +

k

2
(ν +R11)P1 −

(
k2

2
+ νn2

)
Jn(k)

]
C1 +[

k2

4
Q2 +

k

2
(ν +R11)Q1 −

(
k2

2
+ νn2

)
Yn(k)

]
C2 +[

k2

4
R2 +

k

2
(ν +R11)R1 +

(
k2

2
− νn2

)
In(k)

]
C3 −[

k2

4
S2 −

k

2
(ν +R11)S1 +

(
k2

2
− νn2

)
Kn(k)

]
C4 = 0;

(16)

[Jn(k)]C1 + [Yn(k)]C2 + [In(k)]C3 + [Kn(k)]C4 = 0;
(17)

Jn(kb)C1 + Yn(kb)C2 + In(kb)C3 +Kn(kb)C4 = 0; (18)
Jn(kb)C5 + In(kb)C6 = 0; (19)[
k

2
P ′1

]
C1 +

[
k

2
Q′1

]
C2 +

[
k

2
R′1

]
C3 −

[
k

2
S′1

]
C4 −[

k

2
P ′1

]
C5 −

[
k

2
R′1

]
C6 = 0; (20)[
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4
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k2

2
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4
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2
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]
C2 +[

k2

4
R′2 +
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2
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]
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4
S′2 +

k2

2
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]
C4 −[

k2

4
P ′2 −

k2

2
Jn(kb)

]
C5 −

[
k2

4
R′2 +

k2

2
In(kb)

]
C6 = 0;

(21)

where

P1 = Jn−1(k)− Jn+1(k); P2 = Jn−2(k) + Jn+2(k);

Q1 = Yn−1(k)− Yn+1(k); Q2 = Yn−2(k) + Yn+2(k);

R1 = In−1(k) + In+1(k); R2 = In−2(k) + In+2(k);

S1 = Kn−1(k) +Kn+1(k); S2 = Kn−2(k) +Kn+2(k);

P ′1 = Jn−1(kb)− Jn+1(kb); P ′2 = Jn−2(kb) + Jn+2(kb);

Q′1 = Yn−1(kb)− Yn+1(kb); Q′2 = Yn−2(kb) + Yn+2(kb);

R′1 = In−1(kb) + In+1(kb); R′2 = In−2(kb) + In+2(kb);

S′1 = Kn−1(kb) +Kn+1(kb); S′2 = Kn−2(kb) +Kn+2(kb).

3. SOLUTION

For the given values of n, ν, R11, and b Eqs. (16)–(21)
derived above are solved to obtain an exact characteristic fre-
quency equation by suitably eliminating the coefficients C1,
C2, C3, C4, C5, and C6. The frequency parameter k can be
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Figure 2. Frequency of a circular plate and concentric rigid ring support radius
b for R11 = 2.5.

Figure 3. Fundamental frequency k of a circular plate and concentric rigid
ring support radius b for R11 = 5.

determined from the characteristic equation by a simple root
search method. Using Mathematica, computer software with
symbolic capabilities is used to solve this problem. Poisson’s
ratio utilized in these studies is 0.3.

4. RESULTS AND DISCUSSION

The fundamental frequency parameters for the first three
modes for diverse values of rotational restraints (R11 = 2.5,
5, 20, 50, 100, 500, 1000, and 1016) are computed. Results
for first three modes of vibrations are determined and pre-
sented in Figs. 2–9. As seen in Fig. 2, for a particular value
of R11 = 2.5, the curve is unruffled with different segments
because of mode switching. The fundamental frequency is re-
lated to asymmetric n = 1 mode when the concentric ring sup-
port radius b is small. Within this segment (the spotted lines in
Fig. 2), the fundamental frequency reduces as the value of ring
support radius b decreases. On the higher concentric rigid sup-
port radius, the fundamental frequency is related to the axisym-
metric mode. Within the other segment (the continuous lines
in Fig. 2), the fundamental frequency increases as b increases
up to a peak point, corresponding to the maximum frequency,
and thereafter decreases as b increases in value, as shown in
Fig. 2.

Mode switching takes place at b = 0.012427, and the funda-
mental frequency parameter depends on the asymmetric mode
when b ≤ 0.012427 (as shown by spotted lines in Fig. 2).

Figure 4. Fundamental frequency k of a circular plate and concentric rigid
ring support radius b for R11 = 20.

Figure 5. Fundamental frequency k of a circular plate and concentric rigid
ring support radius b for R11 = 50.

When the value of b goes beyond 0.012427, the axisymmetric
mode leads to an accurate fundamental frequency, as shown by
constant lines in Fig. 2. The optimum location is the critical ra-
dial point for the concentric rigid ring support corresponding to
the maximum frequency parameter. The optimum location of
concentric rigid ring support and corresponding fundamental
frequencies are b = 0.4 and k = 5.62304, respectively, which
are equal to the nodal radius related to the axisymmetric mode
and its frequency.

Similarly, it has been observed from Figs. 3–9, for varying
values of the rotational restraint (R11 = 2.5, 5, 20, 50, 100,
500, 1000, and 1016) parameter, that the curve is unruffled
with different segments because of the switching of vibration
modes. The fundamental frequency is related to the asymmet-
ric n = 1 mode when the concentric ring support radius b is
small. Within this segment (the spotted lines in Figs. 3–9), the
fundamental frequency reduces as the value of the ring support
radius b decreases. On higher values of the concentric rigid
support radius, the fundamental frequency is related to the ax-
isymmetric mode. Within this segment (the continuous lines in
Figs. 3–9), the fundamental frequency increases as b decreases
up to a peak point corresponding to the maximum frequency,
and thereafter decreases as b decreases in value, as shown in
Figs. 3–9. The cross-over radius is the radius of the ring sup-
port where the switching of vibration mode occurs. The cross-
over radius bcor and the corresponding frequency parameters
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Figure 6. Fundamental frequency k of a circular plate and concentric rigid
ring support radius b for R11 = 100.

Figure 7. Fundamental frequency k of a circular plate and concentric rigid
ring support radius b for R11 = 500.

kcor are determined and presented in Table 1. In addition, the
optimal solutions (the optimal position of concentric rigid ring
support bopt and subsequent fundamental frequency kopt) are
determined and presented in Table 2.

From the results obtained, it can be observed that the cross-
over radius increases from 0.01242 to 0.017216 as the rota-
tional restraint parameter R11 varies from 2.5 to 1016. The op-
timal location is 0.4, which remains constant from R11 = 2.5
to 0.4 for R11 = 1016. However, the fundamental frequency
increases from 5.62304 to 6.27065 at the respective optimal
locations.

In addition to the variation of the fundamental frequency pa-
rameters for the first three modes for diverse values of rota-
tional restraints (R11 = 2.5, 5, 20, 50, 100, 500, 1000, and
1016) as shown in Figs. 2–9, the percentage of variation of
frequency due to the rotational restraints are computed. The
percentage increment in the frequency parameter for the first
three modes is presented in Table 3. It is noted that for a given
radius, the percentage increment decreases for the first three
modes (n = 0, n = 1, and n = 2) as the rotational restraint
parameter R11 varies from 2.5 to 1016 in each case, i.e. for the
first three modes. The percentage of variation of frequency as
the rotational restraint parameter R11 varies from 2.5 to 1016

for the first three modes is shown in Fig. 10. It is noted from
Fig. 10, which, for a given mode and as the rotational restraint
parameter R11 varies from 2.5 to 1016, that the percentage in-

Figure 8. Fundamental frequency k of a circular plate and concentric rigid
ring support radius b for R11 = 1000.

Figure 9. Fundamental frequency k of a circular plate and concentric rigid
ring support radius b for R11 = 1016.

crement in frequency increases first and then decreases as the
rigid ring radius parameter increases. Also, it is observed that
there is a cross-over radius of the variation of frequency with
three modes.

Results of this type are not available in the published liter-
ature. The values of the fundamental frequency for the ax-
isymmetric mode very closely resemble those presented by
Laura, et al.12 A comparison of the results is shown in Ta-
ble 4, wherein the values of the exact fundamental frequency
for the plate with a free boundary (setting R11 → 0 to the cur-
rent predicament) are compared to those presented by Wang.26

From a realistic point of view, when the rotational stiffness
parameter becomes small, the edge tends to become a quasi-
simply supported edge, and when it becomes larger, it tends to
become very close to that of a clamped edge.

5. CONCLUSIONS

The fundamental frequencies of a rotationally restrained cir-
cular plate resting on a concentric rigid ring support have been
obtained for a wide range of parametric values in this paper.
It can easily be seen that the fundamental mode of frequency
switches from n = 1 to n = 0 at a specific radius of the con-
centric ring. Mode switching is noted and computed exactly.
The optimal solutions for internal concentric rigid ring support
and the corresponding fundamental frequency are computed
exactly, and the results are obtained from closed form solu-
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Table 1. The cross-over radius, bcor and the corresponding frequency parameters, kcor.

R11 2.5 5 20 50 100 500 1000 1016

bcor 0.01242 0.01436 0.01640 0.01704 0.01738 0.01713 0.01682 0.017216
kcor 4.16626 4.32284 4.60973 4.71843 4.76269 4.7977 4.79848 4.80809

Table 2. Optimal locations (concentric rigid support, bopt and subsequent frequency, kopt).

R11 2.5 5 20 50 100 500 1000 1016

bopt 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
kopt 5.62304 5.77268 6.06861 6.17972 6.22338 6.26089 6.26567 6.27065

Table 3. Percentage increment of frequency for the first there modes as the
rotational restraint parameter R11 varies from 2.5 to 1016.

b
n = 0 n = 1 n = 2(

R11=2.5 to 1016
) (

R11=2.5 to 1016
) (

R11=2.5 to 1016
)

0 15.04128004 14.74715067 11.87518234
0.1 15.5284128 14.75920692 12.14681841
0.2 16.1720786 15.21135106 12.82798834
0.3 16.35934421 15.80606952 13.74803696
0.4 11.51707973 16.13928891 14.74936342
0.5 3.341207227 11.22475509 15.10117797
0.6 1.928786856 2.289155392 5.179809962
0.7 1.531773363 1.262661622 1.178654743
0.8 1.188432836 0.988562572 0.83312529
0.9 0.706107481 0.639596197 0.580342714
1 0 0 0

Table 4. Comparison of fundamental frequency for ν = 0.3, with Wang,26

for free edge.

Ring support radius, b Wang26 Present
0 0 0

0.02 1.501 1.50077
0.05 1.634 1.63422
0.1 1.789 1.78911

0.15 1.922 1.92226
0.2 2.051 2.05103

tions. Thus, the results presented in this paper are expected
to serve as benchmark solutions for comparison to those from
approximated methods. The exact results presented in the var-
ious graphs and tables included in this paper are also expected
to be of use in various design-engineering applications.
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This paper investigates the stability and accuracy of the aeroacoustic Time-Reversal (TR) simulation using the
Pseudo-Characteristic Formulation (PCF). To this end, the forward simulation of acoustic wave propagation in
1-D and 2-D computational domain with a uniform mean flow was implemented using the PCF of the Linearised
Euler Equations (LEE). The spatial derivatives in the opposite propagating fluxes of the PCF were computed using
an overall upwind-biased Finite-Difference (FD) scheme and a Runge-Kutta scheme was used for time-integration.
The anechoic boundary condition (ABC) was implemented for eliminating spurious numerical reflections at the
computational boundaries, thereby modelling a free-space. The stability of 1-D forward and TR (with only time-
reversed acoustic pressure as the input at the boundary nodes) simulations were analysed by means of an eigenvalue
decomposition, wherein it was shown that opposite upwinding directions must be considered while using the
overall upwind-biased FD scheme. Furthermore, the implementation of ABC was found to be crucial for ensuring
the stability of the forward simulation over a large time duration and the 2-D TR simulations. The overall central
Dispersion-Relation Preserving (DRP) FD schemes were however, found to be unstable and unsuitable for TR
simulation. The accuracy of both the forward and the TR simulations using the PCF was assessed by comparing the
simulation results against the corresponding analytical solutions of a spatially and temporally evolving Gaussian
pulse. It was shown that numerically reversing the mean flow direction during TR (using the PCF) and only the
time-reversed acoustic pressure as input at the boundaries is sufficient to accurately back-propagate the waves and
localise the initial emission point of the pulse in 1-D or 2-D computational domain.

1. INTRODUCTION

The acoustic Time-Reversal (TR) method, developed by
Fink, et al.,1, 2 is a promising method to localise acoustic
sources in time-domain and is explained by the following two-
step procedure:

1. In the first step, the acoustic pressure field radiated by
the source(s) is recorded by microphone line arrays (LAs)
in a Time-Reversal Mirror (TRM) during experiments, or
stored at the boundary nodes (virtual microphones) dur-
ing forward simulations, either (a) over LAs completely
enclosing the sources, or (b) over a limited angular aper-
ture LA(s) that only partially encloses the source(s).

2. In the second step, the recorded acoustic pressure time-
history is reversed in time followed by emission from
“numerical sources” at the boundary nodes. The back-
propagated acoustic pressure signals undergo a construc-
tive interference to form spatio-temporal maxima3 during
TR simulations, which corresponds to the spatial location
of the source(s). Method (a) which uses the enclosing
LAs, can account for almost the total acoustic power radi-

ated; therefore, back-propagation from this configuration
yields the most accurate prediction of the source location,
characteristics, and strength. Method (b), however, can
account for only a fraction of the acoustic power radiated,
thereby limiting the ability of TR to identify the location
and nature of sources.4

Fink, et al.2 provide an excellent review of the TR method
and discuss its applications in various fields such as hydro-
dynamics, ultrasound medical imaging, and diagnostic and
non-destructive testing. The TR method has also been used
for long-range communication in deep underwater acoustics,5

structural dynamics for health monitoring,6 in the presence
of a reflecting surface,7 and in electromagnetic wave propa-
gation.8 Different methods have been presented to enhance
the focal-resolution of TR, namely an active cancellation tech-
nique called the Time-Reversal Acoustic Sink (TRAS), devel-
oped by Bavu, et al.,9 and a passive radial damping approach
mimicking an acoustic sink called the Point-Time-Reversal-
Sponge-Layer (PTRSL), developed by the present authors.10

The application of the TR method in Computational Aeroa-
coustics (CAA) for localising sound sources in a flow field is,
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however, relatively new. Deneuve, et al.11 made use of the TR
method for the first time to localise aeroacoustics sources. The
forward evolution of the pressure and velocity fields was sim-
ulated by the numerical solution of the 2-D homoentropic non-
linear Euler equations using the Pseudo-Characteristic For-
mulation (PCF) proposed by Sesterhenn,12 wherein the spa-
tial derivatives in the opposite propagating fluxes were com-
puted using an overall upwind-biased Finite-Difference (FD)
scheme.13 As the forward evolution was implemented numer-
ically, it was possible to obtain both the pressure and particle
velocity time-histories at the boundary nodes of the rectangular
computational domain. Furthermore, the field variables corre-
sponding to the final time instant (during forward simulation)
were also stored at all nodes of the domain, and these data
were used as an initial condition during the TR simulation.
Both the time-reversed pressure and particle velocity, along
with the subsonic inflow boundary conditions, were imposed
on the computational boundaries during the TR simulation.

The main limitation in the TR simulation (using the PCF12)
of Deneuve, et al.11 is the use of time-reversed particle velocity
histories at boundary nodes. This is because, in an experimen-
tal set-up, only the acoustic pressure may be measured using a
microphone LA(s), while it is difficult to simultaneously mea-
sure the acoustic particle velocity history. Transducer arrays
that can measure both the acoustic pressure and acoustic par-
ticle velocities (using 3-D intensity probes) are available with
present technology; however, such transducers are usually very
expensive. Hence, for practical considerations, measurement
of only the acoustic pressure is feasible, and naturally the al-
gorithm implementing the TR simulation using the Linearised
Euler Equations14, 15 (LEE) must depend only on the time-
reversed acoustic pressure history as the input for accurately
localising the acoustic source(s). It is noted that the mean flow
profile (about which the Euler equations are linearized) may be
measured experimentally using hot-wire anemometry (or other
techniques), and that the simulations using the LEE can ac-
curately model the interaction between acoustic perturbations
and the mean flow field.3 Another limitation of the TR simula-
tion of Deneuve, et al.11 is use of the acoustic pressure and ve-
locity histories stored at all the nodes during the final instant of
the forward simulation as the initial condition in the TR simu-
lation. Experimentally measuring and storing the acoustic field
over the entire experiment is impossible.

The accuracy, as well as the stability analysis, of TR simu-
lation of the LEE using only the time-reversed acoustic pres-
sure history as the input are, therefore, necessary. Padois, et
al.3 demonstrate the accuracy of TR simulation for localising
time-harmonic aeroacoustic sources using only the experimen-
tally obtained acoustic pressure time-history measured over a
microphone LA in a TRM located outside of the flow in an
Anechoic Wind Tunnel (AWT). Their TR simulations, based
on the numerical solution of the 2-D LEE using the 4th order
Dispersion Relation Preserving (DRP) central FD schemes,16

were able to satisfactorily estimate the monopole and dipole
source locations in a shear flow field. However, their TR sim-
ulation of the LEE was not implemented using the PCF, which
splits the derivative of acoustic variables into a pair of oppo-
site propagating fluxes12 or “pseudo-waves”. This feature of
the PCF makes it ideally suited for the use of upwind-biased
FD schemes in comparison to the Flux-Vector Splitting (FVS)
approaches.17, 18 The use of upwind-biased FD schemes is pre-

ferred over the central DRP schemes16 because the non-zero
damping (at the unresolved high-frequencies) in the former is
crucial for ensuring the temporal stability of the TR simula-
tion of the LEE, which has not been analysed in the previ-
ous works.3, 4, 10, 11 Indeed, the temporal stability of forward
simulation of the LEE based on the PCF and using an overall
(a) upwind-biased FD scheme or (b) central DRP FD scheme
has also not been analysed previously,11–13 although the stabil-
ity of the overall compact FD schemes used for the forward
simulation of the simple 1-D scalar wave equation is estab-
lished.19 Furthermore, although the aeroacoustic TR simu-
lation is shown to accurately localise sound sources in flow
fields,3, 4, 10, 11 the results have not been compared against the
corresponding analytical solution, and hence are not formally
validated.

This work, therefore, analyses the temporal stability and ac-
curacy of both the forward and TR simulations of the 1-D and
2-D LEE implemented using the PCF based on (a) an overall
upwind-biased FD scheme, and (b) an overall central DRP FD
scheme.16, 20 The test cases consist of propagation of an acous-
tic pulse in both a 1-D and 2-D free-space with mean flow,
modelled by the implementation of anechoic boundary condi-
tion (ABC) at (1) the terminations of a 1-D duct, and (2) the
computational boundaries of a 2-D domain, respectively. The
motivation of this analysis is to examine in detail the accu-
racy of the TR simulation using only the time-reversed acous-
tic pressure history as the input Dirichlet conditions3 at the
boundaries of the 2-D computational domain (involving the
propagation of cylindrical wave fronts). The present work is
a part of a larger study that aims to investigate the suitability
of TR for experimental aeroacoustics, with a view to obtain
important insights into the mechanism of flow-induced turbu-
lent noise generation. Indeed, the authors have implemented
TR simulations on experimentally-obtained acoustic pressure
data sampled on two LAs of microphones to demonstrate the
dipole source nature (at the Aeolian tone) of the flow-induced
noise generated by a circular cylinder located in a cross-flow
in the AWT of The University of Adelaide.21 However, the TR
is at an early stage in the field of aeroacoustics, and important
fundamental work such as that presented here is essential to
provide a strong foundation for its future applications.

The paper is organised as follows: Section 2 describes the
numerical method for implementing the 1-D/2-D forward and
TR simulations of the LEE based on the PCF using the overall
upwind-biased FD schemes and implementation of ABC. Sec-
tion 3 analyses the stability of 1-D forward and TR simulations
using the PCF and two classes of overall FD schemes — (a) the
upwind-biased FD scheme and (b) the central DRP FD scheme
by means of an eigenvalue decomposition. Section 4 analyses
the accuracy of 1-D/2-D forward and TR simulation results by
comparison against the corresponding analytical solution. The
important contributions of this work are then summarised in
Section 5.

2. METHODOLOGY: NUMERICAL IMPLE-
MENTATION OF THE SIMULATIONS

In this section, the numerical implementation of the forward
and TR simulations on 1-D and 2-D computational domains
(in Cartesian coordinates) is described. To this end, the ho-
mogenous 2-D LEE of continuity and momentum (assuming
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Figure 1. (a) A schematic illustrating the discretisation of a 1-D duct of finite length L (modelling a 1-D free-space) into finite parts (∆x), convention to number
the nodes and fluxes (X±

linear propagating towards the positive and negative x directions, respectively). (b) A 2-D computational domain fully surrounded by a
sponge-layer domain modelling a 2-D free space. The half-length of the computational domain and width of the sponge-layer domain are Lx and ∆Lx along
the x direction, respectively, Ly and ∆Ly along the y direction, respectively. The direction of uniform mean flow is considered towards the positive x direction
in parts (a) and (b).

homoentropic flow) are considered, and are shown below.14, 15

∂ρ̃

∂t
+ U0

∂ρ̃

∂x
+ ρ0

(
∂ũ

∂x
+
∂ṽ

∂y

)
= 0; (1a)

ρ0
∂ũ

∂t
+ ρ0U0

∂ũ

∂x
+
∂p̃

∂x
= 0; (1b)

ρ0
∂ṽ

∂t
+ ρ0U0

∂ṽ

∂x
+
∂p̃

∂y
= 0; (1c)

where {p̃(x, y, t), ρ̃(x, y, t), ũ(x, y, t), ṽ(x, y, t)} are the
acoustic pressure (Pa), acoustic density (kgm−3), and acous-
tic particle velocities (ms−1) along the x and y direction,
respectively, U0 is the subsonic uniform mean flow velocity
(ms−1) towards the positive x direction, ρ0 is the ambient
density, taken as 1.21 kgm−3, and t is the forward time
(s). Furthermore, isentropic conditions are assumed, so that
c20 = p̃/ρ̃, where c0 denotes the uniform sound speed, taken
as 343.14 ms−1 in this work. The 1-D homogenous LEE may
be obtained by neglecting the spatial variation along the y
direction, i.e. ignoring Eq. (1c) and dropping the (∂ṽ/∂y)
term from Eq. (1a).

2.1. Forward Simulation
2.1.1. Pseudo-Characteristic Formulation (PCF) of

the Linearised Euler Equations (LEE)

The forward simulations are implemented by first recasting
the homogenous 2-D LEE shown in Eqs. (1a–c) in the PCF11–13

as

∂p̃

∂t
= −ρ0c0

2

(
X+

linear +X−linear + Y +
linear + Y −linear

)
; (2a)

∂ũ

∂t
= −1

2

(
X+

linear −X
−
linear

)
; (2b)

∂ṽ

∂t
= −1

2

(
Y +

linear − Y
−

linear

)
− c0M0

∂ṽ

∂x
; (2c)

where

X±linear = ±c0(1±M0)

{
1

ρ0c0

∂p̃

∂x
± ∂ũ

∂x

}
; (3)

Y ±linear = ±c0
{

1

ρ0c0

∂p̃

∂y
± ∂ṽ

∂y

}
; (4)

and M0 = U0/c0 is the Mach number of subsonic uniform
mean flow. In Eqs. (2–4), X+

linear denotes the acoustic flux
propagating towards the positive x direction with an enhanced
speed of c0(1 + M0), while X−linear denotes the acoustic flux
propagating towards the negative x direction with a reduced
speed of c0(1 − M0), respectively. Similarly, Y ±linear denotes
fluxes propagating with a speed c0 towards the positive and
negative y directions, respectively. It is noted that the splitting
of the LEE into a pair of opposing fluxes (X±linear, Y

±
linear) facili-

tate a straightforward implementation of the upwind-biased FD
schemes and anechoic boundary condition (ABC),11, 13 which
is necessary for suppressing the unresolved spurious high fre-
quency waves, thereby stabilising the simulations. Further-
more, the c0M0(∂ṽ/∂x) term in Eq. (2c) denotes acoustic dis-
turbances advected by the mean flow towards the positive x
direction.13

2.1.2. Spatial and Temporal Discretization

An overall upwind-biased FD scheme is formulated for
computing the spatial derivatives of the acoustic pressure and
velocities in the opposing fluxes (X±linear, Y

±
linear) in Eqs. (2a–c).

To this end, a 1-D computational domain along the x direction
of a finite length L modelled by a duct (with only planar wave
propagation) is considered in Fig. 1(a). This domain is dis-
cretized into Nnodes number of equally spaced nodes of mesh
size ∆x = L/(Nnodes − 1).

The spatial derivative (∂φ/∂x)+ of the acoustic field vari-
able φ (p̃, ũ or ṽ) in the X+

linear flux for the entire 1-D domain
is computed using the overall upwind-biased FD schemes for-
mulated in Table 1. It is noted that the use of optimised down-
wind FD schemes20, 22 at the penultimate and last nodes of the
boundaries, as well as the use of 3rd and 5th order upwind-
biased schemes23 near the boundary nodes, is necessary be-
cause sufficient upwind nodes do not exist near the boundary
for use of the 7-point, 4th order optimised upwind-biased DRP
FD scheme.22

The overall upwind-biased FD schemes used for computing
the spatial derivative (∂φ/∂x)− in theX−linear flux for the entire
1-D domain is similarly formulated by making use of opposite
upwinding directions at a node i (with the sign of the sten-
cil coefficients reversed). The efficiency of implementing the
overall upwind-biased FD schemes is increased by recasting
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Table 1. Overall upwind-biased FD Scheme for computing (∂φ/∂x)+ in the flux X+
linear

Nodes FD Scheme and formal order of accuracy Stencil Coefficients

i = Nnodes

1
∆x

k=6∑
k=0

b60
−kφ(Nnodes − k),


b60
0 = 2.1922803, b60

−1 = −4.7486114, b60
−2 = 5.1088519,

b60
−3 = −4.4615671, b60

−4 = 2.8334987, b60
−5 = −1.1283289,

b60
−6 = 0.2038764.

4th order (Tam20)

i = Nnodes−1
1

∆x

k=1∑
k=−5

a51
k φ(i+ k),


a51
−5 = −0.0306490, a51

−4 = 0.2022259, a51
−3 = −0.6347280,

a51
−2 = 1.2962997, a51

−1 = −2.1430548, a51
0 = 1.1088873,

a51
1 = 0.2010190.

4th order (Zhuang and Chen22)

5 ≤ i ≤ Nnodes−2
1

∆x

k=2∑
k=−4

a42
k φ(Nnodes − 1 + k),


a42
−4 = 0.0161405, a42

−3 = −0.1228213, a42
−2 = 0.4553323,

a42
−1 = −1.2492596, a42

0 = 0.5018904, a42
1 = 0.4399322,

a42
2 = −0.0412145.

4th order (Zhuang and Chen22)

i = 4
1

∆x

k=2∑
k=−3

a32
k φ(4 + k),

{
a32
−3 = −1/30, a32

−2 = 1/4, a32
−1 = −1,

a32
0 = 1/3, a32

1 = 1/2, a32
2 = −1/20.

}
5th order (Li23)

i = 3
1

∆x

k=1∑
k=−2

a21
k φ(3 + k), {

a21
−2 = 1/6, a21

−1 = −1, a21
0 = 1/2, a21

1 = 1/3.
}

3rd order (Li23)

i = 2
1

∆x

k=5∑
k=−1

a15
k φ(2 + k),

{
a15
−1 = −a51

1 , a15
0 = −a51

0 , a15
1 = −a51

−1, a15
2 = −a51

−2

a15
3 = −a51

−3, a15
4 = −a51

−4, a15
5 = −a51

−5.

}
4th order (Zhuang and Chen22)

i = 1
1

∆x

k=6∑
k=0

b06
k φ(1 + k),

{
b06
0 = −b60

0 , b06
1 = −b60

−1, b06
2 = −b60

−2, b06
3 = −b60

−3

b06
4 = −b60

−4, b06
5 = −b60

−5, b06
6 = −b60

−6.

}
4th order (Tam20)

them in the following matrix form:

∂{φ}+

∂x
≈ 1

∆x
[R1]{φ}; (5a)

∂{φ}−

∂x
≈ 1

∆x
[R2]{φ}; (5b)

where {φ} = {φ1, φ2, φ3, . . . , φN nodes}T . The spatial deriva-
tives in the fluxes Y ±linear are also computed using Eqs. (5a, b)
while the (∂ṽ/∂x) term in Eq. (2c) is computed using Eq. (5a),
as the mean flow direction is towards the positive x direction.
The use of two different stencil groups at a given node (or
opposite upwinding directions) ensures that the inbuilt dissi-
pation in upwind-biased schemes damps only the unresolved
high-frequency waves and does not induce spatially growing
oscillations with time, which is important for temporal stabil-
ity. This is explained by the following discussion:

A harmonic wave p̃(x, t = 0) = ejk0x is considered as
an initial disturbance where j =

√
−1 and k0 is the exact

wavenumber. The numerical solution of the wave propagating
towards positive x direction is given by24

p̃(x, t) = ej(k0x−ω̃t) = ej(k0x−k̃c0t) =

ej[k0−Re(k̃)]c0t︸ ︷︷ ︸
dispersion

· eIm(k̃)c0t︸ ︷︷ ︸
dissipation

· ejk0(x−c0t)︸ ︷︷ ︸
exact solution

; (6)

where ω̃ is the numerical angular frequency and k̃ = ω̃/co is
the numerical wavenumber given by β = k0∆x ≈ k̃∆x =

−j
{∑k=M

k=−N a
NM
k ej(kβ)

}
, in which β is the exact non-

dimensional wave number and aNMk are stencil coefficients of
a N +M + 1 point FD stencil. Equation (6) indicates that for
non-dispersive and non-dissipative frequency region given by
{k0 − Re(k̃)} → 0 and Im(k̃) → 0, respectively, the numeri-
cal solution is an accurate approximation to the exact solution.
However, for the unresolved or dispersive frequency region,

i.e. {k0 − Re(k̃)} 6= 0, the dissipation should be such that
Im(k̃) < 0 to ensure temporal stability of the numerical solu-
tion of the wave propagating towards the positive x direction.
Similarly, for temporal stability of the numerical solution of
the wave propagating towards the negative x direction, the dis-
sipation should be such that Im(k̃) > 0 in dispersive frequency
region.

The 3rd order Total-Variation-Diminishing (TVD) Runge-
Kutta scheme25 is used for time-integration during the 1-D
and 2-D forward simulations, as well as for TR simulations.
The time-step ∆t is computed a-priori forward simulations in
accordance with the Courant–Friedrichs–Lewy (CFL) number
equal to 0.2 considered to ensure accuracy of the forward/TR
simulations. Equal mesh size given by ∆x = ∆y = 0.005 m
is taken along the x and y directions, respectively, in the 2-D
simulations. Furthermore, the same mesh size, ∆x = 0.005 m,
is also considered during the 1-D simulations. It is noted
that amongst all the FD schemes used to formulate the overall
upwind-biased FD scheme (in Table 1), the 4-point, 3rd order
standard upwind-biased FD scheme23 has the least DRP range
given by αDRP = k̃max∆x ≈ 0.62, and determines the maxi-
mum wavenumber k̃max that can be accurately propagated (i.e.
without significant dispersion). For the mesh sizes (∆x, ∆y)
and c0, the maximum wavenumber resolution band evaluates
to k̃max = [0, αDRP/∆x] = [0, 124] m−1.

2.1.3. Implementation of the Anechoic Boundary
Condition (ABC)

The ABCs are implemented at the computational bound-
aries to model a 1-D free-space (represented by a 1-D duct
extending infinitely on both sides, as shown in Fig. 1(a)) and
a 2-D free-space shown in Fig. 1(b). For the case of 1-D
free-space, the ABC is implemented by setting the incoming
fluxes to zero at the finite terminations of the duct,11, 13 i.e.
X+

linear

∣∣
x=0

= 0 and X−linear

∣∣
x=L

= 0, which implies that the
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impedance p̃i−1/(−ũi−1) = p̃i=Nnodes/ũi=Nnodes = ρ0c0, i.e.
the characteristic impedance of the medium. Hence, the acous-
tic wave impinging on the boundaries is completely transmit-
ted without suffering any reflection. The use ofX+

linear

∣∣
x=0

= 0

and X−linear

∣∣
x=L

= 0 boundary conditions is equivalent to
the first order Clayton-Engquist-Majda (CEM) ABCs given
by26–28

(
∂p̃

∂t
− c0 (1−M0)

∂p̃

∂x

) ∣∣∣∣
x=0

= 0; and (7)(
∂p̃

∂t
+ c0 (1 +M0)

∂p̃

∂x

) ∣∣∣∣
x=L

= 0; (8)

respectively, which is exact for the 1-D acoustic wave propa-
gation in a mean flow.

The 2-D computational domain given by |x| ≤ Lx, |y| ≤ Ly
fully surrounded by a sponge-layer domain of widths ∆Lx and
∆Ly along the x and y directions, respectively, as shown in
Fig. 1(b) models a 2-D free-space. At the exterior computa-
tional boundary, the first-order radiation boundary condition
of Tam and Webb16 (henceforth, referred to as Tam’s ABC) is
used. The Tam’s ABC condition reads

1

V (θ)

∂p̃

∂t
+
∂p̃

∂r
+

p̃

2r
= 0 ⇒

1

V (θ)

∂p̃

∂t
+ cos θ

∂p̃

∂x
+ sin θ

∂p̃

∂y
+

p̃

2
√
x2 + y2

= 0; (9)

where r = (x2 + y2)1/2 is the radius of the point P on the ex-
terior computational boundary from the initial position of the
peak of Gaussian pulse (i.e. the known source location) de-
noted by origin O, θ is the angle with respect to the x axis, and
V (θ) = c0

(
M0 cos θ + (1−M2

0 sin2 θ)1/2
)

is the convective
sound speed (due to subsonic mean flow M0), considering the
directional dependence. It is noted that since the acoustic field
at the exterior computational boundary comprises only the out-
going waves, the spatial derivatives (∂p̃/∂x, ∂p̃/∂y) in Eq. (9)
are computed in accordance with the value of θ at a particular
node. This is discussed as follows:

1. 0 ≤ θ ≤ π/2, ∂p̃/∂x and ∂p̃/∂y are both computed using
Eq. (5a);

2. π/2 < θ ≤ π, ∂p̃/∂y and ∂p̃/∂x are computed using
Eq. (5a) and Eq. (5b), respectively;

3. π < θ ≤ 3π/2, ∂p̃/∂x and ∂p̃/∂y are both computed
using Eq. (5b); and

4. 3π/2 ≤ θ < 2π, ∂p̃/∂y and ∂p̃/∂x are computed using
Eq. (5b) and Eq. (5a), respectively.

In order to further suppress the spurious reflections during the
2-D forward simulations, the incoming fluxes near the exte-
rior computational boundary are damped over several nodes
(Nsponge) of a sponge-layer domain13 with a width of ∆Lx =
Nsponge∆x and ∆Ly = Nsponge∆y along the x and y direc-
tions, respectively, fully surrounding the computational do-
main. The damping is implemented using the following equa-

tions:

Y ∓linear(x,±Ly ± (Nsponge − n)∆y)→ (10a)

Y ∓linear(x,±Ly ± (Nsponge − n)∆y)×Gsponge(n); (10b)

X∓linear(±Lx ± (Nsponge − n)∆x, y)→ (10c)

X∓linear(±Lx ± (Nsponge − n)∆x, y)×Gsponge(n);
(10d)

where

Gsponge(n = 0) = 0 and Gsponge(n) = e
− 1

2

(
αsponge

(
Nsponge−n
Nsponge−1

))2

for n = [1, 2, . . . , Nsponge − 1]. Here, αsponge is the damping
coefficient taken equal to four in this work. It is noted that im-
plementation of Tam’s ABC (with or without the inclusion of
sponge-layer domain) at boundaries of the 2-D computational
domain is crucial for the temporal stability of forward simula-
tion of a pulse propagating in a free-space over a large time du-
ration. The condition (∂ṽ/∂x)

∣∣
x=−Lx−∆Lx

= 0 is also imple-
mented to suppress the incoming waves at the x = −Lx−∆Lx
boundary advected by the mean flow, thereby preventing insta-
bility.

2.2. Time-Reversal (TR) Simulation
The 2-D forward simulations are implemented over a suffi-

ciently large time-interval t = [0, T ] such that the pulse com-
pletely propagates out of the domain, whereby the acoustic
pressure p̃(x, y, t) and particle velocities ũ(x, y, t), ṽ(x, y, t)
are stored at the nodes of all four computational boundaries,
i.e. at x = ±Lx, |y| ≤ Ly and y = ±Ly , |x| ≤ Lx after every
time-step. The 2-D TR simulation is implemented by first in-
troducing the following transformations3, 4, 10, 11 in Eqs. (2–4):

t→ T − t̃; (11a)

p̃(x, y, t)→ p̃(x, y, t̃); (11b)

ũ(x, y, t)→ −ũ(x, y, t̃); (11c)

ṽ(x, y, t)→ −ṽ(x, y, t̃); (11d)

to obtain the time-reversed 2-D LEE (in the PCF) shown as
follows:10, 11

∂p̃

∂t̃
= −ρ0c0

2

{
X̃+

linear + X̃−linear + Ỹ +
linear + Ỹ −linear

}
; (12a)

∂ũ

∂t̃
= −1

2

(
X̃+

linear − X̃
−
linear

)
; (12b)

∂ṽ

∂t̃
= −1

2

(
Ỹ +

linear − Ỹ
−

linear

)
− c0(−M0)

∂ṽ

∂x
; (12c)

where

X̃±linear = ±c0(1∓M0)

{
1

ρ0c0

∂p̃

∂x
± ∂ũ

∂x

}
; (13a)

Ỹ ±linear = ±c0
{

1

ρ0c0

∂p̃

∂y
± ∂ṽ

∂y

}
; (13b)

and t̃ denotes the reverse time. It is noted that the time-reversed
2-D LEE given by Eqs. (12a–c) are identical to Eqs. (2a–c),
except that the direction of subsonic mean flow is reversed in
X̃±linear fluxes and in the (∂ṽ/∂x) term. The reversal of mean
flow direction (M0 → −M0) during the numerical TR sim-
ulation (and not in the physical sense) is essential to ensure
TR invariance.3, 4, 10, 11 Furthermore, the derivative (∂ṽ/∂x) in
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Eq. (12c) is computed using Eq. (5b) due to reversal of the
mean flow.

The 2-D TR simulation is implemented using either (a) only
p̃(x, y, t̃), or (b) both p̃(x, y, t̃) and −ũ(x, y, t̃), −ṽ(x, y, t̃)
as input Dirichlet boundary conditions3 (which enables the
back-propagation of waves into the domain) at x = ±Lx and
y = ±Ly boundaries after every reverse time-step. It is noted
that the sponge-layer domain is not used during the 2-D TR
simulation; rather, it is found that implementation of the CEM
ABC26–28 at all four boundaries given by(

∂p̃

∂t̃
± c0(1∓M0)

∂p̃

∂x

) ∣∣∣∣
x=±Lx

= 0; (14a,b)(
∂p̃

∂t̃
± c0

∂p̃

∂y

) ∣∣∣∣
y=±Ly

= 0; (14c,d)

and at the four corners of the 2-D domain, the use of special
corner ABC28 given by

∂p̃

∂t̃
+

c0√
2

(1−M0)
∂p̃

∂x
+

c0√
2

∂p̃

∂y

∣∣∣∣
x=Lx,y=Ly

= 0; (15a)

∂p̃

∂t̃
− c0√

2
(1 +M0)

∂p̃

∂x
+

c0√
2

∂p̃

∂y

∣∣∣∣
x=−Lx,y=Ly

= 0; (15b)

∂p̃

∂t̃
− c0√

2
(1 +M0)

∂p̃

∂x
− c0√

2

∂p̃

∂y

∣∣∣∣
x=−Lx,y=−Ly

= 0; (15c)

∂p̃

∂t̃
+

c0√
2

(1−M0)
∂p̃

∂x
− c0√

2

∂p̃

∂y

∣∣∣∣
x=Lx,y=−Ly

= 0; (15d)

is necessary for the temporal stability of 2-D TR simula-
tions.4, 10 In comparison to Tam’s ABC, the CEM ABC and the
special corner ABC are relatively less accurate in modelling
non-reflective boundaries. Nonetheless, it is implemented at
the computational boundaries because unlike the forward sim-
ulation, the radial distance r of a boundary node from the
source location during TR simulation is not known; rather,
the robustness of TR algorithm (in a 2-D free-space) must
be demonstrated through accurate localization of the source(s)
with implementation of approximate ABCs that does not de-
pend on an a-priori estimate of the source location. It is
noted that in Eqs. (14a), (15a), and (15d), the spatial derivative
∂p̃/∂x at nodes on the x = Lx boundary is computed using
Eq. (5a), while ∂p̃/∂x at nodes on the x = −Lx boundary in
Eqs. (14b), (15b), and (15c) is computed using Eq. (5b). Fur-
thermore, in Eqs. (14c), (15a), and (15b), the spatial derivative
∂p̃/∂y at nodes on the y = Ly boundary is computed using
Eq. (5a), while ∂p̃/∂y at nodes on the y = −Ly boundary in
Eqs. (14d), (15c), and (15d) is computed using Eq. (5b). In
addition, the incoming normal acoustic fluxes (of the PCF12 of
the 2-D LEE) are also set to zero at the computational bound-
aries, i.e. X̃±linear

∣∣
x=∓Lx

= Ỹ ±linear

∣∣
y=∓Ly

= 0 to reinforce

the ABCs during TR simulation.4, 10 The boundary condition
(∂ṽ/∂x)

∣∣
x=Lx

= 0 is implemented for the stability of 2-D TR
simulation. The 1-D TR simulation is implemented by ignor-
ing Eq. (12c) and the Ỹ ±linear fluxes in Eq. (12a) and solving the
resultant time-reversed 1-D LEE (in the PCF) with only the
time-reversed acoustic pressure as the input Dirichlet condi-
tion at the boundary nodes. However, it is found that the use
of ABC at the boundary nodes is not necessary for stability of
1-D TR simulation.

3. STABILITY ANALYSIS OF THE 1-D
FORWARD AND TR SIMULATIONS:
EIGENVALUE DECOMPOSITION

The temporal stability of the forward and TR simulations in
the 1-D infinite duct with mean flow using the overall upwind-
biased FD scheme and the PCF is evaluated using eigenvalue
decomposition. The objective of this analysis is to establish
the stability associated with the implementation of the correct
upwinding directions in the antagonistic fluxes of the PCF and
the appropriate boundary conditions using a 1-D test case.

3.1. Forward Simulation
An eigenvalue problem for an acoustic pulse propagating

in the 1-D duct with a mean flow is formulated. To this end,
the [R1] and [R2] matrices are used for computing the spatial
derivatives of {p̃} and {ũ} in the X̃±linear fluxes, respectively,
in the PCF of the 1-D LEE. Rearranging the resultant equa-
tions in terms of the linear combination of {p̃} and {ρ0c0ũ}
yields the following set of semi-discretised ordinary differen-
tial equations:

d{p̃}
dt

= − c0
2(∆x)

{[
(1+M0)[R1] + (M0−1)[R2]

]
{p̃}

+
[
(1+M0)[R1]− (M0−1)[R2]

]
{ρ0c0ũ}

}
; (16a)

d{ρ0c0ũ}
dt

= − c0
2(∆x)

{[
(1+M0)[R1] + (1−M0)[R2]

]
{p̃}

+
[
(1+M0)[R1]− (1−M0)[R2]

]
{ρ0c0ũ}

}
. (16b)

By substituting {p̃} = {p̂}eωt and {ρ0c0ũ} = {ρ0c0û}eωt
in Eqs. (16a, b) and subsequent algebraic manipulations, the
following eigenvalue problem is obtained:

[A]
{
{p̂}Nnodes {ρ0c0û}Nnodes

}T
= λ

{
{p̂}Nnodes {ρ0c0û}Nnodes

}T
;

(17a)
where ω represents the dimensional eigenvalues (complex, in
general), {p̂} and {ρ0c0û} denote the corresponding eigenvec-
tors, the matrix [A] is given by

[A]2Nnodes×2Nnodes = −1

2
×[

(1+M0)[R1]+(M0−1)[R2] (1+M0)[R1]−(M0−1)[R2]
(1+M0)[R1]+(1−M0)[R2] (1+M0)[R1]−(1−M0)[R2]

]
;

(17b)

and λ = (ω∆x)/c0 denotes the corresponding non-
dimensional eigenvalues of the [A] matrix. The solution of
Eqs. (16a, b) is now obtained in terms of the matrix exponen-
tial as29{

p̃(t) ρ0c0ũ(t)
}T

= e[A]
c0t
∆x

{
p̃(t = 0) ρ0c0ũ(t = 0)

}T
;

(17c)
whereby it becomes evident that the stability of the overall
FD scheme depends on the whether the Re(λ) is positive or
negative. It is noted that Eqs. (16a, b) are cast in a semi-
discrete form because only the spatial derivatives of the acous-
tic variables are approximated by overall FD schemes, and

International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015 231



A. Mimani, et al.: STABILITY AND ACCURACY OF AEROACOUSTIC TIME-REVERSAL USING THE PSEUDO-CHARACTERISTIC FORMULATION

time-integration is not considered at this stage. Thus, by as-
suming modes of the form {φ̃} = {φ̂}eωt, discretisation errors
due to numerical time-integration are avoided. Therefore, in
the eigenvalue problem for the forward simulation given by
Eqs. (17a, b), a perfect time-integration is considered19 and
the stability of only spatial discretisation is analysed. Similar
conclusions also hold for the eigenvalue analysis of the 1-D
TR simulation. Furthermore, it is noted that no boundary con-
ditions are specified in Eq. (17a). However, in order to anal-
yse the temporal stability of the forward simulation of a pulse
propagating in the 1-D infinite duct, it is necessary to imple-
ment the ABCs by setting X+

linear

∣∣
x=0

= 0 and X−linear

∣∣
x=L

= 0
in Eqs. (17a, b), thereby leading to

[Aanechoic]
{
{p̂}Nnodes {ρ0c0û}Nnodes

}T
=

λ
{
{p̂}Nnodes {ρ0c0û}Nnodes

}T
; (18)

where [Aanechoic] is defined by Eq. (19), which is the eigenvalue
problem incorporating the ABC at both boundaries of the finite
1-D duct.

Figure 2(a) presents the eigenvalue loci of the eigenvalue
problem posed in Eq. (18) using the overall upwind-biased FD
schemes forX±linear fluxes that are used to simulate the test case
1 with Nnodes = 1500 for M0 = 0 and M0 = 0.30. It is evi-
dent from Fig. 2(a) that the eigenvalue loci of Eq. (18) consists
of closed loop(s) located on the negative side of the real-axis
(Re(λ) axis), indicating that opposite upwinding directions in
theX±linear fluxes of the PCF (by means of [R1] and [R2] matri-
ces, respectively) are necessary for temporal stability. Further-
more, the implementation of the ABC at the first and last node
of the computational domain (unlike Lu and Sagaut,13 wherein
the ABC was implemented at the first and the last five nodes of
the 2-D domain) entirely shifts the eigenvalue loci to the neg-
ative side of the Re(λ) axis. Indeed, none of the eigenvalues
have positive real parts (regardless of their magnitude), and in
order to justify this claim, an exaggerated view of the eigen-
value loci near the imaginary axis in Fig. 2(b) is presented.
The lone eigenvalue in each of the loci shown in Fig. 2(b) lo-
cated ‘almost’ at the origin has a negative real part of the or-
der of 10−7, thereby implying rather slow decay, but most im-
portantly, a stable solution. Therefore, the implementation of
ABC prevents the occurrence of eigenvalues with small posi-
tive real parts (of the order of 10−3), which are liable to induce
instabilities over large duration (or at later instants) of the for-
ward simulation.30

The effect of a subsonic mean flow on the eigenvalue locus
of the overall upwind-biased FD scheme is also illustrated in
Fig. 2, wherein the mean flow is shown to ‘bifurcate’ the locus
horizontally so that there exists two different loci on the neg-
ative side of the Re(λ) axis of the λ plane. One of the eigen-
value locus corresponding to the wave propagation ‘along’ the
direction of superimposed mean flow is shifted farther towards
the negative side of the Re(λ) axis, thereby implying an en-
hanced stability, whereas the eigenvalue locus corresponding
to the wave propagation ‘against’ the direction of mean flow is
shifted towards the imaginary-axis (Im(λ) axis). However, for
subsonic mean flow, this locus is still entirely situated on the
negative side of the Re(λ) axis, thereby allaying any concerns
on the stability issue. These two loci converge or coalesce into
a single locus that is oriented vertically near the Im(λ) axis.

The effect of the number of nodes Nnodes on the eigenvalue
locus of the overall upwind-biased FD scheme was also stud-
ied for the case of zero mean flow (results not shown here).
It was observed that with an increase in Nnodes the eigenvalue
envelope expands further towards the negative side of the real
axis, thereby indicating enhanced stability. However, these en-
velopes do not converge; rather, they expand monotonically as
Nnodes is increased, thereby indicating that there does not ex-
ist a set of discrete natural frequencies for a finite length duct
with ABC on both the sides which essentially models a system
extending infinitely in both the directions.31

Another stability analysis (shown in Fig. 3) was performed
for M0 = 0 using an overall central FD scheme formulated as:
(1) the 7-point, 4th order accurate central DRP FD scheme of
Tam,16 which are used at the interior nodes 4 ≤ i ≤ Nnodes −
3, and (2) the 7-point optimised backward or downwind FD
schemes,20 which are used at the nodes i = 1, 2, 3 and i =
Nnodes − 2, Nnodes − 1, Nnodes. (In this case, [R1] = [R2] =
[R0], thus the spatial derivatives in X̃±linear is computed using
the [R0] matrix.)

It is observed from Fig. 3, that this overall central DRP FD
schemes encounter a mild instability problem associated with
the implementation of ABC at the first and last node only. This
is because instability starts creeping into the solution (due to
the eventual growth in the exponential solution due to very
small real parts of the eigenvalues) after the pulse has com-
pletely propagated outside the domain. To circumvent this
problem, the ABC was implemented at two or more nodes on
each side of the boundary, wherein it is observed that in the
last three cases presented in Fig. 3, the eigenvalue loci increas-
ingly shifts entirely towards the negative side of the Re(λ) axis
of the λ plane, thereby stabilising the 1-D forward simulation
using the overall central DRP FD scheme.

3.2. TR Simulation

The temporal stability of the 1-D TR simulation is inves-
tigated by first deriving the semi-discretised form of the 1-D
LEE for implementing the TR simulation. To this end, the
mean flow direction is reversed (M0 → −M0) in Eqs. (16a,
b), whereby the following matrix form is obtained:

d

dt̃

{
{p̃}
{ρ0c0ũ}

}
=

c0
∆x

[A0]

{
{p̃}
{ρ0c0ũ}

}
; (20a)

where

[A0]2Nnodes×2Nnodes = −1

2
×[

(1−M0)[R1]−(1+M0)[R2] (1−M0)[R1]+(1+M0)[R2]
(1−M0)[R1]+(1+M0)[R2] (1−M0)[R1]−(1+M0)[R2]

]
;

(20b)

Equation (20a) presents the homogeneous ordinary differen-
tial matrix form of the time-reversed 1-D LEE for the tempo-
ral solution of the spatially discretized acoustic pressure and
velocity fields. (The forward time t in Eqs. (16a, b) is simply
replaced with the reverse time t̃ in Eq. (20a).) The time-history
of the acoustic pressure p̃(i = 1, t̃) and p̃(i = Nnodes, t̃) at the
boundary nodes are, however, known a-priori for t̃ = [0, T ]
at discrete time-instants from the 1-D forward simulations.
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[Aanechoic]2Nnodes×2Nnodes =

− 1

2



(M0 − 1)
[
R1,1

2 . . . R1,Nnodes
2

]
1×Nnodes

(1−M0)
[
R1,1

2 . . . R1,Nnodes
2

]
1×Nnodes A2,1 . . . A2,Nnodes

...
. . .

...
ANnodes−1,1 . . . ANnodes−1,Nnodes


(Nnodes−2)×Nnodes

 A2,Nnodes+1 . . . A2,2Nnodes

...
. . .

...
ANnodes−1,Nnodes+1 . . . ANnodes−1,2Nnodes


(Nnodes−2)×Nnodes

(1 +M0)
[
RNnodes,1

1 . . . RNnodes,Nnodes
1

]
1×Nnodes

(1 +M0)
[
RNnodes,1

1 . . . RNnodes,Nnodes
1

]
1×Nnodes

(1−M0)
[
R1,1

2 . . . R1,Nnodes
2

]
1×Nnodes

(M0 − 1)
[
R1,1

2 . . . R1,Nnodes
2

]
1×NnodesA

Nnodes+2,1 . . . ANnodes+2,Nnodes

...
. . .

...
A2Nnodes−1,1 . . . A2Nnodes−1,Nnodes


(Nnodes−2)×Nnodes

A
Nnodes+2,Nnodes+1 . . . ANnodes+2,2Nnodes

...
. . .

...
A2Nnodes−1,Nnodes+1 . . . A2Nnodes−1,2Nnodes


(Nnodes−2)×Nnodes

(1 +M0)
[
RNnodes,1

1 . . . RNnodes,Nnodes
1

]
1×Nnodes

(1 +M0)
[
RNnodes,1

1 . . . RNnodes,Nnodes
1

]
1×Nnodes



;

(19)

Therefore, for the analysis of the temporal stability of TR sim-
ulations, the rows i = 1 and i = Nnodes of the [A0] ma-
trix (corresponding to the semi-discretised continuity equa-
tion at boundary nodes) are discarded, while the correspond-
ing columns i = 1 and i = Nnodes are rearranged in the [BTR]
matrix shown as follows:

d{Ψ}
dt̃

=
c0
∆x

[ATR]{Ψ}+
c0
∆x

[BTR]

{
p̃1

p̃Nnodes

}
2×1

; (21a)

where

{Ψ}(2Nnodes−2)×1 ={
p̃2(t̃) . . . p̃Nnodes−1(t̃) ρ0c0ũ1(t̃) . . . ρ0c0ũNnodes(t̃)

}T
; (21b)

[ATR] is given by Eq. (21c), and

[BTR](2Nnodes−2)×2 =



A2,1
0 A2,Nnodes

0
...

...
ANnodes−1,1

0 ANnodes−1,Nnodes
0

ANnodes+1,1
0 ANnodes+1,Nnodes

0
...

...
A2Nnodes,1

0 A2Nnodes,Nnodes
0


. (21d)

It is noted that Eq. (21a) is an inhomogeneous matrix dif-
ferential equation. The inhomogeneity in Eq. (21a) is as-
cribed to the presence of the non-zero acoustic pressure vec-
tor {p̃1 p̃Nnodes}T . This vector acts as a numerical source dur-
ing each time-step of TR simulations and initiates and sus-
tains a back-propagation of acoustic pulses in the computa-
tional domain during t̃ = [0, T ] which eventually coalesces
at t̃ = T . It is also noted that solving the time-reversed 1-D
LEE in the inhomogeneous form is equivalent to the numerical
time-integration of Eq. (20a) immediately followed by the en-
forcement of time-reversed acoustic pressure p̃(i = 1, t̃) and
p̃(i = Nnodes, t̃) at the boundary nodes. The stability of im-
plementation of the 1-D TR simulation using the PCF and the
overall upwind-biased FD scheme can now be assessed using

the exact temporal solution of Eq. (21a) expressed as{
p̃2 . . . p̃Nnodes−1 ρ0c0ũ1 . . . ρ0c0ũNnodes

}T
=

c0
∆x

e[ATR]
c0 t̃
∆x


τ=t̃∫
τ=0

e−[ATR]
c0τ
∆x [BTR]

{
p̃1(τ)

p̃Nnodes(τ)

}
dτ

 .

(22)

Equation (22) is a formal representation of the exact tempo-
ral solution; however, the TR simulation is not implemented
using this formal solution. This is because the exact func-
tion expressing the variation of the vector {p̃1(τ) p̃Nnodes(τ)}T
with time τ is not known a-priori, rather p̃(i = 1, t̃) and
p̃(i = Nnodes, t̃) time-histories are known at only discrete val-
ues of t̃. Nonetheless, Eq. (22) can be used for a stability anal-
ysis of the TR method by examining the eigenvalues of the
[ATR] matrix. The TR simulations are stable if all the eigen-
values of the [ATR] matrix have negative or zero real parts
(provided that the parameters of the [BTR] matrix and the in-
homogeneous vector {p̃1(τ) p̃Nnodes(τ)}T are finite). It is for
this reason that the inhomogeneous part of Eq. (21a) is disre-
garded in formulating the eigenvalue problem. On substituting
{Ψ}T = {Ψ̂}T eωt̃ in Eq. (21a) and subsequent algebraic ma-
nipulations, the following eigenvalue problem is posed:

[ATR]{Ψ̂}T = λ{Ψ̂}T ; (23a)

{Ψ̂}T =
{
p̃2 . . . p̃Nnodes−1 ρ0c0ũ1 . . . ρ0c0ũNnodes

}T
; (23b)

where λ denotes the non-dimensional eigenvalues of the [ATR]
matrix.

Figure 4 presents the eigenvalue loci of the [ATR] matrix for
Nnodes = 1500. It is observed from Fig. 4(a) that the eigen-
value loci for M0 = 0 and M0 = 0.30 consists of a closed
loop mostly located on the negative side of the Re(λ) axis,
thereby demonstrating the stability and robustness of the 1-
D TR simulations by considering two different upwinding di-
rections (to compute the spatial derivatives in opposing fluxes
X̃±linear) while using the overall upwind-biased FD schemes for-
mulated here. Figure 4(b) depicts an exaggerated view of the
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Figure 2. Eigenvalue loci of the overall upwind-biased FD scheme obtained from Eq. (18): Illustration of the stability with implementation of the ABC and the
bifurcating effect of a mean flow.

Figure 3. Stabilising effect of enforcing ABC on the first two (or more) and the last two (or more) nodes of the computational domain on the eigenvalue loci of
the overall central DRP FD scheme.

eigenvalue loci near the imaginary axis. It is observed that the
enlarged eigenvalue loci forM0 = 0 andM0 = 0.30 have very
small positive real parts whose magnitudes are of the order of
10−5 or even smaller. This suggests a mild instability problem
in the strict sense, which might be a concern only over a large
duration of TR simulation. Indeed, it is observed that these
mild instabilities do not affect the accuracy and robustness of
TR (shown in subsections 4.1.2 and 4.2.2) in predicting the
initial location of the pulse.

The eigenvalue loci of the [ATR] matrix using the overall
central DRP FD schemes16, 20 are presented in Fig. 5(a) for
Nnodes = 1500. Two different mean flow values given by
M0 = 0 and M0 = 0.30 are also considered for evaluating
the stability of overall central DRP FD schemes.16, 20

It is observed from Figs. 5(a, b) that for both the station-
ary medium as well as for the moving medium, the eigenvalue
loci resemble a straight line aligned vertically along the imag-
inary axis. Some of the eigenvalues have large positive real
parts (of the order of 10−1) which signify the rapid growth of
instabilities during the TR simulations. An enlarged view of
the eigenvalue loci is depicted in Fig. 5(b), wherein it is ob-

served that the eigenvalues are clustered along the imaginary
axis. The magnitudes of the real part of these eigenvalues are
of the order 10−4 (an order of magnitude greater than the un-
stable eigenvalues shown in Fig. 4(b)). Therefore, based on
these features of the eigenvalue loci shown in Fig. 5, it may
be concluded that the overall central FD schemes have eigen-
values with relatively larger positive real parts, and thus are
more prone to instabilities. To conclude, the overall central
DRP FD scheme (without the Artificial Selective Damping32

(ASD)) is thus unsuitable for simulation of Euler equations for
TR application. It may however be mentioned that inclusion
of the extraneous ASD terms in the LEE while using the over-
all central DRP FD scheme stabilizes the 1-D TR simulation.
This is because the eigenvalue loci would shift entirely to the
negative side of the Re(λ) axis of the λ plane (so that none of
the eigenvalues have a positive real part), and its shape would
resemble the eigenvalue loci of the overall upwind-biased FD
scheme shown in Fig. 4. Indeed, similar conclusions also hold
for the effect of ASD on the 1-D forward simulation using the
overall central DRP FD scheme. It is important to note that the
damping in the ASD stencil is directly proportional to the in-
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[ATR](2Nnodes−2)×(2Nnodes−2) =

 A2,2
0 . . . A2,Nnodes−1

0
...

. . .
...

ANnodes−1,2
0 . . . ANnodes−1,Nnodes−1

0


(Nnodes−2)×(Nnodes−2)

 A2,Nnodes+1
0 . . . A2,2Nnodes

0
...

. . .
...

ANnodes−1,Nnodes+1
0 . . . ANnodes−1,2Nnodes

0


(Nnodes−2)×NnodesA

Nnodes+1,2
0 . . . ANnodes+1,Nnodes−1

0
...

. . .
...

A2Nnodes,2
0 . . . A2Nnodes,Nnodes−1

0


Nnodes×(Nnodes−2)

A
Nnodes+1,Nnodes+1
0 . . . ANnodes+1,2Nnodes

0
...

. . .
...

A2Nnodes,Nnodes+1
0 . . . A2Nnodes,2Nnodes

0


Nnodes×Nnodes


;

(21c)

verse mesh Reynolds number (R−1
∆ ), and therefore in practice,

R−1
∆ is chosen in a rather ad-hoc manner (and is specific to

a particular CAA problem) such that the ASD does not induce
any inaccuracy due to over-damping.32 It is noted that the fore-
going remarks on the stability of 1-D simulations also hold for
overall upwind-biased or central FD schemes formulated using
other available FD schemes such as the wavenumber extended
schemes of Li,23 optimised scheme of Lockard,33 and the 15-
point central DRP FD scheme of Tam.34

4. RESULTS AND DISCUSSION: ACCURACY
ANALYSIS OF THE SIMULATIONS

The accuracy of the 1-D and 2-D forward simulation and
the TR simulation (implemented using only the time-reversed
acoustic pressure as input at the boundary nodes) is analysed
by comparison with the corresponding analytical solution of
the acoustic pressure field due to the propagation of an acoustic
pulse in a mean flow field involving planar wave fronts in the
1-D duct and cylindrical wave fronts in the 2-D free-space.

4.1. Test Case 1: Propagation of a Gaussian
Pulse in an Infinite 1-D Duct with Mean
Flow

The initial acoustic pressure field φ(x) is taken as a Gaus-
sian function. Therefore, p̃(x, t = 0) = φ(x) = εe−α(x−x0)2

where ε is the initial amplitude of the pulse, x0 denotes the
initial location of the peak of the Gaussian pulse in the 1-D do-
main given by 0 ≤ x ≤ 1, and α pertains to the sharpness of
the pulse and decides the maximum wavenumber content com-

puted by the Fourier transform 1√
2π

x=∞∫
x=−∞

e−αx
2

e−jk0xdx =(
e−

k2
0

4α /
√

2α

)
. In the ensuing simulation results, ε = 0.1 Pa

and α = 100 m−2, and therefore the maximum wavenum-
ber content k0 of the 1-D Gaussian pulse is less than 40 m−1,
thereby indicating that the spatial discretisation and the overall
upwind-biased FD scheme warrants an accurate acoustic wave
propagation. Furthermore, x0 = 0.5 m and M0 = 0.3 are
considered; hence, ∆t1 = 2.2418× 10−6 s based on the CFL
number equal to 0.2.

4.1.1. Forward Simulation

Figures 6(a–d) compare the spatio-temporal evolution of the
acoustic pressure field predicted by the 1-D forward simula-
tion against the corresponding analytical solution of the prop-

agation of a Gaussian pulse in an infinite 1-D duct with mean
flow (given by Eq. (24)) at time-instants (a) t = 0 (Initial con-
dition), (b) t = 200∆t1, (c) t = 400∆t1, and (d) t = 700∆t1,
respectively.

p̃analytical(x, t) =
1

2
×

Pulse propagating along the positive x direction︷ ︸︸ ︷
φ(x− (1 +M0)c0t) + φ(x+ (1 +M0)c0t)︸ ︷︷ ︸

Pulse propagating along the negative x direction

 . (24)

An excellent agreement is observed from Fig. 6(a–d) be-
tween the forward simulation and the analytical solution at
all time-instants, thereby establishing the accuracy of 1-D for-
ward simulations. It is observed that the initial Gaussian pulse
starts decaying and splitting into two Gaussian pulses of equal
amplitude but propagating in opposite directions with unequal
speeds (due to convective effect of mean flow). The pulse prop-
agating towards the positive x direction propagates at an en-
hanced speed c0(1 +M0) = 1.3c0 and leaves the domain ear-
lier than the pulse that propagates towards negative x direction
at the reduced speed c0(1−M0) = 0.7c0.

The forward simulations were carried out for a large time-
interval t = [0, T1 = 3000∆t1] during which the pulse com-
pletely propagates out of the domain and the acoustic pressure
and particle velocities are vanishingly small (less than machine
precision) beyond this interval.

In order to formally assess the accuracy, a L1 norm error
between the p̃(x, t) and ρ0c0ũ(x, t) fields predicted by the for-
ward simulations and the corresponding 1-D analytical solu-
tions is defined as

Lp1(t) =
1

L

x=L=1∫
x=0

∣∣p̃analytical(x, t)− p̃(x, t)
∣∣ dx; (25a)

Lu1 (t) =
1

L

x=L=1∫
x=0

ρ0c0
∣∣ũanalytical(x, t̃)− ũ(x, t)

∣∣ dx; (25b)

and has been evaluated at every time-step of the forward sim-
ulations. It is observed from Fig. 7(a) that for the initial time
duration of forward simulation t = [0, 1500∆t], the Lp1(t) and
Lu1 (t) norm errors are equal and of the order 10−7 for the over-
all upwind-biased scheme, whereas the p̃(x, t) and ρ0c0ũ(x, t)
fields are of the order 10−2 (maximum value over the domain
0 ≤ x ≤ 1) during this interval, thereby formally validating
the 1-D forward simulation using the PCF and overall upwind-
biased FD schemes.

International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015 235



A. Mimani, et al.: STABILITY AND ACCURACY OF AEROACOUSTIC TIME-REVERSAL USING THE PSEUDO-CHARACTERISTIC FORMULATION

Figure 4. Eigenvalue loci of the [ATR] matrix shown in Eq. (21c) for Nnodes = 1500 based on the overall upwind-biased FD scheme: Illustration of stability
and the bifurcating effect of a mean flow M0.

Figure 5. Eigenvalue loci of the [ATR] matrix shown in Eq. (21c) for Nnodes = 1500 based on the overall central DRP FD schemes: Illustration of instability
during the TR simulation due to a few eigenvalues with large positive real parts.

The 1-D forward simulations were also implemented using
the overall central DRP FD schemes16, 20 (discussed in Sec-
tion 3) wherein a numerically stable and accurate solution was
obtained. Indeed, the Lp1(t) and Lu1 (t) norm errors in this
case were almost identical to that of the overall upwind-biased
FD schemes due to the similar resolution characteristics (DRP
property) of the 4th order, the 7-point central DRP FD stencil16

and the 4th order, and the 7-point optimised upwind-biased FD
stencil.22 However, it was observed that the relative execution
time of the forward simulations per time-step using the overall
central DRP FD scheme is approximately half that taken by the
overall upwind-biased FD schemes.

4.1.2. TR Simulation

Figures 6(d–a) show the p̃(x, t̃) field predicted by the 1-D
TR simulation using only the time-reversed acoustic pressure
as input at the boundary nodes (i = 1, Nnodes) at discrete time-
instants (d) t̃ = 2300∆t1, (c) t̃ = 2600∆t1, (b) t̃ = 2800∆t1,
and (a) t̃ = T1 = 3000∆t1 (the final time-instant of the TR
simulation), respectively. It is noted that during the 1-D TR

simulation, the ABCs have not been implemented at the finite
termination of the duct. The p̃(x, t̃) field obtained by the 1-D
TR simulation is found to be in excellent agreement with the
p̃(x, t) field predicted by the forward simulation, and also with
the time-reversed analytical solution (obtained by replacing t
with T − t̃ in Eq. (24)) at the corresponding time-instants. It
is observed that two Gaussian pulses of equal amplitude back
propagate into the computational domain at unequal speeds
(the pulse propagating from the x = 0 and the x = L boundary
propagate at a speed of 0.7c0 and 1.3c0, respectively), undergo
constructive interference, and eventually coalesce at t̃ = T1

to form a single amplified Gaussian pulse at the same spa-
tial location (x = x0) and amplitude as the initial Gaussian
pulse (at t = 0 during the forward simulation), thereby reveal-
ing the correct source location and amplitude. For formally
assessing the accuracy, a L1 norm error between the p̃(x, t̃)
and ρ0c0ũ(x, t̃) fields predicted by the 1-D TR simulation and
the corresponding time-reversed analytical solutions has also
been evaluated at every time-step of the TR simulation. The
Lp1(t̃) and Lu1 (t̃) versus t̃ graphs are presented in Fig. 7(b). It
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Figure 6. The acoustic pressure field p̃(x, t) computed using the forward simulation of a Gaussian pulse propagating in a 1-D infinite duct (shown in Fig. 1(a))
with mean flow M0 = 0.3 towards the positive x direction at time-instants t = (a) 0, (b) 200∆t1, (c) 400∆t1, and (d) 700∆t1, and comparison with the
analytical solution (given by Eq. (24)). The time-reversed acoustic pressure field p̃(x, t̃) obtained during the TR simulation using only the time-reversed acoustic
pressure as input at the boundary nodes at the reverse time-instants t̃ = (a) 2300∆t1, (b) 2600∆t1, (c) 2800∆t1, and (d) T1 = 3000∆t1 demonstrates
one-to-one correspondence with the forward simulation and the analytical solution.

is noted that analysing the L1 norm errors is meaningful only
over the time interval t̃ = [1500∆t, 3000∆t] corresponding
to arrival of the acoustic pulses at the computational bound-
aries until the coalescing of the two pulses to form a single
amplified acoustic pressure pulse at time t̃ = T1. The order
of magnitude of L1 norm errors is approximately 10−5 over
the interval t̃ = [2000∆t, 3000∆t], whereas the order of mag-
nitudes of p̃(x, t̃) and ρ0c0ũ(x, t̃) over the same time interval
is approximately 10−2, while the peak of the Gaussian pulse
in p̃(x = L/2, t̃ = T1) is of the order 10−1. This confirms
the accuracy of TR simulations using only the time-reversed
acoustic pressure as input at the boundary nodes for the 1-D
test case.

4.2. Test Case 2: Propagation of a Gaussian
Pulse in a 2-D Free-space with Uniform
Mean Flow

The initial acoustic pressure field φ(x, y) is taken as a 2-
D Gaussian pulse given by p̃(x, y, t = 0) = φ(x, y) =

εe−α{(x−x0)2+(y−y0)2}, where α = 100 m−2, ε = 0.1 Pa
and x0 = y0 = 0 denotes its peak in the 2-D domain |x| ≤
(Lx + ∆Lx), |y| ≤ (Ly + ∆Ly), where Lx = Ly = 0.5 m,

while Nsponge = 30, therefore, ∆Lx = ∆Ly = 30 × 0.005 m
= 0.15 m. The maximum wavenumber content in the 2-D
Gaussian pulse is determined by computing the Hankel trans-
form of order zero35 of the function f(r) = e−αr

2

and is given

by e−
k2
0

4α /(2α). For the values of α considered, the maximum
wavenumber content k0 is less than 55 m−1, thereby ensuring
an accurate propagation of the pulse with the mesh-size con-
sidered here.

4.2.1. Forward Simulation

Figures 8(a–d) depict the spatio-temporal evolution of the
Gaussian pulse in a 2-D free space (over the domain |x| ≤
0.65 m, |y| ≤ 0.65 m) with a uniform mean flow M0 = 0.3
considered along the positive x direction obtained by the for-
ward simulation at time-instants (a) t = 0 (Initial condition),
(b) t = 300∆t2, (c) t = 600∆t2, and (d) t = 1000∆t2, where
∆t2 = 2.2418× 10−6 s.

It is noted that the domain shown in Figs. 8(a–d) also in-
cludes the sponge-layer domain which is necessary to damp
the incoming spurious reflections at the exterior computational
boundaries. Furthermore, in Figs. 8(a–d), the direction of the
uniform mean flow along the positive x direction is indicated
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Figure 7. Temporal variation of (a) the L1(t) error norms in the 1-D forward simulation and (b) the L1(t) error norms in the 1-D TR simulation: Quantification
of the accuracy of the simulations using the PCF of the LEE and the overall upwind-biased FD scheme.

by an arrow, the colorbar depicts the magnitude of acoustic
pressure in Pa (Nm−2), and the known location of the peak of
the Gaussian pulse in Fig. 8(a) is indicated by a circle O. The
same symbol and unit conventions are also followed for the re-
maining 2-D simulations. Figures 8(a–d) demonstrate that the
2-D Gaussian pulse collapses and the cylindrical wave fronts
expand radially such that the center of pulse is convected with
a speed c0M0 towards positive x direction due to mean flow.

The accuracy of the 2-D forward simulation results (shown
in Figs. 8(a–d)) is assessed by comparison against the corre-
sponding analytical solution of the acoustic pressure field due
to the spatio-temporally evolving Gaussian pulse in a 2-D free-
space given by16

p̃(x, y, t) =
ε

2α

ξ=ξ0→∞∫
ξ=0

ξe−
ξ2

4α cos(c0ξt)J0(ξη) dξ; (26)

where J0(·) is the ordinary Bessel function of zero order and
η = {(x− c0M0t)

2 + y2}1/2. Figures 9(a–d) depict the com-
parison of the acoustic pressure field p̃(x, y = 0, t) along the
x axis t = [0, 300∆t2, 600∆t2, 1000∆t2], respectively, ob-
tained using forward simulation and the analytical solution,
wherein an excellent agreement is observed between the two
approaches, especially during the initial time-instants. At
t = 1000∆t2, the forward simulation results exhibit a small
deviation from the analytical solution as may be observed from
Fig. 9(d). It is however noted that the p̃(x, y = 0) field pre-
dicted by the forward simulation and the corresponding analyt-
ical solution are both of the order 10−3, while the discrepancy
between the two approaches (due to small wave reflections that
back propagate into the computational domain despite the use
of Tam’s ABC at the x = 0.65 m boundary and the use of
sponge-layer near nodes of this boundary) is of the order of
10−4. This indicates that a reasonable estimate of the p̃(x, y, t)
field may be obtained by means of forward simulations based
on the PCF of 2-D LEE, overall upwind-biased FD schemes,
and the implementation of ABC. Indeed, the forward simula-
tions were carried out for t = [0, 5000∆t2] during which the
Gaussian pulse completely propagates out of the 2-D domain,

and the acoustic pressure and particle velocity fields tend to
zero.

The p̃(x, y, t) field obtained using the overall central DRP
FD scheme16, 20 based on the PCF and implementation of ABC
was found to be similar to that shown in Figs. 8(a–d), (the re-
sults are not shown for brevity), thereby demonstrating the sta-
bility and accuracy of the 2-D forward simulations using the
overall central DRP FD scheme.

4.2.2. TR Simulation

Time-reversed Acoustic Pressure as Input
Figures 10(a–d) show the p̃(x, y, t̃) field predicted by the 2-

D TR simulations (over the domain |x| ≤ 0.5 m, |y| ≤ 0.5 m,)
using only the time-reversed acoustic pressure history as in-
put at all four computational boundaries, i.e. x = ±0.5 m
and y = ±0.5 m at (a) t̃ = 4000∆t2, (b) t̃ = 4400∆t2,
(c) t̃ = 4700∆t2, and (d) t̃ = T2 = 5000∆t2 (the final
time-instant of TR simulation). The ‘reversed’ direction of
mean flow is indicated by an arrow in Figs. 10(a–d), while
the predicted location of the peak of the Gaussian pulse in
Fig. 10(d) is indicated by a cross X. (These same symbolic
conventions are also followed for the remaining results.) It is
noted that the use of time-reversed acoustic pressure Dirichlet
boundary conditions as input at the four computational bound-
aries results in the generation of both the incoming acoustic
wave fronts (that propagates into the domain, converges and
eventually coalesces to form the initial Gaussian pulse) and
the outgoing waves that tend to propagate outside the compu-
tational domain. In order to prevent the spurious numerical
reflections at the boundaries due to the outgoing waves from
back-propagation into the domain and thereby inducing insta-
bility, the CEM ABC and the special corner ABCs were im-
plemented at the boundaries,4, 10, 21 crucial for stabilising the
2-D TR simulations. Furthermore, ∂ṽ/∂x|x=Lx = 0 condition
was also implemented to prevent instability due to incoming
disturbances advected by ‘reversed’ mean flow.

Figure 10(d) indicates that the predicted location of the peak
of the Gaussian pulse is co-incident with the known peak lo-
cation. Indeed, a comparison of p̃(x, y, t̃) field in Figs. 10(a–
d) with the corresponding p̃(x, y, t) field shown in Figs. 8(d–
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Figure 8. The forward simulation of acoustic pressure field p̃(x, y, t) due to a Gaussian pulse propagating in a 2-D free-space with uniform mean flowM0 = 0.3
towards the positive x direction at t = (a) 0, (b) 300∆t2, (c) 600∆t2, and (d) 1000∆t2. It is noted that different colorbar scales are used in parts (a–d).

a), respectively, demonstrates an accurate back- propagation
of cylindrical acoustic waves from the boundaries during 2-D
TR simulations using only the time-reversed acoustic pressure
as input. A similar conclusion may also be drawn on com-
paring the time-reversed p̃(x, y = 0, t̃) field with the forward
p̃(x, y = 0, t) field shown in Fig. 9.

Time-reversed Acoustic Pressure and Particle Velocities as
Input: A Comparison

The p̃(x, y, t̃) field obtained by the 2-D TR simulations us-
ing both the time-reversed acoustic pressure and acoustic par-
ticle velocities as input (shown in Figs. 11(a–d)) is compared
to that obtained using only the time-reversed acoustic pressure
as input (shown in Figs. 10(a–d)) at the corresponding reverse
time-instants.

It is observed that the p̃(x, y, t̃) fields obtained in Figs. 10(a–
d) and 11(a–d) are similar. In particular, Figs. 10(d) and 11(d)
predicting the initial location of peak of the Gaussian pulse
are identical. Similar conclusions may also be made from

Figs. 9(a–d). This demonstrates that measuring the acoustic
particle velocity histories at the computational boundaries is
unnecessary and the use of only the time-reversed acoustic
pressure as input is sufficient for an accurate localization of
sound sources in flows by means of 2-D TR simulations.

It is also observed by means of numerical experiments that
the use of an overall central DRP FD scheme16, 20 for 2-D TR
simulations using (a) only the time-reversed acoustic pressure
as input, or (b) both the time-reversed acoustic pressure and
acoustic particle velocities as input is unsuitable due to insta-
bility problems (despite implementing the ABC at the bound-
ary nodes). This temporal instability is attributed to the iden-
tically zero damping in the central FD schemes. Hence, the
unresolved spurious numerical waves generated at the compu-
tational boundaries due to implementation of Dirichlet bound-
ary conditions3 cannot be suppressed and thus propagate in the
domain leading to instability.
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Figure 9. Spatio-temporal evolution of the acoustic pressure field along the x axis, i.e., p̃(x, y = 0): Comparison of the analytical solution with results of the
forward simulation, the TR simulation with only time-reversed acoustic pressure as input and TR simulation with both, the time-reversed acoustic pressure and
particle velocity as input at the computational boundaries.

5. CONCLUSIONS

The temporal stability and accuracy of the forward and TR
simulations of the Linearised Euler Equations (LEE) based on
the Pseudo-Characteristic Formulation (PCF) and using two
different classes of overall Finite-Difference (FD) schemes, (a)
upwind-biased schemes and (b) central DRP schemes, have
been analysed. The important contributions of this investiga-
tion are:

1. The stability of the 1-D forward and TR simulations us-
ing the overall upwind-biased FD scheme has been estab-
lished by means of a matrix eigenvalue decomposition,
wherein it is shown that two opposite upwinding direc-
tions must be considered for computing the spatial deriva-
tives in the opposing fluxes of the PCF. The implementa-
tion of ABC is necessary to ensure stability of both, the
1-D and 2-D forward simulation of a pulse propagating
in a free-space (with mean flow) over an arbitrarily large
time duration. The stability of 1-D TR simulation using
only time-reversed acoustic pressure as input is due to the
use of upwind-biased schemes near the boundary and in-
terior nodes, and the use of optimised downwind schemes
at and near the boundary nodes having DRP property over

a large range of wave numbers. Unlike the 1-D TR sim-
ulation, the ABC must be implemented for ensuring the
stability of the 2-D TR simulation using overall upwind-
biased schemes.

2. The stability of the forward simulation using the overall
central DRP FD schemes16, 20 in the PCF is also ensured
by implementation of the ABC, wherein the execution
time-step of the central DRP FD scheme is found to be
almost half that of the overall upwind-biased FD scheme.
However, for the 1-D TR simulations, some of the eigen-
values of overall central DRP FD schemes16, 20 (without
ASD32) are shown to have significantly large positive real
parts, which implies the manifestation of instabilities to-
wards the final time-instants. In fact, for the 2-D TR simu-
lations, these instabilities manifest during the initial time-
instants. Therefore, it may be concluded that the overall
central DRP FD schemes are unsuitable for the TR simu-
lation.

3. It is demonstrated that the use of both the time-reversed
acoustic pressure and acoustic particle velocity histories
as input during TR simulation is unnecessary. Rather,
use of (a) only the time-reversed acoustic pressure his-
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Figure 10. The acoustic pressure field p̃(x, y, t̃) due to back-propagation of a Gaussian pulse in a 2-D free-space obtained by means of the TR simulation using
only the time-reversed acoustic pressure as input Dirichlet conditions at the nodes on the computational boundaries at reverse time-instants t̃ = (a) 4000∆t2,
(b) 4400∆t2, (c) 4700∆t2, and (d) T2 = 5000∆t2. (The direction of uniform mean flow is reversed.)

tory as input at computational boundaries, and (b) the nu-
merically reversed mean flow profile (which is known,
a-priori during the forward simulation4, 7, 10, 36 or experi-
mentally measured using hot-wire anemometry3) is suf-
ficient to warrant an accurate back-propagation of waves
and thereby localise the sound source(s) in flow fields us-
ing the TR method.

4. The accuracy of the forward and TR simulation (using
the overall upwind-biased FD schemes and PCF) is estab-
lished by comparing the 1-D/2-D simulation results of the
propagation of a Gaussian pulse in a free-space to the cor-
responding analytical solution. The physical significance
of the accuracy analysis of TR simulation, in particular,
is that for acoustic pressure and velocity fields at every
forward time-instant t, there exists corresponding time-
reversed acoustic pressure and velocity fields at reverse
time t̃ = T − t, thus, analytically validating the aeroa-
coustic TR simulation for the first time using simple test
cases of back-propagation of a pulse in a free-space.
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This paper deals with the approach of using multiscale permutation entropy as a tool for feature selection for fault
diagnosis in ball bearings. The coefficients obtained from the wavelet transformation of the vibration signals of the
bearings are used for the calculation of statistical parameters. Based on the minimum multiscale permutation en-
tropy criteria, the best scale is selected and statistical parameters such as crest factor, form factor, and permutation
entropy are calculated. Finally, the faults are classified by considering the statistical parameters and permutation
entropy as features in supervised and unsupervised machine learning methods, such as a support vector machine
and self-organizing maps, respectively. Results revealed that the multiscale permutation entropy-based feature
extraction techniques provide higher classification accuracy in comparison to the other methodologies that have
been proposed in previous published works. The methodology proposed in this paper also gives good results for
unsupervised learning methods, i.e. self-organizing maps.

1

NOMENCLATURE
C penalty constant
m embedding dimension
M total number of samples
N length of data
s scale
t1 time
z time series
Y sj coarse-grain time series
w weight
ξi slack variable
π permutation pattern
τ time delay

1. INTRODUCTION

Techniques designed to monitor the conditions of rolling el-
ement bearings receive considerable attention from researchers
across the globe. Faults in the bearings are the major source of
the breakdown of machinery. When a defect in the surface of
one bearing strikes the surface of another, impulsive force is
generated. This effect has been exploited by several vibration
analysis methods, as well as various signal processing tech-
niques.1 Incipient fault diagnosis in rolling element bearings
is essential for production efficiency and plant safety. Fault di-
agnosis depends mainly on the feature extraction techniques,
because the signals carry dynamic information about the state
of the machinery. The patterns of vibration signals, due to de-
fects in various rotating parts, exhibit specific features. That
is to say, faults can be identified by looking at pattern abnor-
malities in plant machinery and rotating parts. Signal process-
ing techniques such as time domain, frequency domain, and
combined time frequency domain (such as wavelet transfor-
mation) have been investigated by various researchers.2–5 Due
to variations in friction, loading conditions, interaction of vari-
ous rotating elements, and clearance and nonlinear stiffness of
the bearings,6, 7 the vibration signals generated by machinery

are often characterized by nonlinearity. Thus, nonlinear pa-
rameter estimation techniques have been widely used by many
researchers.8–12 Numerous methods such as the correlation di-
mension13 and the Lyapunov exponent14 have been developed
recently to detect nonlinearity. Entropy estimation is an im-
portant parameter for measuring system complexity. Analy-
sis of the vibration signals generated from rotating machin-
ery, using complexity measure such as approximate entropy15

and multiscale entropy,16 was used for the bearing fault di-
agnosis. Permutation entropy was introduced by Bandt and
Pompe,18 and is a new nonlinear parameter estimation tool that
was efficiently used for the fault diagnosis.17 By comparing
neighbouring values, the complexity of a time series can be
extracted using permutation entropy. Shannon entropy is use-
ful for the estimation of the complexity of a time series based
on a single scale, while multiscale permutation entropy is use-
ful for calculating the complexity of a time series after com-
paring neighbouring values and entropy over multiple scales.
Bandt and Pompe18 presented permutation entropy, as a pa-
rameter of average entropy, to describe the complexity of a
time series. It should also be noted that feature vectors con-
sisting of multiscale permutation entropy provide better infor-
mation about physical phenomena such as the occurrence of
faults in the rotor bearing system.19 The use of permutation
entropy for chatter detection in the turning process,20 known
as electroencephalography (EEG) signal analysis,21 has been
used for chaotic time series. Signals obtained from complex
mechanical systems that have several components are usually
complicated. Approximate entropy and permutation entropy
are based on a single scale, and are therefore inefficient in di-
agnosing the signals correctly. Multiscale permutation entropy
was proposed by Costa, et al.,22 and this concept was utilized
by Wu, et al.23 and Vakharia, et al.,24 for bearing fault diagno-
sis and classification.

In this paper, raw vibration signals are used, and the concept
of permutation entropy is utilized for the selection of scale.
Wavelet coefficients are calculated by considering coiflet as
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Figure 1. Proposed fault diagnosis strategy.

mother wavelet, and a scale giving the least permutation en-
tropy is selected for the calculation of statistical parameters.
A feature vector includes these statistical parameters: speed,
loading condition, and permutation entropy. A feature vector
is fed as the input for fault classification using a support vec-
tor machine (SVM) and self-organizing maps (SOM). Results
revealed that the proposed feature extraction method gives im-
proved results compared to the conventional feature extraction
methods. The complete methodology for fault diagnosis is
shown in Fig. 1.

2. PERMUTATION ENTROPY

Signals obtained from complex machinery parts using EEG
show that stock markets are very complex in nature. Initially,
entropy was used for quantifying the predictability of a time
series on a single scale. It does not give insight between reg-
ularity and complexity. Costa, et al.22 have developed mul-
tiscale entropy for the analysis of physiologic time series, in
which initial sample entropy is calculated and, based on the
concept of multiscale, various entropies can be calculated.

Permutation entropy was introduced as a computational ef-
ficient method for extracting the information from compound
systems. For a given time series,

Z(t) = (Z1, Z2, Z3, . . . , Zn); (1)

at each time t1, a vector composed of the mth subsequent val-
ues is constructed as:25

t1 → (Zt1 , Zt1+1, . . . , Zt1+(m−2), Zt1+(m−1)); (2)

Figure 2. Coarse grain procedure.

where m is called embedding dimension and tells how much
information is present in a vector. Further, by considering time
delay of τ , Eq. (2) can be rewritten as

t1 → (Zt1 , Zt1+τ , . . . , Zt1+τ(m−2), Zt1+τ(m−1)). (3)

For a given embedding dimension, there will be m! possi-
ble permutation π of order m. Permutation entropy employs
the concept of Shannon entropy by analysing the relative fre-
quency of patterns generated from a time series. The permuta-
tion entropy is defined as:

PE = −
m!∑
i=1

πi lnπi. (4)

Permutation entropy depends mainly on the selection of em-
bedding dimension m and time delay τ . Bandt and Pompe18

suggested in their study that value of embedding dimension m
should be 3 ≤ m ≤ 7 and time delay τ = 1.

Normalized permutation entropy is given by

NPE =
PE
lnm!

; (5)

where lnm! denotes maximum PE value.

2.1. Multiscale Permutation Entropy
The concept of multiscale entropy has been proposed by

Costa, et al.22 For a given time series and 3 scales, the data
points are averaged by selecting non-overlapping windows of
increasing length to form multiple coarse-grained time series
as shown in Fig. 2.

For the scale factor s, the elements of coarse-grained time
series are evaluated by

Y sj =
1

s

js∑
i=(j−1)s+1

zi, 1 ≤ j ≤ N

s
; (6)

whereN denotes the length of the data. For scale 1, the coarse-
grained time series is simply the original time series.

3. MACHINE LEARNING TECHNIQUES

Machine learning is a type of artificial intelligence technique
used essentially for classification and regression. An important
task of machine learning is classification where algorithms are
constructed between different data based on their specific pat-
terns. Algorithms can be broadly categorized into supervised
and unsupervised algorithms.
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Figure 3. Schematic diagram of rotor bearing system.

3.1. Supervised Learning
In supervised learning, a label is associated with each fea-

ture of training data. Training data consists of input and de-
sired result. The task of an algorithm is to search for patterns
and develop mathematical models. Based on their prediction
accuracy, models are evaluated. Naive Bayes, artificial neural
networks, and support vector machines are some examples of
supervised learning methods.

The support vector machine (SVM) is a statistical learning
method based on the principle of structural risk minimization
and was introduced by Vapnik.26 SVM is a supervised learning
algorithm in which a learning machine has allotted some set of
features to a class of labels.

For linearly separable data, a hyperplane is constructed
which separates hyperspace to achieve maximum separation
between the classes known as the margin. The nearest data
points that are used to define the margin are known as support
vectors.

The optimal hyperplane separating the data can be obtained
as a solution to the following optimization problem:
Minimize

1

2
||w||2 + C

M∑
i=1

ξi (7)

subject to

yi (w
′xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . ,M. (8)

3.2. Unsupervised Learning
An unsupervised learning model is not provided with cor-

rect results during training. The task is to identify hidden
patterns in unlabelled data. It can also be used for clustering
the input data in to classes based on their statistical property.
Self-organizing maps, K means, and blind signal separation are
among the techniques which come under unsupervised learn-
ing.

A self-organizing map (SOM) is a type of neural network
model commonly used for unsupervised classification.27 In
self-organizing maps, “self-organizing” means that no super-
vision is required. The models learn on their own through un-
supervised competitive learning, while the “map” is used to
map their weights according to the given input data.

Table 1. Parameters of bearing 6205 (SKF).

Parameter Value
Outer race diameter 52 mm
Inner race diameter 25 mm
Ball diameter 7.94 mm
Ball number 10
Contact angle 0o

In the initial stage, all node weights are initialized and a vec-
tor is randomly chosen from the set of training data and for-
warded to network. Every node in the network is then used to
calculate which weights are similar to the input vector. Nodes
which are within the boundary of the best-matching unit are
adjusted to make them like the input vector. Finally, the loca-
tion of the most similar node is arranged in such a way that a
topographic map is generated. The locations of the most sim-
ilar nodes indicate statistical features contained in the input
patterns.

4. EXPERIMENTAL SETUP AND DATA
ACQUISITION

In the present study, an experimental test rig has been used,
and vibration responses for healthy bearings and bearings with
faults are obtained. A schematic diagram of a rotor bearing
system is shown in Fig. 3. Table 1 shows the dimensions of the
ball bearing used for this study. The vibration signals from the
rig are taken after some hours of initial running.

The signals are measured at rotor speeds 1000, 1500, and
2000 rpm, and in all five classes with no loader, one loader, and
two loader conditions, respectively. The following five bearing
conditions are considered for the study:

1. Bearing with no defect (BND);

2. Bearing with spall on inner race (SI);

3. Bearing with spall on outer race (SO);

4. Bearing with spall on ball (SB);

5. Combined defects (CD).

The combined defects represent bearing conditions which have
a spall on the inner race, the outer race, and ball together.

5. FEATURE EXTRACTION

Statistical analysis of vibration signals gives different pri-
mary and secondary parameters.

The continuous wavelet coefficients (CWC) of all signals
were calculated at the 7th level of decomposition (27 scales). A
scale giving the least permutation entropy was selected, and the
statistical features of CWC corresponding to that scale were
calculated for both horizontal and vertical directions. The se-
lected embedded dimension m and the time delay τ of multi-
scale permutation entropy are 5 and 1, respectively.

The following features were selected for both horizontal and
vertical conditions:

a. Permutation entropy, defined by Eq. (4).

b. Form factor, defined as the ratio of the RMS value and the
average value of the signal.
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Table 2. Sample input feature values for SOM/SVM.

Horizontal response Vertical Response
Permutation entropy Crest factor Form factor Permutation entropy Crest factor Form factor Loader Speed Class

0.6188 -0.9115 -1.0971 0.7100 0.8356 1.1968 0 1000 CD
0.5665 0.8123 1.2311 0.6356 -8.004 -1.2494 0 1500 CD
0.5823 -0.8453 -1.1831 0.7711 0.8259 1.2108 0 2000 CD
0.5169 -0.8519 -1.1738 0.5155 0.4019 2.4881 1 1000 SB
0.6154 0.4970 2.0121 0.8217 -0.6378 -1.5679 1 1500 SB
0.7166 -0.6240 -1.6025 0.7974 0.3539 2.8259 1 2000 SB
0.4255 0.8674 1.1528 0.4568 0.7593 1.3170 2 1000 SO
0.4120 0.8849 1.1301 0.7877 0.1105 9.0499 2 1500 SO
0.4939 -0.9028 -1.1076 0.8260 -0.5253 -1.9037 2 2000 SO
0.6045 0.8888 1.1251 0.5695 0.3862 2.5891 0 1000 BND
0.5901 0.2458 4.0691 0.5652 0.7917 1.2631 0 1500 BND
0.5666 -0.8682 -1.1518 0.6888 0.9204 1.0865 0 2000 BND
0.5093 0.7406 1.3503 0.7466 -0.7828 -1.2775 2 1000 SI
0.5712 -0.8311 -1.2032 0.5927 0.1317 7.5934 1 1500 SI
0.5241 0.4286 2.3334 0.5087 -0.6191 -1.6153 1 2000 SI

c. Crest factor, defined as the ratio of the peak value of the
signal to its RMS value.

These features were extracted from the vibration signals and
were fed as an input to machine learning techniques such as
SOM and SVM for the classification of faults.

6. RESULTS AND DISCUSSION

Testing and cross validation of feature sets have been car-
ried out using SOM and SVM as classifiers.28 These features
consist of permutation entropy, form factor, and crest factor,
each for horizontal and vertical responses, and the number of
loaders and rotor speed are also considered as the features for
testing and cross-validation purposes. A sample input feature
values are shown in Table 2.

The effects of bearing defects like ball defect, combined de-
fect, outer race defect and inner race defect on multiscale per-
mutation entropy are shown in Fig. 4. For the cases considered,
it was found that for the vertical response, multiscale permuta-
tion entropy is higher as compared to the horizontal response.

With no loader and 1500 rpm, maximum multiscale permu-
tation entropy is 0.7625 for ball defects under vertical response
conditions, and minimum multiscale permutation entropy is
0.4015 for outer race defects under horizontal response con-
ditions, as shown in Fig. 4(a). It can be interpreted that ball
defects under no-loader conditions and 1500 rpm exhibit more
disorder when compared to other classes, and outer race de-
fects contain less disorder.

From Fig. 4(b), it is observed that the maximum multiscale
permutation entropy, 0.8368, is for ball defects under vertical
response conditions, and the minimum value of 0.521 for in-
ner race defects is under horizontal response conditions. It can
be interpreted that when speed is increased, disorder increased
in ball defects and decreased in inner race defects. When the
load is increased and the speed is 1500 rpm, the maximum
multiscale permutation entropy is 0.836 for ball defects, the
vertical response conditions and minimum multiscale permu-
tation entropy is 0.3028 for combined defects, and the hori-
zontal response conditions are shown in Fig. 4(c). With one
loader and 2000 rpm, the maximum multiscale permutation en-
tropy is 0.7974 for ball defects, the vertical response conditions
and minimum multiscale permutation entropy is 0.5087 for in-
ner race defects, and vertical response conditions are shown in
Fig. 4(d). Thus, it is concluded that ball defects are severe as

compared to other defects considered in the present study for
all load conditions and speeds.

A total of 75 instances are considered which consist of 6,
16, 18, 17, and 18 cases of BND, SI, SO, SB, and CD, re-
spectively. For coiflet wavelets, a scale is selected based on
minimum multiscale permutation entropy. Testing and cross-
validation results are shown in Tables 3 and 4 for SOM and
SVM, respectively. Cross validation is a technique to evaluate
the performance of classifiers. Therefore, 10-fold cross vali-
dation, which is the standard method of testing classifiers, was
carried out.

From Table 3, for testing purpose 6/6, 16/16, 12/18, 17/17,
and 18/18 cases were predicted correctly for BND, SI, SO, SB,
and CD, respectively. Similarly, for cross-validation purposes,
4/6, 12/16, 11/18, 17/17, and 18/18 cases were predicted cor-
rectly. We infer that for SB and CD, SOM has correctly pre-
dicted 17/17 and 18/18 cases each for both testing and cross
validation. It is also clear that for SO, the prediction accuracy
rate is comparatively lower compared to other classes. It can be
concluded that for SO, about 22% (4/18) of the data matches
with CD, and about 16% (3/18) of the data matches with SI,
which suggests that while performing cross validation, SOM
is unable to distinguish between these fault classes efficiently.
A possible reason for spalls on the outer race is that the vibra-
tion data collected contains more noisy data compared to other
faults. Similarly, for SI about 12% (2/16) of the data matches
with SO, and 12% (2/16) of the data matches with SB. Another
possible reason for not correctly identifying these defects dur-
ing cross validation may be due to over fitting; i.e. the opti-
mization of the parameters for the SOM classifier is not done
properly.

Table 4 shows the prediction accuracy when SVM is used
as a classifier. For testing purposes, 6/6, 16/16, 18/18, 17/17,
and 18/18 cases are predicted correctly for BND, SI, SO, SB,
and CD, respectively. For cross validation, 6/6, 14/16, 14/18,
16/17, and 18/18 cases are predicted correctly for BND, SI,
SO, SB, and CD, respectively. Thus, it is clear that the pre-
diction accuracy of BND and CD is 100% for both testing and
cross validation when SVM is used as a classifier. SI and SO
are comparatively less accurately predicted. For SO, about
10% (2/18) of the data falls under CD. This means that 10%
of the data of SO matches with the CD class. Similarly, 10%
(2/18) of the data matches with the SI class during cross vali-
dation, which is an indication that SO contains more noisy data
compared to other classes. Similarly, for SI about 13% (2/16)
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Figure 4. Multiscale permutation entropy with load condition and speed.

Table 3. Confusion matrix for SOM.

Using Test Set Using 10 fold cross validation
BND SI SO SB CD Classified as BND SI SO SB CD Classified as

6 0 0 0 0 BND 4 0 1 0 1 BND
0 16 0 0 0 SI 0 12 2 2 0 SI
0 2 12 0 4 SO 0 3 11 0 4 SO
0 0 0 17 0 SB 0 0 0 17 0 SB
0 0 0 0 18 CD 0 0 0 0 18 CD

Table 4. Confusion matrix for SVM.

Using Test Set Using 10 fold cross validation
BND SI SO SB CD Classified as BND SI SO SB CD Classified as

6 0 0 0 0 BND 6 0 6 0 6 BND
0 16 0 0 0 SI 0 14 0 2 0 SI
0 0 18 0 0 SO 0 2 14 0 2 SO
0 0 0 17 0 SB 0 0 0 16 1 SB
0 0 0 0 18 CD 0 0 0 0 18 CD

Table 5. Classification accuracy.

Parameters SOM SVM
Test set 10 fold cross validation Test set 10 fold cross validation

Correctly classified instances 69 (92%) 63 (84%) 75 (100%) 68 (90.667%)
Incorrectly classified instances 6 (8%) 12 (16%) 0 (0%) 7 (9.33%)

Kappa statistic 0.8977 0.8161 1 0.8806
Total number of instances 75 75 75 75

248 International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015



V. Vakharia, et al.: BALL BEARING FAULT DIAGNOSIS USING SUPERVISED AND UNSUPERVISED MACHINE LEARNING METHODS

Table 6. A comparative study between the presented work and published literature.

References Machine
Learning
Method
used

Faults considered Efficiency of classification
(%)

Techniques used for vibra-
tion analysis

Remarks

Kankar, et
al.29

SOM,
ANN,
SVM

Spall in inner race, outer race,
rolling element, and combined
component fault, healthy bearing

70.66, 89.33, 90.66 by SOM,
ANN, and SVM, respectively
(cross validation)

Meyer, coiflet5, symlet2,
gaussian, complex morlet,
and shannon wavelet

Wavelets are compared

Kankar, et
al.30

ANN,
SVM

Spall in inner race, outer race,
rolling element, and combined
component fault, healthy bearing

71, 74 by ANN and SVM, re-
spectively (test set)

NA Time series data used

Seker, et
al.31

NA Fault at ball, inner race, outer race 71.33 Daubechies 15 and 20 Time series data used

Abbasion,
et al.32

SVM Bearing looseness, defects in
rolling elements and bearing
raceways

100 by SVM Meyer wavelet Wavelet denoising

Wu, et al.23 SVM Fault at ball, inner race, outer race,
and normal bearing

97–100 by SVM (training) NA Time series data used

Proposed
work

SOM,
SVM

Inner race, outer race, ball, com-
bined fault, and bearing with no
defect

92, 100 (test set) and 84,
91 (cross validation) by SOM
and SVM, respectively

coiflet2 Best scale is selected
using Permutation En-
tropy criterion

of the data matches exactly with SB, which also indicates that
the classifier is not able to distinguish between them during
cross validation.

Table 5 depicts the overall classification accuracy for both
the test set and the 10-fold cross validation set using two clas-
sifiers. It can be observed that, for SOM, 69/75 test instances
were classified correctly, which gives a 92% classification ac-
curacy rate, and for 10-fold cross validation, 63/75 test in-
stances were classified correctly, giving an 84% classification
accuracy rate. Similarly, for SVM, 75/75 test instances were
classified correctly, giving a 100% classification accuracy rate,
and for 10-fold cross validation, 68/75 test instances were clas-
sified correctly, giving a 90.66% classification accuracy rate, as
shown in Table 5.

The kappa statistic is used for assessing the degree to which
two or more classes that are testing the same data match when
it comes to assigning the data to classes. For complete match-
ing, the corresponding value of the kappa statistic is 1, and for
totally incomplete matching, its value is 0. For SVM, using a
testing set, the ideal value of 1 is achieved for the kappa statis-
tic. It is clear from the above mentioned results that the classifi-
cation accuracy of SVM is much better compared to SOM, and
is reported by Kankar, et al. in their study.29 SOM is a type of
unsupervised learning method in which the objective is to iden-
tify hidden structures in unlabelled data. Since the inputs given
are unlabelled, it becomes difficult for the learning algorithm to
train itself to correctly identify that particular feature belong-
ing to a specific class. This makes it quite difficult to correctly
predict the given feature set, and thus the classification accu-
racy is lower. On the other hand, the classification accuracy
of SVM is high because of its good generalization capability.
For demonstrating the effectiveness of the proposed methodol-
ogy, a comparative study between the present work and some
published literature is shown in Table 6. The proposed work
is compared in terms of the machine learning method used,
faults considered on the bearings, classification efficiency, and
the vibration analysis technique.

7. CONCLUSIONS

In the present study, a methodology is proposed for com-
paring supervised and unsupervised learning methods for fault

diagnosis of bearings. Raw vibration signals of various fault
categories are used and the concept of permutation entropy is
applied for the best scale selection of wavelet coefficients. Fea-
tures based on the best scale are extracted for both horizon-
tal and vertical response conditions. In total, 8 features have
been considered, including permutation entropy, form factor,
and crest factor for both horizontal responses and vertical re-
sponses, along with the number of loaders and shaft rotation.
The classification results of SOM and SVM are compared, and
the results show that SVM is able to give much better results
due to its better generalization capability. It is observed that
severe vibration is observed for ball defects. The prediction ac-
curacy rate of both learning algorithms is lower for outer race
defects and higher for combined defects. It can be concluded
that the proposed methodology based on scale selection using
multiscale permutation entropy along with supervised and un-
supervised machine learning techniques has potential for appli-
cation to the development of real-time fault diagnosis systems.
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The particle damping technique has been in development for several decades, and has been used successfully in
many fields. However, it is difficult to predict its damping characteristics due to complex collisions and friction
mechanisms, as well as high non-linear damping characteristics in dense particles. The focus of these current
main achievements is centralized on the equivalent single degree of freedom (SDOF) system under free and forced
vibration. In this paper, a brand new co-simulation approach for the continuum structure system based on the
multiphase flow theory (MFT) of gas solid is developed by the COMSOL Multiphysics live link for MATLAB.
A simple continuum structure system, (i.e., the cantilever particle damped beam) is made as an experiment. It
is further shown that the damping capacity of a cantilever beam depends not only on the exerted location of the
particle damper, but also the quantity of the filling. An experimental verification is performed, and an acceptable
accordance is achieved between the theoretical results and the experimental data. It can be shown that the theo-
retical work in this paper is valid. The co-simulation method simplifies the complicated modelling problem, and
offers the possibility to analyse the vibro-acoustic response prediction for complicated particle-damping composite
structures.

1. INTRODUCTION

Granular particle damping, which is derived from the impact
damping, is a promising technique of providing damping with
granular particles placed in an enclosure attached to or em-
bedded in the holes drilled in the vibrating structure.1, 2 This
emerging technology can perform well even in extreme tem-
peratures (either low or high) and harsh chemical environments
where traditional passive damping methods, such as the widely
used viscous and viscoelastic dampers, are ineffective in par-
ticular applications. Particle damping technology has drawn
the attention of many researchers in engineering and academic
fields, and has been well researched for several decades, with
a large volume of books and papers published on the subject.
With the development of the particle damping technology in
many fields, coherent computer simulation technology is also
being developed. The simulation method is very convenient in
investigating the effect of the system parameters on the char-
acteristic of the particle damping without extensive trial-and-
error testing. However, the popular simulation approaches in
the published studies were more often focused on the single
degree of freedom (SDOF) system or the equivalent SDOF un-
der the free and forced vibration. It is noted that these cur-
rent methods have been stretched beyond their normal capacity
for the simulation of the continuum damping structure system.
Consequently, it is desirable to develop a new simulation tech-
nology to predict the characteristics of particle damping. Even
to this day, the simulation methods to evaluate the damping
characteristic of the continuum structure systems, such as the
plate and shell with the particle damper, are rare in recent re-
search. The principal challenges are that their performances
are highly nonlinear. There has also been some considerable
research in the area of particle damping, and some analytical

models have been developed on heuristic evaluations of parti-
cle damping.

The Discrete Element Method (DEM) simulation has been
extensively developed over the years to evaluate the dissipa-
tive properties of granular materials. The DEM simulation
can capture the complex interactions of the dissipation mecha-
nisms in a particle damper. However, the DEM simulation suf-
fers from a complicated dynamic model, and it is highly time-
consuming, which make it difficult to perform parametric anal-
ysis when the number of granules is large. It is very regrettable
that the application field is only limited to the SDOF system,
and therefore is not competent for the vibration analysis of the
complicated continuity system with particle damper. Saeki3

used this method and investigated the damping behaviour of a
horizontally vibrating system in which the gravity is not as im-
portant as in a vertically vibrating system. Mao and coworkers4

studied the characterization of particle damping in transient vi-
brations.

Friend et al.5 developed a lumped mass approach, also re-
ferred to as the numerical algorithm, where the particles inside
the cavity are assumed to form a lumped mass without consid-
eration of collision and friction effects between particles. The
particle damper is attached to the free end of a cantilevered
aluminium beam,and the system is reduced to an equivalent
SDOF system. The effects of acceleration amplitude and clear-
ance inside the enclosure were studied, and the damping was
found to be highly nonlinear, i.e., amplitude dependent. Such
an approach is also applicable to investigate the damping per-
formance of the multiple degree-of-freedom (MDOF) system
to multi-body vibrating structure.6

Liu, et al.7 used an equivalent viscous damping model to
represent the nonlinearity, which was extracted from exper-
imental results. However, their studies were limited to the
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use of a single mass to simulate all particles, and the relative
motions between the particles were neglected. Papalou and
Masri8, 9 developed a simple model to predict the performance
of a particle damper. This model was empirically derived from
experiments on a SDOF system.

Our previous work (Wu, et al.10) originally introduced the
multiphase flow theory (MFT) of gas solid to evaluate the char-
acteristics of granular particle damping. It is convenient to in-
vestigate the performance of particle damping in terms of the
effective viscosity. The numerical and experimental studies
showed that the particles are helpful to add damping for atten-
uating the vibration responses of the host structures. Fang and
Tang11 further utilized this theory to carry out detailed studies
under various forced excitation levels, packing ratios and en-
closure dimensions, and the different energy dissipation mech-
anisms were also quantitatively analysed. Wu, et al. further
improved the analytical model based our proceeding work,10

where the expression of equivalent viscous damping for inter-
particle friction was introduced instead of the expression of
Coulomb friction damping based on the Hertz contact theory
discussed in work by Wu, Liao, and Wang.10 Two typical ex-
amples12, 13 - the free vibration of a cantilever particle-damping
beam (equivalent SDOF system) and the harmonic forced vi-
bration of a SDOF system with particle damping were used to
verify this improved model.

However, the above research achievements were all limited
on the SDOF system. If the continuum structure system is sub-
jected to the particle damper, it is obvious that this analysis can
be very complicated. In the real engineering field, the structure
can not reasonably be approximated as a SDOF system, since
the complex external loading and the damper impacting are
likely to excite more than just the fundamental mode of vibra-
tion. The primary objective of this paper is to develop a new
simulation method with low time-consuming for the complex
continuous structure with particle damper based on MFT. In
the next section, for the sake of brevity, here a simple particle-
damping beam is considered as an attempt.

2. BASIC THEORY

As mentioned by Fan and Zhu,14 granular particles enclosed
in a cavity of a vibrating structure can be considered as a mul-
tiphase flow of gas solid with low Reynolds number where the
particle concentration is high (i.e. the flow is dense). For in-
elastic particles and a simple shear flow such as a laminar flow,
the effective viscosity due to inter-particle collisions can be
derived from the kinetic theory of dense multiphase flow as
follows:

µc =
6

5
(1 + ep)

√
Θ

π
αp

2gpρpdp; (1)

where µc is the effective viscosity due to inter-particle colli-
sions, ep is the restitution coefficient of the particle, and αp is
the packing ratio defined as the volume of particles to the to-
tal volume of the cavity. ρp and dp denote the density and the
mean diameter of particles respectively, Θ is the fluctuation-
specific kinetic energy, and gp is the radial distribution func-
tion.

Figure 1. A schematic of a cantilever particle-damping beam and its experi-
mental setup.

Schaeffer15 conducted a linear analysis of granular flow
equations that included frictional stress terms. The equivalent
shear viscosity corresponding to friction force between parti-
cles can be expressed as follows:15

µf =
pp sinφ

2
√
I2D

.; (2)

where φ is the angle of internal friction, I2D is the second in-
variant of the deviatoric stress tensor. pp is the solids pressure,
which is composed of a kinetic term and a second tem due to
particle collision.

Considering that the friction model and collision model have
the same form of expression, the complete damping effect be-
tween the particles can be uniformly expressed as follows:

µp = µc + µf . (3)

Furthermore, one can find the equivalent viscous damp-
ing coefficient due to the inter-particle collisions and friction
as shown below (the derivation process of the formulas and
the description of parameters can be found in our previous
work12, 13):

ceq = c1|ẋ|1/2+c2 |ẋ|−c3|ẋ|2/3+c1 |ẋ|+c1|ẋ|2−c1|ẋ|3. (4)

Equation (4) shows that the particle damping can be equiv-
alent to the viscous damping, including the inter-particle colli-
sions and friction effects based on the multiphase flow theory
(MFT) of gas solid.

As shown in Fig. 1, a granular particle damper is attached to
the free end of the beam. The kind of beam can be idealized as
a Bernoulli-Euler beam with end mass. Considering the intrin-
sic structure damping and particle damping, the free vibration
equation of the continuous particles damping beam system can
be written by the matrix form as

Mẍ + Cẋ + Kx = F + f ; (5)

where M is the system mass matrix, C is the system damping
matrix, K is the system stiffness matrix, and F is the excite
force. The viscous damping force f = −ceqẋ, ceq is derived
from the Eq. (4), and |ẋ| is the amplitude of vibration velocity
on the beam where the particle damper is placed. The Eq. (4)
includes the velocity coupling that is found to be highly non-
linear.
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Figure 2. Three first computed bending mode shape of the clamped-free beam:
(a) first mode shape, f1 = 58.98 Hz; (b) second mode shape, f2 = 369.74 Hz;
(c) third mode shape, f3 = 1035.5 Hz.

It is noted that the effect of the particle damper can be equiv-
alent to a viscous force and a lump mass which includes the
mass of the enclosure and the total mass of the particles filled.
Such an idea is novel, which leads to a breakthrough that
the continuous particle damping structure may be analysed by
the commercial software COMSOL Multiphysics live link for
MATLAB, using the finite element method (FEM). This step
is a key in this article; it becomes an implementation detail
process using FEM to analyse a continuous particle damping
beam based on MFT of gas solid.

The co-simulation is made by the COMSOL Multiphysics
live link for MATLAB by self-programming. Live link pro-
vides an interface between COMSOL and MATLAB based
on the COMSOL client/server architecture. A COMSOL thin
client is running inside MATLAB, and has access to the COM-
SOL API through the MATLAB Java interface.

On the other hand, the result accuracy of a computer sim-
ulation depends on the computational parameters used in the
simulation, especially the system parameter Rayleigh damp-
ing matrix C. The objective of the next section is to gain the
damping parameter C.

3. THE SIMULATION PARAMETERS
DETERMINATION

A schematic of the test set-up is shown in Fig. 1. A can-
tilever beam is chosen as the test specimen to evaluate par-
ticle damping performance, in part, because it is an infinite
DOF system, as opposed to the SDOF system studied in the
literature. The dimensions of the beam are: Young’s modu-
lus 66 GPa, density 2828 kg/m3, length 0.38 m, width 0.02 m,
and height 0.006 m. To determine the characteristics of the
undamped beam, experimental measurements are taken and
FEA of the beam is performed using COMSOL. Results from
experimental impact testing of the structure indicate that the
first three fundamental modes of the structure are 58.99 Hz,
373.27 Hz, and 1041.5 Hz. FEA indicates that this first three
fundamental mode are 58.98 Hz, 369.74 Hz and 1035.5 Hz.
These values differ slightly from the experimentally deter-
mined data, in which the relative errors of FEA values to the
experiment values are respectively 0.017%, 0.95%, and 0.58%.
The deformed shapes of these modes predicted by the COM-
SOL are shown in Fig. 2.

In order to quantify the structural damping, it is more appro-

priate to define specific damping capacity as

δ=
∆T

T
; (6)

where ∆T is the kinetic energy converted into heat during one
cycle of vibration, and T is the maximum kinetic energy during
the cycle. If we define a cycle to be the duration between two
successive maxima of the structural mass velocity curve v(t),
then T is maximum at the start of the cycle and given by

T =
1

2
MV 2. (7)

The energy dissipated during the i cycle is calculated as ∆Ti =

Ti − Ti+1, or

∆Ti =
1

2
M
(
Vi

2 − V 2
i+1

)
. (8)

Therefore, the energy dissipation of the particle damping is
expressed by the specific damping capacity as

δi =
V 2
i − V 2

i+1

V 2
i

. (9)

The specific damping capacity applies to linear or nonlinear
damping in either transient or steady-state vibrations. In par-
ticular, when ξ is small, ξ ≈ δ/4π (ξ < 0.01). In this study, the
value of δ can be found from the experimental data correspond-
ing to the beam without particles (i.e. αmp = 0%). At time
t = 0, the beam is given a tip displacement of U0 = 1.5 mm,
released from rest, and allowed to decay freely; the beam vi-
brates in its fundamental mode. An LK-G3001V Keyence
laser vibrometer is used to measure the displacement of the
beam. Using the well-known Doppler Effect and the princi-
ple of heterodyne interferometry, the displacement is measured
by frequency demodulation to an extremely high resolution
of 0.1 µm. The displacement amplitude ranges are set from
-5 mm to 5 mm. The sampling interval is 250 µs. The value
of δ is shown in Table 1. Thus, in the subsequent numerical
studies, the value of δ0 is selected as the mean value for any of
four sequenced cycles (i.e. δ0 = 0.026477).

To find the values for the Rayleigh damping, we can use
the relationship between the damping ratio and the Rayleigh
damping parameters. It is often easier to interpret the critical
damping ratios, which are given by

ξ =
1

2

(
αdM

2πf
+ βdK2πf

)
; (10)

where αdM and βdK are the mass and stiffness damping pa-
rameters, respectively; f corresponds to any resonant fre-
quency.

Note that Eq. (10) holds separately for each vibration mode
in the system at its resonant frequency. In the frequency do-
main, it uses frequency-dependent values of αdM and βdK .
For example, setting αdM = 0 produces an equivalent viscous
damping model at the resonant frequency

ξ = βdKπf. (11)
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Table 1. Specific damping capacity.

Items 1 2 3 4 Mean values
Specific damping capacity 0.023668 0.029749 0.030198 0.022292 0.026477

Figure 3. Evolution of the waveforms of velocities in the time domain under
free vibration without particles.

Thus,

βdK =
ξ

πf
=
δ/4π

πf
=

δ0
4π2f

. (12)

Assuming that the structure has a constant damping ratio,
the first fundamental mode of the structure is at a frequency of
58.98 Hz. Solving the system of equations above will give the
result βdK = 1.14×10-5.

Figure 3 shows the velocity responses comparison between
the simulation by COMSOL and the experimental measure-
ment of the beam without particles. It is noted that the simula-
tion results in COMSOL differ slightly from the experimental
results. That is to say, the actual intrinsic structural damping
in the experimental is not exactly the Rayleigh damping con-
sidered in the COMSOL model.

To verify the theoretical model developed in this study, an
experiment for a cantilever beam with a particle damper is set
up and shown in Fig. 4. The specifications for the experiment
are the same as those specifications used in the simulation for
the purpose of comparison. The transient velocity responses
are measured. At time t = 0, the beam is given an initial tip
displacement, released from rest, and allowed to decay freely,
and the beam vibrates in its fundamental mode. A laser vi-
brometer LK-G3001V Keyence is used to measure the velocity
responses of the particle damper block.

4. FREE VIBRATION OF A CANTILEVER
PARTICLE-DAMPING BEAM

In this section, the transient response of a continuum can-
tilever particle-damping beam is analysed. The initial value of
the tip displacement of the beam is 1.5 mm. The mass of the
damper with no particles is 14.52 grams, and its interior di-
mensions are: diameter = 16 mm, and height = 20 mm. The
particle is made of iron powder whose density is 6800 kg/m3,
and the mean diameter of particles is 0.3 mm. The restitution
coefficient of the particles is 0.6 on the basis of testing. The ki-
netic friction coefficients between the individual particles and
between the particles and the wall of the cavity are 0.3 and

Figure 4. A figure of the experimental apparatus used.

0.2, respectively, from experimental results. In addition, the
kinematic viscosity and density of air are 1.51×10-5 m2/s and
1.21 kg/m3, respectively.

As documented by Wu, Liao, and Wang,10 the experimental
set-up to carry out the free vibrations consists of imposing an
initial displacement at the beam tip and allowing it to decay
freely. The beam decays freely with known initial displace-
ment and velocity. The mass packing ratio αmp, which is de-
fined as the actual packing mass of particles to the maximum
permissive packing mass of particles in a cavity, is also intro-
duced to describe the packing condition of the damper.

The process is organized in two parts. The first part consists
of studying the vibratory behaviour of the system under free
vibration. The velocity of the whole cantilever beam and en-
closure is measured for two cases. In the first case, the mass
packing ratio is the same, but the position is different where
the particle damper is placed (point A or point B) (Fig. 1). In
the second measurement, the mass packing ratio is different,
and the particle damper location is the same. In the second
part of the process, the fast Fourier transformation of the sys-
tem velocities obtained in the same experimental conditions
are shown for both a system without particles and a system
with a particle damper.

To determine the characteristics of the damped system with
the particle damper, both experimental testing and FEA are
performed. The transient velocity responses are measured. To
bring the influence of the mass packing ratio αmp and the lo-
cation where the particle damper is exerted on the evolution of
specific damping capacity, some measurements are performed
for the continuous cantilever beam with the enclosure contain-
ing the particles.

Figures 5a and 5b show the results of the free vibrations at
the free end of the beam when the particle damper is placed in
a different position on the beam (see Fig. 1, and the point A or
point B), the mass packing ratio is kept for the same values. It
is shown that the vibrations of the beam with particles decay
much faster when the particle damper is placed on the point A,
compared to the case in which the particle damper is placed on
the point B.
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Figure 5. Velocity response at the free end of the beam, when the particle
damper is placed on the different position: (a) αmp = 10%; (b) αmp = 40%.

Figures 6a and 6b show velocity response at the free end
of the beam, when the particle damper is placed on the same
point, the mass packing ratio is kept for the different values. It
is shown that the vibrations of the beam with particles decay
much faster (with increasing mass packing ratio αmp) com-
pared to the case without particles.

Figures 5 and 6 present a comparison of typical decay curves
for the two cases described above. The effects of a particle
damper on the velocity amplitude are seen in the differences
between the two curves. Clearly, a particle damper causes a
significant decrease in the velocities amplitude within the first
few cycles.

Figures 7 and 8 show the comparisons of the velocity re-
sponses of the beam between the simulation results and the
experiments. The simulation results show reasonably accurate
estimates of the response of the transient vibration. It is noted
that the theoretical results differ slightly from the experimental
results. That is to say, the actual intrinsic structural damping in
the experiment is not exactly the viscous damping considered
in the theoretical model.

In Figs. 9 and 10, the fast Fourier transformation of the sys-
tem velocities obtained in the same experimental conditions
are shown for both a system without the particles and for a
system with a particle damper. For the first case, when the par-
ticle damper is placed in a different position on the beam, the
mass packing ratio αmp is kept for the same values, and the fast
Fourier transformation in Figs. 5a and b are corresponding to
the experimental data in Figs. 9a and b. For the mass packing

Figure 6. Velocity response at the free end of the beam, when the particle
damper is placed on the same position: (a) The particle damper on point A; (b)
The particle damper on point B.

ratio αmp = 10% , three spectral peaks could be clearly iden-
tified at ≈ 59.5 Hz (without particles), 57.5 Hz (the particle
damper on point B) and 46 Hz (the particle damper on point A)
in Fig. 5a.The presence of particle collisions reduces the spec-
tral amplitude of these peaks significantly about 12.05% and
33.45% compared to the case without particles, respectively.
For the mass packing ratio αmp = 40%, there are three spec-
tral peaks, respectively: z at ≈ 59.5 Hz, (without particles),
56.5 Hz (the particle damper on point B), and 43 Hz (the par-
ticle damper on point A) in Fig. 5b.The corresponding spectral
amplitude peaks decrease about 30.43% and 58.35% compared
to the case without particles.

For the second case, when the particle damper is placed on
the same point, but the mass packing ratio is kept for the dif-
ferent values, the fast Fourier transformations of the system
velocities in Figs. 6 a and b are correspond to the experimental
data in the Figs. 10 a and b. For the particle damper is localized
on point B, three spectral peaks appear at ≈ 59.5 Hz (without
particles), 57.5 Hz (the mass packing ratio αmp = 10%) and
56.5 Hz (the mass packing ratio αmp = 40%). The corre-
sponding spectral amplitude peaks are lowered about 12.05%
and 30.43% compared to the case without particles, respec-
tively. For the particle damper is exerted on point A, three
spectral peaks are got at ≈ 59.5 Hz (without particles), 46 Hz
(the mass packing ratio αmp = 10%) and 43 Hz (the mass
packing ratio αmp = 40%). The peaks of the corresponding
spectral amplitude are respectively dropped about 33.45% and
58.35% compared to the case without particles.
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Figure 7. Evolution of the waveforms of velocities in the time domain under
free vibration αmp = 10% (a) the particle damper is placed on point A; (b)
the particle damper is placed on point B.

These results prove that total particle mass and the parti-
cle damper arrangement appear to have a fairly significant ef-
fect on damping for the cantilever beam. Increasing the mass
tends to increase damping. And the particle damper which is
attached to the structure in a region of high vibration levels
can significantly reduce the vibration of the host structures. As
might be expected, changes in the total particle mass can lead
to a fairly significant shift in the frequency of peak response.

5. CONCLUDING REMARKS

In this article, the specific damping capacity of a cantilever
continuous particle damping beam is experimentally studied
and simulated. The effect of particle impacts on the vibratory
behaviour of the structure is illustrated. A comparison of typi-
cal decay velocities in a waveform of the system is conducted
without particles and with particles dampers. It is proved that,
with a particle damper, a very high value of specific damping
capacity can be achieved, compared to intrinsic material damp-
ing of the structure. Numerical results show that total particle
mass appears to have a fairly significant effect on damping for
the cantilever particle damping beam. Increasing the filling
mass of the particles tends to increase damping. When the par-
ticle damper is exerted on different positions of the beam, the
damping properties can present an obvious change. The ideal
damping effect can be achieved by putting the particle damper
in a position on the structure with high-level vibration.

It is encouraging to note that the novel simulation approach

Figure 8. Evolution of the waveforms of velocities in the time domain under
free vibration αmp = 40% (a) the particle damper is placed on point A; (a)
the particle damper is placed on point B.

based on MFT of gas solid can accurately and reasonably pre-
dict the characteristics of particle damping. The co-simulation
of COMSOL Multiphysics with MATLAB will broaden our
horizons in the design and application for particle dampers.
This method provides an effective instruction to the implemen-
tation of particle damping in practice, and offers the possibil-
ity to analyse the more complex particle-damping system with
lower computational cost than DEM, and it can lay a theoreti-
cal foundation for the vibration and acoustic radiation response
prediction problem for particle damping composite structures.
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The study and three-dimensional simulation of the field of the second harmonic wave at the scattering of nonlin-
early interacting acoustic waves by an elongated spheroid are carried out in this work. The problem is presented in
the elongated spheroidal coordinate system, and the foci of the spheroid coincide with foci of the spheroidal coor-
dinate system. The description of the occurring wave processes is presented on the basis of the obtained relation
for acoustic pressure of the second harmonic wave. The scattering diagrams for the acoustic pressure field of the
second harmonic wave are presented, and three-dimensional models of a scattering diagram are created.

1. INTRODUCTION

The problem of acoustic waves scattering by elongated
spheroids was formulated for the first time about half a cen-
tury ago.1–3 Some of this research considered the problem of
the sound scattering by an elongated spheroid with different
boundary conditions.1 Other research considered the problem
of the sound scattering by a rigid spheroid in the long-wave
approximation.2 And other work is devoted to the problem of
sound waves scattering by an elongated spheroid.3 The angu-
lar characteristics of the acoustic waves scattering by a soft and
rigid elongated spheroid were presented.

The process of the plane acoustic waves scattering by thin,
acoustically rigid and resilient bodies of revolution was con-
sidered in some of the research used in this study.4, 5 In other
works, the problem of the plane acoustic wave scattering by
spheroidal shells was investigated.6, 7 These works study the
surface waves directly on scatterers, and the frequency depen-
dence of the backscattering amplitude in the far field is pre-
sented. With the exception of the works on the linear scatter-
ing by spheroids, there are several papers devoted to nonlinear
acoustic spectroscopy. Some studies used here consider the
problem of nonlinear acoustic diagnostics of defects in mate-
rials and structures.8 Other research presented here is devoted
to solving the problem of the nonlinear acoustic spectroscopy
of defects in geomaterials.9

However, the problem of interacting nonlinear acoustic
waves scattered by an elongated spheroid has not been ex-
amined elsewhere. This problem becomes essential when an
acoustic parametric antenna is used for remote diagnostics of
a water medium, as well as in the medical tomography field.

In the present work, the study and simulation of the sec-
ondary field of the second harmonic wave is carried out. The
study of the secondary field of the difference-frequency wave
for nonlinearly interacting plane acoustic waves scattered by
a rigid elongated spheroid was also performed.10 However,

the scattering process for the high-frequency second harmonic
wave has a purely geometrical character (k2ωh0 � 1). But the
difference-frequency wave covers the Rayleigh- (k−h0 � 1)
and resonance- (k−h0 ≈ 1) scattering regions. A multi-
frequency analysis will lead to an increase in informativeness
of the scattered signal.

2. STATEMENT OF PROBLEM

The problem of wave diffraction by elongated bodies is of-
ten described in ellipsoidal coordinates. These coordinates are
used in the study of radiation and the scattering of acoustic
waves by ellipsoids, or cigar-shaped bodies, and when study-
ing the diffraction by circular apertures.11

The elongated spheroidal coordinate system, ξ, η, and ϕ, is
used for the study of diffraction by cigar-shaped bodies . The
foci of the spheroid coincide with foci of the spheroidal coor-
dinate system. The spheroid is formed by rotating the ellipse
ξ0 around its major axis, which coincides with the x-axis in the
Cartesian coordinate system. The geometry of the problem is
presented in Fig. 1. The ξ = const spheroids and η = const

two-sheeted hyperboloids are the coordinate surfaces in this
case.

Elongated spheroidal coordinates are related to Cartesian
coordinates by the following equations:12

x = h0ξη, y = h0
√

(ξ2 − 1)(1− η2) cosϕ,

z = h0
√

(ξ2 − 1)(1− η2) sinϕ;

where h0 = d/2 and d is the interfocal distance. Spheroidal
coordinates ξ, η, and ϕ vary within the limits 1 ≤ ξ < ∞;
−1 ≤ η ≤ 1; and 0 ≤ ϕ ≤ 2π.

The perfect elongated spheroid is placed into a homoge-
neous medium. The spheroid’s surface is characterized by the
radial coordinate ξ0. In our case, the spheroid is supposed to
be acoustically rigid. Consequently, the Neumann boundary
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Figure 1. Geometry of the problem.

condition is satisfied at the surface. We assume that interact-
ing high-frequency plane acoustic waves of the unit pressure
amplitude fall onto the spheroid at an arbitrary polar angle θ0
(θ0 = arccos η0) and an azimuthal angle ϕ0 in the spheroidal
coordinate system:11

pni = exp [−i(knr0 cos θ0 − ωnt)] =

− 2 exp(iωnt)
∞∑
m=0

∞∑
l≥m

i−lSml(knh0, η0)Sml(knh0, η) ·

R
(1)
ml (knh0, ξ) cosm(ϕ− ϕ0); (1)

where kn is the wavenumber; n = 1, 2 according to the waves
with frequencies ω1 and ω2; r0 is the radius-vector of the po-
lar coordinate system; Sml(knh0, η) is the normalized angular
first-order function; and R(1)

ml (knh0, ξ) is the radial spheroidal
first-order function.

After the plane wave scattering by the spheroid, the scattered
spheroidal wave with pressure3 will propagate in the environ-
ment

pns(ξ, η, ϕ) = 2 exp(iωnt)
∞∑
m=0

∞∑
l≥m

Aml(knh0, ξ0) ·

Sml(knh0, η)R
(3)
ml (knh0, ξ) cosmϕ; (2)

whereAml(knh0, ξ0) is the coefficient dependent on boundary
conditions on the spheroid surface, and R(3)

ml (knh0, ξ) is the
radial spheroidal third-order function.

When the scattered spheroidal wave occurs, the total acous-
tic pressure of the primary field around the spheroid will be

p(1) = pni + pns =[ ∞∑
m=0

∞∑
l≥m

Bml(knh0) exp
[
i(ωnt− lπ/2)

]
+

∞∑
m=0

∞∑
l≥m

Dml(knh0) exp
[
i(ωnt−mϕ)

]]
+ (c.c.); (3)

where

Bml(knh0) = 2Sml(knh0, η0)Sml(knh0, η)R
(1)
ml (knh0, ξ) ·

cosm(ϕ− ϕ0),

Dml(knh0) = 2Aml(knh0, ξ0)Sml(knh0, η)R
(3)
ml (knh0, ξ) ·

cosmϕ,

and (c.c.) is the complex-conjugate part.
When solving problems of nonlinear interaction, it is neces-

sary to take into account the reality of sound pressure; there-
fore, Eq. (3) is presented with the complex-conjugated part.

The nonlinear wave processes around the spheroid can be
described by the inhomogeneous wave equation13

∆p(2) − 1

c20

∂2p(2)

∂t2
= −Q = − ε

c40ρ0

∂2p(1)

∂t2
; (4)

where Q is the volume density of the sources of secondary
waves, c0 is the sound velocity in the medium, ε is the
quadratic nonlinearity parameter, ρ0 is the density of the un-
perturbed medium, and p(1) and p(2) are the total acoustic pres-
sures of the primary and secondary fields.

The wave in Eq. (4) is solved by the method of successive
approximations. In the first approximation, the solution is rep-
resented by Eq. (3) for the total acoustic pressure of the pri-
mary field p(1). To find the solution in the second approxi-
mation, p(2), the right side of Eq. (4) should feature four fre-
quency components: second harmonics of the incident waves,
2ω1, 2ω2, and the combination frequency waves, ω1 + ω2,
ω2 − ω1 = Ω.

The equation for the volume density of secondary waves
sources Q2ω at the second harmonic 2ω1 is

Q2ω =
8εω2

1

c40ρ0

[ ∞∑
m=0

∞∑
l≥m

B2
ml(k1h0) cos(2ω1t− lπ) +

∞∑
m=0

∞∑
l≥m

2Bml(k1h0)Dml(k1h0) cos(2ω1t− lπ/2−mϕ) +

∞∑
m=0

∞∑
l≥m

D2
ml(k1h0) cos(2ω1t− 2mϕ)

]
. (5)

3. SOLUTION OF NONLINEAR WAVE
EQUATION FOR THE SECOND
HARMONIC WAVE

To solve the inhomogeneous wave shown in Eq. (4) with the
right-hand side given by Eq. (6) in the second approximation,
we seek the solution in the complex form

p
(2)
2ω =

1

2
P

(2)
2ω exp

(
i(2ω1t+ δ)

)
+ (c.c.). (6)

The inhomogeneous Helmholtz equation is obtained by sup-
planting Eq. (6) into the inhomogeneous wave Eq. (4):

∆P
(2)
2ω + k22ωP

(2)
2ω = −q2ω(ξ, η, ϕ); (7)
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where k22ω = 2k1 is the wavenumber of the second harmonic
2ω1, and q2ω(ξ, η, ϕ) is the function of the sources of sec-
ondary waves

q2ω(ξ, η, ϕ) =

8εω2
1

c40ρ0

[ ∞∑
m=0

∞∑
l≥m

B2
ml(k1h0) exp

(
i(2ω1t− lπ)

)
+

∞∑
m=0

∞∑
l≥m

2Bml(k1h0)Dml(k1h0) exp
(
i(2ω1t−lπ/2−mϕ)

)
+

∞∑
m=0

∞∑
l≥m

D2
ml(k1h0) exp

(
i(2ω1t− 2mϕ)

)]
.

The solution to the inhomogeneous Helmholtz equation in
Eq. (7) takes the form of a volume integral of the product of the
Green’s function with the secondary wave sources density13, 14

P
(2)
2ω (ξ, η, ϕ) =

∫
V

q2ω(ξ′, η′, ϕ′)G(r1)hξ′hη′hϕ′ dξ′dη′dϕ′;

(8)
where G(r1) is the Green function, r1 is the distance between
the current point of the volume M ′(ξ′, η′, ϕ′) and the obser-
vation point M(ξ, η, ϕ), and hξ′ , hη′ , hϕ′ are the scale factors
(coefficients of Lame).15

The Green’s function in the far zone r′ � r is determined
by the asymptotic equation

G(r1) ≈ exp
[
− ik2ω

(
h0ξ − h0ξ′ηη′−

h0ξ
′
√

(1− η2)(1− η′2)× cos(ϕ− ϕ′)
)]/

h0ξ. (9)

The integration in Eq. (8) is performed over the volume
V occupied by the second wave sources and bounded in the
spheroidal coordinates by relations ξ0 ≤ ξ′ ≤ ξS , −1 ≤ η′ ≤
1, 0 ≤ ϕ′ ≤ 2π.

This volume represents a spheroidal layer of the medium,
stretching from the spheroidal scatterer surface to the bound-
ary of the nonlinear interaction area. A spheroidal surface with
the coordinate ξS is the boundary of this area. The coordinate
ξS is defined by the length of the nonlinear interaction area
(attenuation area) of the initial high-frequency waves. The
length of this area is inversely proportional to the coefficient
of viscous sound absorption at the corresponding pumping fre-
quency. The scattered waves’ interaction can be neglected due
to attenuation beyond this area. For the interacting incident
waves, the boundary introduction is equivalent to placing the
absorption filter at the boundary.

As a result of the final integration over coordinates ϕ′ and
η′ when taking into account the equation for the sources of

secondary waves, Eq. (8) takes the form16

P
(2)
2ω (ξ, η, ϕ) =

P
(2)
2ωI(ξ, η, ϕ) + P

(2)
2ωII(ξ, η, ϕ) + P

(2)
2ωIII(ξ, η, ϕ) =

C2ω
1

k2ωh0η

[ ξS∫
ξ0

Tξ′ sin(k2ωh0ξ
′η)dξ′ −

ξS∫
ξ0

T
sin(k2ωh0ξ

′η)

ξ′
dξ′

]
; (10)

where

C2ω =
32πh30εω

2
1 exp(−ik2ωh0ξ)
c40ρ0ξ

,

T =

[ ∞∑
m=0

∞∑
l≥m

B2
ml(k1h0) exp(−ilπ) +

∞∑
m=0

∞∑
l≥m

2Bml(k1h0)Dml(k1h0) exp
(
− i(lπ/2 +mϕ)

)
+

∞∑
m=0

∞∑
l≥m

D2
ml(k1h0) exp(−2imϕ)

]
,

(and from here on, the time factor exp(i2ω1t) is omitted).
In contrast with the different frequency wave in Eq. (10),

the total acoustic pressure of the second harmonic wave
P

(2)
2ω (ξ, η, ϕ) consists of three spatial components. Therefore,

the contribution of the separate components in the total field
will increase.

The first component, P (2)
2ωI(ξ, η, ϕ), corresponds with the

part of the total acoustic pressure of the second harmonic wave,
which is formed in the spheroidal layer of the nonlinear inter-
action area by the incident high-frequency plane wave ω1. The
second component, P (2)

2ωII(ξ, η, ϕ), describes the interaction of
the incident plane wave with the scattered spheroidal wave of
frequency ω1. The third component, P (2)

2ωIII(ξ, η, ϕ), charac-
terizes the self-interaction of the scattered spheroidal wave of
frequency ω1. It should also be noted that these components
characterize the nonlinear interaction of incident and scattered
waves with different spatial configurations of the wave fronts.

After the final integration over the coordinate ξ′, the equa-
tion for the first component P (2)

2ωI(ξ, η, ϕ) takes the following
form:

P
(2)
2ωI(ξ, η, ϕ) = P

(2)
2ωI1 + P

(2)
2ωI2 + P

(2)
2ωI3 + P

(2)
2ωI4; (11)

where

P
(2)
2ωI1,2ωI2 = ± C2ω

2k22ωh
2
0η(η0 ∓ η)

·[
ξS exp

[
−ik2ωh0(η0∓η)ξS

]
− ξ0 exp

[
−ik2ωh0(η0∓η)ξ0

]]
,

P
(2)
2ωI3,2ωI4 = ∓ C2ω

2i(k2ωh0η)
·[

− Ei
[
− ik2ωh0(η0 ∓ η)ξS

]
+ Ei

[
− ik2ωh0(η0 ∓ η)ξ0

]]
,
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and Ei(ax) =
∫ exp(ax)

x is the integral exponential func-
tion.17, 18

Analysing what was obtained in Eq. (11) for the first compo-
nent, P (2)

2ωI(ξ, η, ϕ), of the total acoustic pressure of the second
harmonic wave, one can note that the scattering diagram of
this component is determined by the behaviour of the function
1/(η0±η). This function depends on the coordinate η0, i.e. on
the angle of incidence θ0 of the high-frequency plane waves in
the polar coordinate system.

Now consider the second component of Eq. (10),
P

(2)
2ωII(ξ, η, ϕ), for the total acoustic pressure of the second har-

monic wave, which characterizes the nonlinear interaction of
the incident plane wave with the scattered spheroidal wave.
After the final integration, the equation for the second compo-
nent of the total acoustic pressure of the second harmonic wave
takes the form

P
(2)
2ωII(ξ, η, ϕ) = P

(2)
2ωII1 + P

(2)
2ωII2 + P

(2)
2ωII3 + P

(2)
2ωII4; (12)

where

P
(2)
2ωII1,2ωII2 = ∓ iC2ωA(k1k0)

2k1k2ωh20η
√

(1− η0)(1− η)
·[

exp(−iu2ωξS)− exp(−iu2ωξ0)

u2ω

]
,

P
(2)
2ωII3,2ωII4 = ± C2ωA(k1k0)

2k1k2ωh20η
√

(1− η0)(1− η)
·[

exp(−iu2ωξS)

ξS
− exp(iu2ωξ0)

ξ0
−

iu2ω
[
Ei(−iu2ωξS)− Ei(−iu2ωξ0)

]]
,

and u2ω = (k1h0η − k1h0 ∓ k2ωh0η).
An analysis of Eq. (12) shows that the scattering diagrams

of the second component P (2)
2ωII(ξ, η, ϕ) are determined mainly

by the function 1/η
√

(1− η0)(1− η), where the dependence
on the incident angle θ0 (that is η0) is not very pronounced.

Now, we consider the third component of Eq. (10),
P

(2)
2ωIII(ξ, η, ϕ), for the total acoustic pressure of the second

harmonic wave, characterizing the nonlinear self-interaction
of the scattered spheroidal wave frequency ω1. After the final
integration, the equation for the third component of the total
acoustic pressure of the second harmonic wave takes the form

P
(2)
2ωIII(ξ, η, ϕ) = P

(2)
2ωIII1 + P

(2)
2ωIII2 + P

(2)
2ωIII3 + P

(2)
2ωIII4; (13)

where

P
(2)
2ωIII1,2ωIII2 = ∓ C2ωA

2(k1k0)

2ik2ωh30k
2
1η(1− η0)(1− η)

·[
− u3ω

[
Ei(−iu3ωξS)− Ei(−iu3ωξ0)

]]
,

P
(2)
2ωIII3,2ωIII4 = ∓ C2ωA

2(k1k0)

4ik2ωh30k
2
1η(1− η0)(1− η)

·[
iu3ω

(
exp(−iu3ωξS)

ξS
− exp(iu3ωξ0)

ξ0

)
+

u23ω
[
Ei(−iu3ωξS)− Ei(−iu3ωξ0)

]]
,

and u3ω = (k2ωh0 ∓ k2ωh0η).
The scattering diagrams type is defined mainly by the func-

tion 1/η(1− η0)(1− η) of Eq. (13).

4. DRAWING OF SCATTERING DIAGRAMS

To reveal the features of the acoustic field of the second
harmonic wave, we consider the scattering diagrams for sepa-
rate spatial components. The diagrams of the second harmonic
wave components P (2)

2ω (ξ, η, ϕ) scattered by a rigid elongated
spheroid ξ0 = 1.005 are presented in Fig. 2 (relation axis
1:10, h0 = 0.01 m, distance from focal points r1 = 0.01 m,
r2 = 0.0101 m) at: ξ = 7, angle of incidence shown an arrow
θ0 = 30o, f2 = 1000 kHz, f1 = 976 kHz (k1,2h0 ≈ 40),
2f1 = 1952 kHz, k2ωh0 = 82, (k−h0 = 1). The initial pa-
rameter values of the second harmonic wave are connected to
values for the difference-frequency wave.10

The scattering diagram for the first component P (2)
2ωI(ξ, η, ϕ)

has maxima in the direction of the angle of incidence and in
the symmetrical (with respect to the z-axis) direction (30o and
150o). The diagrams of other components have major maxima
in the reverse and lateral directions (0o and ±90o) and do not
show dependence on the angle of incidence.

The scattering diagrams for the second harmonic wave
P

(2)
2ω (ξ, η, ϕ) on a rigid elongated spheroid ξ0 = 1.005 (h0 =

0.01 m) for different radial distance values ξ are presented in
Fig. 3 (the size of the re-radiating volume) at: θ0 = 30o, f2 =

1000 kHz, f1 = 976 kHz, (k1,2h0 ≈ 40), 2f1 = 1952 kHz,
k2ωh0 = 82 (k−h0 = 1), ξ = 3; 7; 15.

The scattering diagrams for different wave dimensions of
the spheroid and for different sizes of the interaction area were
calculated. As a result, it was found that increasing the wave
dimension of the spheroidal scatterer leads to minor changes
in the maxima levels (in contrast with the difference-frequency
wave). An increase in the size of the interaction area around
the elongated spheroidal scatterer (coordinates ξ) leads to nar-
rowing of these maxima.

In Fig. 4 are presented the scattering diagrams of the sec-
ond harmonic wave P (2)

2ω (ξ, η, ϕ) by a rigid elongated spheroid
ξ0 = 1.005 (h0 = 0.01 m) for the different incidence angle
values of the initial pumping waves θ0 = 0o; 60o; 90o (f2 =

1000 kHz, f1 = 976 kHz, (k1,2h0 ≈ 40), 2f1 = 1952 kHz,
k2ωh0 = 82 (k−h0 = 1), ξ = 7).

The scattering diagrams of the second harmonic wave
P

(2)
2ω (ξ, η, ϕ) for the different incidence angle values θ0 =

0o; 60o; 90o reproduce the features of the scattering diagrams
of the difference-frequency wave P (2)

− (ξ, η, ϕ).
The scattering diagram of the second harmonic wave retains

the general regularity in directions to the maxima. However,
unlike the difference-frequency wave, the diagram does not un-
dergo significant changes for different values of the spheroid’s
wave dimensions in accordance with the maxima, and it has
more sharpened maxima. These features are associated with
the geometric character of the scattering process.

Figures 5 and 6 show spatial models of the scattering dia-
grams of the second harmonic wave P (2)

2ω (ξ, η, ϕ) by a rigid
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Figure 2. Scattering diagrams for the second harmonic wave P (2)
2ω (ξ, η, ϕ)

components on a rigid elongated spheroid ξ0 = 1.005 for: ξ = 7, θ0 = 30o,
f2 = 1000 kHz, f1 = 976 kHz, 2f1 = 1952 kHz, k2ωh0 = 82 (k−h0 =

1).

Figure 3. Scattering diagrams of the second harmonic wave P (2)
2ω (ξ, η, ϕ)

on a rigid elongated spheroid ξ0 = 1.005 for different ξ values for: f2 =

1000 kHz, f1 = 976 kHz, 2f1 = 1952 kHz, k2ωh0 = 82, θ0 = 30o,
ξ = 3; 7; 15.

elongated spheroid ξ0 = 1.005 for the angle of incidence
θ0 = 0o; 30o. These diagrams provide a visual representation
of the spatial distribution of the scattered pressure field.

5. DISCUSSION AND COMPARISON
OF RESULTS

Further, it should be noted that the acoustic pressure of the
second harmonic wave was calculated in the far field of the
spheroidal scatterer, in the Fraunhofer zone. Therefore, the
scattering field can be considered to be formed since the ob-
servation point M(ξ, η, ϕ) was located at the radial distance
ξ = 7 and 15. This distance exceeds 3 to 5 times the quasi-
diffraction zone length.

The scattering diagrams are shown in the plane xOz. The
polar angle θ varies in the range from 0o to±180o since the di-
agrams are axisymmetric with respect to the x-axis. The value
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Figure 4. Scattering diagrams of the second harmonic wave P (2)
2ω (ξ, η, ϕ)

on a rigid elongated spheroid ξ0 = 1.005 for angles of incidence θ0 =

0o; 60o; 90o for: f2 = 1000 kHz, f1 = 976 kHz, 2f1 = 1952 kHz,
k2ωh0 = 82 (k−h0 = 1), ξ = 7.

Figure 5. Three-dimensional wireframe model of scattering diagram of the
second harmonic wave P (2)

2ω (ξ, η, ϕ) on a rigid elongated spheroid ξ0 =

1.005 at the angle of incidence θ0 = 0o (k2ωh0 = 82, ξ = 7).

Figure 6. Three-dimensional wireframe model of scattering diagram of the
second harmonic wave P (2)

2ω (ξ, η, ϕ) on a rigid elongated spheroid ξ0 =

1.005 at the angle of incidence θ0 = 30o (k2ωh0 = 74, ξ = 3).

of the angle θ = 0o corresponds to the axis x position, and the
value θ = 90o corresponds to the z-axis. The arrow shows the
direction of the initial plane waves’ incidence.

For clarity, the figures show the acoustic pressure
P

(2)
2ω (ξ, η, ϕ) dependence not on the angle of the hyperbola’s

asymptote η, but on more convenient polar angle θ = arccos η

in spherical coordinates. This representation is convention-
ally employed for the scattering diagrams in spheroidal coor-
dinates.2, 3, 19

In order to check the correctness of the obtained diagrams of
scattering by an elongated spheroid, we should compare them
with the results of other studies. It should be also noted that the
problem in the nonlinear formulation was not previously inves-
tigated, neither theoretically nor experimentally. Within the
framework of our consideration, in the case of primary high-
frequency waves, the scattering by a spheroid is linear. The
secondary field is generated by the secondary wave sources lo-

International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015 263



I. B. Abbasov: STUDY OF SECONDARY FIELD WAVES AT SCATTERING OF NONLINEARLY INTERACTING ACOUSTIC WAVES. . .

cated in the volume around the spheroid. In the linear case,
they are located on the spheroid’s surface. In general, it can be
emphasized that the obtained scattering diagrams are in good
agreement with diagrams in the works cited in this paper.3, 5, 20

In the far field, the spheroidal coordinates are transformed
into the spherical ones P (2)

+ (ξ, η, ϕ)→ P
(2)
+ (r, θ, ϕ). The dia-

grams of scattering by an elongated spheroid in the far field are
in good agreement with the author’s study results on scattering
by a sphere.21, 22 However, unlike the case of a sphere, where
the scattered field does not depend on the angle of incidence
θ, the lobes in the directions of incidence and reflection of the
initial plane waves appear in the case of a spheroid.

REFERENCES
1 Cpence, R. and Ganger, S. The scattering of sound from a

prolate spheroid, Journal of the Acoustical Society of Amer-
ica, 23 (6), 701–706, (1951). DOI:10.1121/1.1906827

2 Burke, J. E. Long-wavelength scattering by hard spheroids,
Journal of the Acoustical Society of America, 39 (5), 826–
831, (1966). DOI:10.1121/1.1909959

3 Kleshchev, A. A. and Sheiba, L. S. Scattering of a sound
wave by ideal prolate spheroids, Soviet Physic Acoustic,
16 (2), 219–222, (1970).

4 Fedoryuk, M. V. Scattering of sound wave from thin acous-
tically rigid revolve body, Soviet Physic Acoustic, 27 (4),
605–609, (1981).

5 Boiko, A. I. Scattering of plane sound wave from thin
revolve body, Soviet Physic Acoustic, 29 (3), 189–191,
(1983).

6 Werby, M. F. and Green, L. H. Correspondence between
acoustical scattering from spherical and end-on incidence
spherical shells, Journal of the Acoustical Society of Amer-
ica, 81 (2), 783–787, (1987). DOI:10.1121/1.394796

7 Veksler, N. D., Dubus, B., and Lavie, A. Acoustic wave
scattering by an ellipsoidal shell, Acoustical Physics, 45 (1),
46–51, (1999).

8 Guyer, R. A. and Johnson, P. A. Nonlinear mesoscopic elas-
ticity evidence for a new class of materials, Physics Today,
52 (4), 30–36, (1999). DOI:10.1063/1.882648

9 Lebedev, A. V., Ostrovskii, L. A., and Sutin, A. M. Nonlin-
ear acoustic spectroscopy of local defects in geomaterials,
Acoustical Physics, 51 (1), S88–S101, (2005).

10 Abbasov, I. B. Study of the scattering of nonlinearly in-
teracting plane acoustic waves by an elongated spheroid,
Journal of Sound and Vibration, 309 (1–2), 52–62, (2008).
DOI:10.1016/j.jsv.2007.03.060

11 Skudrzyk, E. The Foundations of Acoustics, Vol. 2,
Springer, New York, (1971).

12 Tikhonov, A. N. and Samarskyi, A. A. The Equations of
Mathematical Physics, Nauka, Moscow, (1966).

13 Novikov, B. K., Rudenko, O. V., and Timoshenko, V.
I. Nonlinear Underwater Acoustic, Acoustical Society of
America, New York, (1987).

14 Lyamshev, L. M. and Sakov, P. V. Nonlinear scattering of
sound from an pulsted sphere, Soviet Physics Acoustics,
38 (1), 50–54, (1992).

15 Korn, H. and Korn, T. Mathematical Handbook for Scien-
tists and Engineers, McGraw-Hill, (1961).

16 Abbasov, I. B. Scattering nonlinear interacting acoustic
waves: sphere, the cylinder and a spheroid, Fizmatlit,
Moscow, (2007).

17 Abramovitz, M. and Stegun, I. Handbook of Special Func-
tions with Formulas, Graphs, and Mathematical Tables,
Dover, New York, (1971).

18 Prudnikov, A. P., Brychkov, Yu. A., and Marichhev, O. I.
Integrals and series, Nauka, Moscow, (1983).

19 Chertock, G. Sound radiation from circular pistons of ellip-
tical profile, Journal of the Acoustical Society of America,
33 (7), 871–8876, (1961). DOI:10.1121/1.1908831

20 Kleshchev, A. A. and Rostovtsev, D. M. Scattering of sound
from elastically and liquidly ellipsoidal revolve shell, Soviet
Physic Acoustic, 32 (5), 432–433, (1986).

21 Abbasov, I. B. and Zagrai, N. P. Sphere scattering of non-
linear interacting acoustic waves, Fluid Dynamics, 30 (2),
158–165, (1995).

22 Abbasov, I. B. and Zagrai, N. P. The investigation of the
second field of the summarized frequency originated from
scattering of nonlinearly interacting sound waves at a rigid
sphere, Journal of Sound and Vibration, 216 (1), 194–197,
(1998). DOI:10.1006/jsvi.1998.1638

264 International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015



About the Authors

Chen Long-Xiang received his PhD in 2009 from the Department of Engineering Mechanics,
Shanghai Jiaotong University, Shanghai, China, where he is currently a lecturer. His current
research interests focus on structural dynamics and control and delayed system dynamics and
control.

Cai Guo-Ping is currently a professor in the Department of Engineering Mechanics, Shang-
hai Jiaotong University, Shanghai, China. He received the PhD in Engineering Mechanics
from Xian Jiaotong University, Xian, China, in 2000. His current research interests focus on
structural dynamics and control, delayed system dynamics and control, and coupled system
dynamics and control.

Xiaomin Xue is a lecturer in the Civil Engineering Department at Xian Jiaotong University,
Xi’an, Shaanxi, China, where she received her PhD in 2011 and MS in 2007. Her research
interests lie within the broad areas of structural vibration control and smart material struc-
tures. She is currently working on an electric-mechanical hysteretic model of smart material
systems with various applications in system identification, structural health monitoring, and
the control and simulation of structural response under various vibration loadings, such as
earthquakes and wind.

Xiaohong Wu is an associate professor in the School of Aerospace at Xian Jiaotong Univer-
sity, Xi’an, Shaanxi, China, where she received her PhD in engineering mechanics in 2004.
She received her MS in metal plastic working from Xian University of Architecture and tech-
nology in 1996. Her current research interests are in the fields of mechanic behavior analysis
of smart materials and structures. She is currently working on modelling the nonlinear and
hysteretic behaviors of smart material systems, as well as the dynamic response analysis of
structures under various periodic and vibration loadings.

Qing Sun is a professor in the Civil Engineering Department at Xian Jiaotong University
in Xi’an, Shaanxi, China, where he received his PhD in engineering mechanics in 2003.
He received his MS in structural engineering in 1997 from Xian University of Architecture
and technology. His research interests include structural vibration control, smart materials
and structures, stability of steel structures, aseismatic performance of steel-reinforced con-
crete structures, and limited capacity of FRP composite material structures. He is currently
working on the theory and experiment of structural vibration active control using the MFC
actuator, and his former study included theoretical and experimental research on structural
control with time-delay of seismic excited buildings. He is currently a member of the Chi-
nese Society of the Theoretical and Applied Mechanics and of the China Civil Engineering
Society.

International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015 265



About the Authors

Ling Zhang is a professor in the State Key Laboratory for Strength and Vibration of Mechan-
ical Structures School of Aerospace at Xian Jiaotong University in Xi’an, Shaanxi, China. He
received his PhD in engineering mechanics from Northwestern Polytechnical University and
his MS in structural engineering from Xian University of Architecture and technology. He
is currently a member of the Chinese society of Vibration Engineering and of the Basic Me-
chanics Teaching Guidance Committee of the Chinese Ministry of Education, and he is the
eExecutive director of the Shaanxi Provincial Institute of Mmechanics. MHe was a recip-
ient of the National Excellent Teaching Achievement Award and of a special government
allowance.

Lokavarapu Bhaskara Rao is an associate professor in the School of Mechanical and Build-
ing Sciences at Vellore Institute of Technology University, Chennai Campus, India. He grad-
uated with a degree in mechanical engineering from Bapatla Engineering College in 1993
and obtained his master of technology degree in machine design engineering in 1996 from
the National Institute of Technology, Durgapur, India. He obtained his PhD in 2008 from Os-
mania University, Hyderabad, India. He has worked at various engineering colleges such as
Syed Hashim College of Science & Technology, CMR College of Engineering & Technology,
DRK Institute of Science & Technology, and Gokaraju Rangaraju Institute of Engineering &
Technology located in Hyderabad, India in various capacities such as assistant professor,
associate professor, professor, and head of the department. His research interests include sta-
bility and vibrations of mechanical systems, such as FGM and nano-circular plates, beams,
Graphene sheets, and CNTs.

Chellapilla Kameswara Rao is a professor in the Department of Mechanical Engineer-
ing, Nalla Narasimha Reddy Group of Institutions, Korremulla, Hyderabad. Previously, he
worked as the dean of the Department of Mechanical Engineering at Guru Nanak Institute of
Technology, Integrated Campus, and as both the dean and head of the Department of Mechan-
ical Engineering at TKR College of Engineering College, Hyderabad. He graduated with a
degree in Mechanical Engineering from Anantapur Government Engineering College in 1968
and obtained master of technology in machine design in 1971 and PhD in 1976 from Andhra
University, Waltair. He taught there from 1972 to 1977 and later worked in BHEL, Research
& Development Division, in various capacities for 26 years. He worked at the University of
Ottawa, Canada from 1986 to 1988 as a visiting professor. He was the head of intellectual
property management in Bharat Heavy Electricals Limited from 1999 to 2003 and has three
Indian patents granted in the area of diverter damper related to combined cycle power plants.
After retiring from his position as the senior deputy general manager in 2003, he worked as
HOD, PG head, and principal at various engineering colleges in Hyderabad. From February
2006 to June 2008, he worked as a manager in client relations at SciTech Patent Art Services
Private Limited and managed patent related analytics projects in mechanical and electrical
engineering.

Akhilesh Mimani received his PhD from the Department of Mechanical Engineering, In-
dian Institute of Science, Bangalore, India, in 2012. His doctorate work was focused in the
field of muffler acoustics and specifically on designing silencers based on a 3-D analytical ap-
proach to obtain a broadband acoustic attenuation performance for minimising vehicle engine
noise. He has published over 20 research papers in peer-reviewed international journals and
conference proceedings. He is currently a post-doctoral researcher with the Flow and Noise
Group, School of Mechanical Engineering, The University of Adelaide, Australia, where he
works on developing high-performance computational aeroacoustics (CAA) algorithms and
aeroacoustic time-reversal (TR) source localization techniques to analyze flow-induced noise
generation mechanisms.

266 International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015



About the Authors

Con Doolan is an associate professor and leads the Flow and Noise Group (FNG) at the
University of New South Wales, Sydney, whose focus is on understanding and controlling
flow-induced noise in application areas like jets, wind turbines, aircraft, and submarines.
He obtained his PhD in Aerospace Engineering from the University of Queensland and com-
pleted a postdoctoral position at the University of Glasgow, a research scientist position at the
Defence Science and Technology Organisation (DSTO), and an academic post at The Uni-
versity of Adelaide. He has combined his interests of unsteady compressible fluid dynamics
and acoustics to study fundamental and applied research problems in aeroacoustics.

Paul Medwell is a senior lecturer in the School of Mechanical Engineering at The University
of Adelaide, Australia. He completed both his PhD and postdoctoral position at the same
institute. He is now involved in a range of research areas based on developing the fundamen-
tal understanding of reacting and non-reacting flows. His combustion and laser-diagnostic
background enables him to contribute to research programmes in jet aeroacoustics, as well as
humanitarian technology, sports, engineering, and solar-thermal energy systems.

Vinay Vakharia is currently a PhD student in the Mechanical Engineering Discipline at
PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur, In-
dia. He received his masters degree in CAD/CAM from Vellore Institute of Technology,
Vellore, India, in 2007. His research interests include vibration, fault diagnosis, design, and
manufacturing.

Vijay Kumar Gupta is currently a professor at PDPM IIITDM Jabalpur. He received his
PhD in smart structures from the Indian Institute of Technology Bombay. He received the
“ISAMPE K. Suryanarayan Rao Memorial Senior student award for R&D in smart technol-
ogy” in 2003. His research interests include mechanical vibrations, smart structures, mecha-
tronics, robotics, and finite element analysis.

P. K. Kankar obtained his PhD from the Mechanical and Industrial Engineering Department
at the Indian Institute of Technology Roorkee, India. He received his masters degree from
Malviya Regional Engineering College, Jaipur, India (which is now Malviya National In-
stitute of Technology) in 2000. He has published more than 50 research papers in refereed
international journals and conference proceedings. His research interests include vibration,
fault diagnosis, design, and analysis of nonlinear dynamical systems.

International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015 267



About the Authors

Dongqiang Wang completed his Master’s degree on mechanical design, manufacturing, and
automation in 2006. He attends the Institute of Vibration and Noise Control, School of Me-
chanical Engineering of Xian Jiaotong University (XJTU), Xian City, China, where he began
his work in September 2012 as a doctoral candidate. His research fields include structural-
acoustic interaction, modal analysis and dynamic optimization design, acoustic prediction,
passive vibration and noise control, and particle damping technique. At present, he has au-
thored and co-authored more than five journal and conference papers, has declared one na-
tional invention patent, and has co-finished one State Natural Sciences Foundation (NSFC).

ChengJun Wu is a professor in the Institute of Vibration and Noise Control, School of Me-
chanical Engineering of Xian Jiaotong University (XJTU), Xian City, China, where he com-
pleted his PhD on sound and structural interaction in 1999. He was a Research Associate in
the Department of Automation & Computer-Aided Engineering at The Chinese University of
Hong Kong from July 2001 to January 2002, and a visiting professor in the School of Mechan-
ical Engineering of The University of Western Australia in 2011. His research fields include
structural-acoustic interaction, modal analysis and dynamic optimization design, acoustic
prediction and CFD simulation, passive vibration and noise control, and particle damping
& visco-elastic damping technique, etc. He is also a member of the Mechanical Dynamics
Society of China. Professor Wu has authored and co-authored more than 30 journal and con-
ference papers, and finished nearly 30 research projects for the mechanical industry in China.
He was honored as the New Century Excellent Talents in the University of China in 2006
and was awarded the 2nd Prize of Natural Science and 2nd Prize of Science & Technology
Advance of State Education Ministry of China in 2004 and 1995, respectively.

Ruichao Yang completed his bachelors degree on mechanical design, manufacturing and
automation at Northwestern Polytechnical University (NWPU) in 2011. He is currently a
masters student in the Institute of Vibration and Noise control, School of Mechanical En-
gineering of Xian Jiaotong University (XJTU), Xian City, China. His main research fields
include modal analysis, passive vibration and noise control, and the prediction of vibration
responses for granular particle damping structures. At present, Mr. Yang has authored and co-
authored more than five journal and conference papers, has declared one national invention
patent, and has co-finished one State Natural Sciences Foundation (NSFC).

Iftikhar B. Abbasov received his diploma from the Taganrog State University of Radio En-
gineering in 1988, where he focused on microelectronics and electronic engineering and di-
rected operations in the Institute of Space researches (Baku, Azerbaijan). He was the head of
the laboratories in the Department of Electrohydroaccoustic and Ultrasonic Engineering from
1989 until 1993. Afterward, he studied as a post-graduate from 1993 until 1996. In 1996,
he was awarded a grant from TRTU’s Scientific Society and Soros Fund. He defended his
dissertation in 1997, gaining his PhD in physic-mathematical sciences. He has been an asso-
ciate professor in the Department of Engineering Graphics and Computer Design at Taganrog
Technological Institute since 1998. He received a grant from the American Fund of Civil Re-
searches and Development in 2000. He is now the head of the Department of Engineering
Graphics and Computer Design of Taganrog Technological Institute of Southern Federal Uni-
versity, Taganrog, Russia. His research interests include simulation wave phenomena in fluid
dynamics and computer modeling in industrial design. He is the author of seven books and textbooks and of 64 publications in
refereed journals.

268 International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015


