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In this paper, active control for vibration of a flexible beam with multiple time delays is studied numerically and
experimentally. Piezoelectric (PZT) patches are used as actuators, and foil gauges were used as sensors. Firstly the
motion equation of a flexible beam with multiple time delays and Piezoelectric patches is presented and written into
a state space form. Then the state equation is discretized and transformed into a standard form without any explicit
time delay by a particular augmentation for state variables. So time-delay controller could be designed based on
the standard state equation using the discrete active control method. Finally, numerical and experimental studies
are presented to verify the validity of the time-delay processing method using the discrete optimal control method
and the discrete variable structure control method, respectively. An experimental setup is constructed using DSP
TMS320F2812. The numerical and experimental results show that the proposed time-delay controller is effective
in suppressing the beam vibration. It is also applicable to both short- and long- time delays.

1. INTRODUCTION

Time delay exists inevitably in active control systems. It
may make the actuator input energy into the controlled systems
when energy is not needed. This may cause the degradation of
control efficiency or even the instability of control systems.1

Therefore, the research on time delay is of important theoreti-
cal significance and practical value.

Generally, the investigations on time delay may be divided
into two classes: elimination and utilization technologies. At
first, time delay was regarded as a ”bad” factor that had only
negative side effect on control systems. In order to eliminate
or weaken the effect of time delay, some methods were sub-
sequently proposed, including Taylor series expansion, phase
shift technique and state pre-estimation.2–4 These methods can
deal effectively with some short time delay problems in control
systems, but awkwardly with long ones. Cai and Huang have
proposed a new time-delay controller.5, 6 This controller is de-
signed directly from time-delay differential equation without
any hypothesis in whole process of controller design, applica-
ble for both short and long time delays. Chen proposed a the-
oretical method for a flexible beam with multiple time delays
using the discrete optimal control.7 Sun has recently proposed
a continuous time approximation method for linear and nonlin-
ear dynamical systems with time delay.8 The key point of the
methods mentioned above to eliminate the negative effect of
time delay is so-called time-delay elimination technology or
time-delay compensation technology. Its main function is to
eliminate or weaken the negative effect of time delay on con-
trol efficiency. On the other hands, recent investigations have
shown that voluntary introduction of delay into control sys-
tems can also benefit the control. For example, in nonlinear
dynamics area, achievement is remarkable using time delay

to control chaos motion.9 Daqaq, Alhazza and Arafat stud-
ied the effect of feedback delays on the non-linear vibration
of a cantilever beam.10 In structural control area, Hosek and
Olgac developed a time-delay resonator that may be used for
vibration control of structures.11 Cavdaroglu and Olgac con-
sidered the cart-and-pendulum system as research object, this
study shows that systems with multiple delays may exhibit bet-
ter performance by increasing the delays to more desirable lev-
els.12 Liu, Haraguchi, and Hu presents a reduction-based lin-
ear quadratic control for the dynamic system with a constant
or a slowly time-varying input delay.13 In robotics area, Cai
and Lim designed a time-delay controller for a flexible manip-
ulator and their results show that delayed feedback control de-
sign may possibly achieve much better control efficiency than
the no-delay control design.14 In control system of pipeline
transport, time delay may be utilized to enhance steady criti-
cal speed of flowing liquid.15 Time delay may be also used to
improve system stability.16, 17 Those researches above involv-
ing the active utilization of time delay is so-called time-delay
utilization technology, which assumes time delay as a design
parameter to obtain good control performance. Although up to
now researches have been done much on the elimination and
utilization of time delay, most of work is theoretical one but
few on experiment.

In this paper, Piezoelectric (PZT) patches are used as ac-
tuators, foil gauges as sensors, active control for vibration of
a flexible beam with multiple time delays is studied numeri-
cally and experimentally. The controller with time delays is
designed using the discrete optimal control method and the
discrete variable structure control method, respectively. The
feasibility and efficiency of the time-delay controller are veri-
fied theoretically and experimentally. This paper is organized
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Figure 1. Cantilever beam model and the locations of PZT patches.

as follows. Section 2 presents the motion equation of flexible
cantilever beam with time delays. The design of time-delay
controller is described in Section 3. Section 4 gives the exper-
imental scheme. The numerical and experimental results are
shown in Section 5 in the consideration of the time-delay con-
troller in this paper. Finally, concluding remarks are given in
Section 6.

2. MOTION EQUATION

The transverse vibration of a flexible cantilever beam is con-
sidered, as shown in Fig. 1. The beam has a constant cross-
section area with every center inertia axis being in the same
plane, xoy. One PZT patch is used as exciter to initiate beam-
forced vibration, and two PZT patches were used for control-
ling the vibration. The control forces produced by the two PZT
actuators have different delays λ1 and λ2. Based on the Euler-
Bernoulli hypothesis and using modal orthogonality, the i-th
modal equation may be deduced as

ϕ̈i(t) + 2ζiωiϕ̇i(t) + ω2
i ϕi(t) =

2∑
j=1

Kz[Y
′
i(x̃ja)− Y ′i(x̃jb)]Vj(t− λj)

+Kz[Y
′
i(x̃pa)− Y ′i(x̃pb)]Vp(t); (1)

i = 1, 2, · · · ,∞ where ϕi(t) is the i-th modal coordinate; ωi
is the natural frequency of the i-th mode; ζi is the i-th modal
damping ratio; Yi(x) is the normalized modal shape corre-
sponding to the i-th mode; x̃ja and x̃kb are the locations of
the j-th PZT actuator on the beam, j = 1, 2; Vj is the applied
voltage on the j-th PZT actuator; x̃pa and x̃pb are the locations
of the PZT exciter; Vp is the applied voltage on the PZT ex-
citer; and Kz is the constant value related to the physics and
geometry characteristics of PZT material, may be found in.7, 18

3. DESIGN OF MULTIPLE TIME-DELAY
CONTROLLER

The first two vibration modes are considered to be controlled
using the two PZT actuators in this paper. So, the modal equa-
tion can be written as

Φ̈(t)+CΦ̇(t)+KΦ(t) =

2∑
j=1

HjVj(t− λj)+Hp Vp(t); (2)

where Φ(t) = [ϕ1(t), ϕ2(t)]T,
C = diag(2ζ1ω1, 2ζ2ω2),
K = diag(ω2

1 , ω
2
2),

Hj = Kz[Y
′
1(x̃ja)− Y ′1(x̃jb), Y

′
2(x̃ja)− Y ′2(x̃jb)]

T, and
Hp = Kz[Y

′
1(x̃pa)− Y ′1(x̃pb), Y

′
2(x̃pa)− Y ′2(x̃pb)]

T.

In the state-space representation, Eq. (2) becomes

Ż(t) = AZ(t) +

2∑
j=1

BjVj(t− λj) + BpVp(t); (3)

where Z(t) =

[
Φ(t)

Φ̇(t)

]
, A =

[
0 I

−K −C

]
,

Bj =

[
0

Hj

]
, Bp =

[
0

Hp

]
.

3.1. Discretization and Standard of Multiple
Time-Delay Control Equation

Equation (3) is a time-delay differential equation that is in-
convenient for control design. Here we consider the discretiza-
tion and standard of this equation. The time delay λj can be
written as

λj = lj T̄ ; (4)

where T̄ is data sampling period and lj > 1 is a positive inte-
gral number.

Zero-order holder is used in the structure, i.e.

Vj(t) = Vj(k), kT̄ 6 t < (k + 1)T̄ ; (5)

where k represents the k-th step of control and Vj(k) denotes
Vj(kT ). Equation (5) represents that the actuators exert con-
stant control forces on the beam during two adjoining sampling
points. This is feasible because data sampling period is usually
very small.

Using Eq. (5), Eq. (3) becomes7, 19

Z(k + 1) = FZ(k) +

2∑
j=1

GjVj(k − lj) + GpVp(k); (6)

where F = eAT̄ , Gj =
∫ T̄

0
eAηdηBj , Gp =

∫ T̄

0
eAηdηBp,

and G11 =
∫ T̄

0
eAηdη.
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Augmenting the state variables in Eq. (6) as

Z4+1(k) = V1(k − l1)

...

Z4+l1(k) = V1(k − 1)

Z4+l1+1(k) = V2(k − l2)

...

Z4+l1+l2(k) = V2(k − 1)

; (7)

and defining a new state vector as

Z̄(k) = [ Z(k), Z4+1(k), · · · , Z4+l1+l2(k) ]T; (8)

Thus Eq. (6) can be changed into the following standard dis-
crete form without any explicit time delay:

Z̄(k + 1) = F̄Z̄(k) + ḠV(k) + ḠpVp(k); (9)

where V(k) = [V1(k), V2(k)]T,

F̄ =



F G1 0 · · · 0 G2 0 · · · 0

0 0 1 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
... · · ·

...
0 0 0 · · · 1 0 0 · · · 0

0 0 0 · · · 0 0 0 · · · 0

0 0 0 · · · 0 0 1 · · · 0
...

...
... · · ·

...
...

...
. . .

...
0 0 0 · · · 0 0 0 · · · 1

0 0 0 · · · 0 0 0 · · · 0


,

Ḡ =



0 0

0 0
...

...
0 0

1 0

0 0
...

...
0 0

0 1


, Ḡp =



Gp

0
...
0

0

0
...
0

0


.

Equation (9) is a standard discrete state equation that con-
tains no time delay. The sufficient condition for stability of
Eq. (9) is that all the eigenvalues of F̄ is within a unit cir-
cle. The system (9) is controllable provided that the matrix
[F̄, Ḡ] is controllable. When the system is controllable, the
controllers can be designed. Next, the optimal control method
and the variable structure control method will be used to design
the controllers. Compared to other controller method, these
two controllers can be simply designed. In addition, the op-
timal control can guarantee optimal control efficiency of sys-
tems, and the variable structure control method has strong ro-
bustness, and is insensitive for system parameters and external
disturbances, and this method has good stability.

3.2. Controller Design using Optimal
Control Method

Here we consider the controller design using the classical
optimal control strategy. In the optimal controller design, ex-
ternal excitation term is neglected. The following performance
index is used:

J =

∫ ∞

0

[ZT(t)Q̄1Z(t) + VT(t)Q̄2V(t)]dt; (10)

where Q̄1 is non-negative definite symmetric matrix and Q̄2 is
positive definite symmetric matrix. The performance index is
a continuous form so as to guarantee good response efficiency
of systems not only on every sampling point but also between
any two adjacent sampling points. However, the discrete per-
formance index can only guarantee good efficiency on every
sampling point and surge behavior may possibly exist between
sampling points. So the continuous performance index is used
as the objective function in this paper. Now the task of con-
trol design is to design controller for the system Eq. (3) such
that the performance index in Eq. (10) attains minimum. In the
above, Eq. (3) has been discretized and changed into the stan-
dard discrete form without any explicit time delay. Below the
performance index will be discretized and changed to be the
function of the augmented state.

Equation (10) may be written as the following discrete form

J =

∞∑
k=1

Jk, Jk =

∫ (k+1)T̄

kT̄

[ZT(t)Q̄1Z(t) + VT(t)Q̄2V(t)]dt; (11)

The performance index in (11) may be rearranged as the fol-
lowing form:7, 19

J =

∞∑
k=0

[Z̄T(k)Q̂1Z̄(k) + VT(k)Q̂2V(k)]; (12)

where Q̂1 and Q̂2 are given by

Q̂1 =


Q1 Q01 0 Q02 0

QT
01 Q11 0 Q12 0

0 0 0 0 0

QT
02 Q21 0 Q22 0

0 0 0 0 0

 , Q̂2 = Q2; (13)

where

Q1 =

∫ T̄

0

FT(t)Q̄1F(t)dt, Q2 = Q̄2T̄

Q0i = [

∫ T̄

0

FT(t)Q̄1G11(t)dt]Bi, i = 1, 2

Qij = BT
i [

∫ T̄

0

GT
11(t)Q̄1G11(t)dt]Bj , i, j = 1, 2

;

(14)

and where F(t) = eAt and G11(t) =
t∫

0

eAτdτ .
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Equation (12) is a standard discrete form of performance
index. So the next work is to design an optimal controller for
the system in (9) by minimizing the objective function given
by Eq. (12). This controller may be designed using the discrete
optimal control method, given by

V(k) = −LZ̄(k)

= −L1Z(k)− L2V1(k − l1)− · · · − Ll1+1V1(k − 1)

− Ll1+2V2(k − l2) · · · − Ll1+l2+1V2(k − 1)

;

(15)
where L1(i = 1, · · · , l1+l2+1) are the component matrices of
L. We can observe from Eq. (15) that the controller contains
not only the current step of state feedback term, but also the
linear combination of some former steps of controls. Since
the time-delay controller is designed directly from the time-
delay differential equation and no approximation or hypothesis
involved, it tends to guarantee the stability of control systems,
and is suitable for both small time delay and large time delay.

3.3. Controller Design using Variable
Structure Method

The variable structure control method is known as the slid-
ing mode control method, where sliding mode is the remark-
able characteristics of this control method. The controller can
be obtained by using the discrete reaching condition. The
phase trajectory of the system will move toward the switch-
ing surface in finite time, and then reaching the origin point or
the equilibrium position until the system reaches stabilization.

In the variable structure control method, a linear switching
function is considered

S(Z̄) = CZ̄; (16)

where C is undetermined coefficient vector of the switching
function. S(Z) = CZ = 0 is the linear switching surface.

The discrete approach law is given by20

S(k + 1)− S(k) = −εT̄ sgn[S(k)]− qT̄ S(k); (17)

where T̄ is the sampling period, ε > 0 , q > 0 and qT̄ < 1.
From Eqs. (9) and (16), the left-hand term of Eq. (17) can

be further written as

S(k+1)−S(k) = C[F̄Z̄(k)+ḠV(k)+ḠpVp(k)]−CZ̄(k);

(18)
Hence the controller can be obtained from Eqs. (17) and (18)
and written as

V(k) = [CḠ ]−1{C(I − F̄− qT̄ I)Z̄(k)

−CḠpVp(k)− εT̄ sgn[CZ̄(k)]}. (19)

The vector C of the switching surface can be obtained
using the pole assignment method or the optimal control
method. When the optimal control method is used, the task
is to design C by minimizing the objective function J =

∞∑
k=0

[Z̄T(k)Q̃Z̄(k)], where Q̃ is a non-negative definite sym-

metric matrix. Similarly, the time-delay controller is designed
directly from the time-delay differential equation and no ap-
proximation or hypothesis is involved, it tends to guarantee the
stability of control systems, and is suitable for both small time
delay and large time delay.

4. EXPERIMENT AND DATA PROCESSING

The feasibility and effectiveness of the proposed time-delay
controller had been proven by simulation results.9 In this pa-
per, PZT patches are used as actuators, foil gauges were used
as sensors, experiments are presented based on a digital signal
processing (DSP) board. Firstly, an experimental setup using
the DSP board is introduced. Subsequently, the measurement
methods for signal and signal difference are presented.

4.1. Experiment System

In the experiment, two PZT patches are used as actuators,
one PZT patch as a vibration exciter, and two foil gauges as
sensors. The control mechanism of free and forced beam vi-
bration are considered. For free vibration, the free end of beam
has an initial displacement 0.04 m while the initial velocity is
zero. For forced vibration, the PZT vibration exciter initiates
beam vibration.

An experimental setup is constructed using DSP board
(TMS320F2812). DSP deals with online computation of con-
trollers in terms of the feedback signal from the foil gauge to
obtain PZT voltage. Fig. 2 shows an experimental flow chart
for forced vibration. For free vibration, the signal generator
and PZT exciter in Fig. 2 are not in use. The details of signal
flow and process are described as follows:

1. Excitation Loop: the signal generator generates an exter-
nal excitation that is amplified by the PZT power ampli-
fier and then goes into the PZT exciter. The flow chart of
excitation loop is shown by the dashed line in Fig. 2.

2. Feedback Signal Loop: the signal collected from the foil
gauge is amplified by a strain signal amplifier and then
enters the analog digital converter (ADC) module in DSP.

3. Control Signal Loop: the voltage signal goes through the
two channels of digital analog converter DAC module into
the PZT power amplifier where it is amplified, and then
channels into the two PZT actuators.

4. The DSP communicates with a computer via the serial
communication interface (SCI) module which transfers
the experimental data to the computer for storage and for
post-processing.
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Figure 2. Flow chart of experiment system.

4.2. Signal Measurement
The controller described in Section 3 depends on the beam

modal coordinate. Hence, a method to extract modal coor-
dinate from the physical sensor measurements of foil gauges
needs to be developed. In addition, the beam tip responses
from foil gauge measurements with and without control will
be compared to determine the efficiency. The methods required
are introduced as follows.

The beam strain-curvature relationship can be expressed as

ε(x, t) =
tb
2
y′′(x, t); (20)

where ε, tb and y are the bending strain, thickness and beam
transverse displacement, respectively. As mentioned, two foil
gauges are used as sensors in the experiment. Since the first
vibration mode has maximum strain at its fixed end while that
of the second mode near the middle of beam, the two foil
gauges are placed at these two positions at x1 = 37 mm and
x2 = 476 mm , respectively. To extract the modal coordi-
nate, the assumed mode method is applied where the beam

response can be represented as y(x, t) =
∞∑
i=1

Yi(x)ϕi(t) Be-

cause the beam response is dominated by its lower-order vibra-

tion modes, y(x, t) ≈
2∑
i=1

Yi(x)ϕi(t) is adopted in this paper.

We can obtain the dominant modes by the modal cost analysis
method to other geometries.21 Using Eq. (20), the estimated
modal displacement can be deduced as in Eq. (21)

After obtaining the modal displacement, the modal veloc-
ity can be determined using the tracking-differentiator given in
Section 4.3. From modal coordinate thus obtained, the control-
ling system can be calculated.

Subsequently, the strain measurements from the two foil
gauges can be transformed into the transverse displacement of
the beam by Eq. (22) Taking x = L in Eq. (22), where L is
the length, the beam tip response can be approximately from
Eq. (21).

4.3. Signal Difference
The states for an active controller system, i.e. displacement

and velocity, are required in the feedback control. Because
the velocity signal (also called the differential signal) cannot
be measured directly from sensors in practice, it should be

estimated from the physical measurements, and then be used
to calculate the control forces. In an early attempt, it was
found that the foil gauge signal may contain high-frequency
noise due to mechanism and electricity disturbances; hence,
the differential signal derived from the classical interpolation
method is disorganized. As a result, the tracking differentia-
tor is adopted and it is able quickly tracking the input signal
and giving out high-quality differential signal. The tracking
differentiator in discrete form is22{

x̄1(k + 1) = x̄1(k) + T̄ x̄2(k)

x̄2(k + 1) = x̄2(k) + T̄ fst(x̄1(k), x̄2(k), u(k), r̄, h̄)
;

(23)
where u(k) is the input signal at the moment k, x̄1 is the track-
ing signal of u(k), x̄2 is the estimated differential signal of
x̄1, T̄ is the sampling period, r̄ is a parameter determining the
tracking speed, and h̄ is a parameter determining the filter ef-
fect when the input signal is polluted by noise. The variable fst
is given in Reference.22

5. NUMERICAL SIMULATIONS AND
EXPERIMENTAL STUDIES

A beam made of aluminum alloy is used in the experiment
shown in Fig. 3. The length, width and thickness are 900 mm,
35 mm, and 1.50 mm, respectively. Material properties of the
beam are as follows: Young’s elastic modulus Ep = 69 GPa,
Poisson’s ratio vp = 0.3 and density ρp = 2.7 × 103 kg/m3.
The first two natural frequencies of the beam determined from
the experiment are 1.4947 Hz and 9.3679 Hz, respectively, and
the corresponding modal damping ratios are 0.012 and 0.0055.

In the experiment, one PZT patch is used as an exciter to ini-
tiate beam vibration and the other two PZT patches are used as
actuators to control vibration. The PZT patches have identical
sizes, 60 mm × 15 mm × 0.5 mm. The PZT exciter is placed
near the root of beam at x̃pa = 77 mm and x̃pb = 137 mm.
One PZT actuator (denoted as Actuator I) was attached to the
other side of the beam at x̃1a = 82 mm and x̃1b = 142 mm.
The time delay of Actuator I is denoted by λ1 . Another PZT
actuator (denoted as Actuator II) was attached near the beam
midpoint at x̃2a = 375 mm and x̃2b = 435 mm, and the time
delay is denoted by λ2 (see Fig. 1). The PZT material param-
eters are: Young’s modulus 63 GPa, Poisson’s ratio 0.35 and
piezoelectric strain constants 1.75×10−10 m/V. For the differ-
entiator, r̄ = 1000 and h̄ = 0.008 are taken.

The inherent delays in the system may have small effect on
control efficiency and can be ignored in control design. From
Fig. 4, we can see that the beam vibration can be effectively
suppressed when the inherent delays in the system are not con-
sidered. So, the experiment system used in this paper may be
regarded as a non-time-delay control system. We think that just
under this condition, the effect of time delay on control sys-
tems and the effectiveness of delayed feedback control method
may possibly be studied. The time delay used in the exper-
imental studies of this paper is voluntarily introduced in the
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ϕ1(t)

ϕ2(t)

]
=

2

tb

[
Y ′′1(x1) Y ′′2(x1)

Y ′′1(x2) Y ′′2(x2)

]−1 [
ε(x1, t)

ε(x2, t)

]
; (21)

y(x, t) =
2

tb

[
Y1(x) Y2(x)

] [
Y ′′1(x1) Y ′′2(x1)

Y ′′1(x2) Y ′′2(x2)

]−1 [
ε(x1, t)

ε(x2, t)

]
; (22)

Figure 3. Photo of experiment beam.

control system by means of adding arbitrary delayed times to
control input.

5.1. Results of Forced Vibration Case
The forced vibration control is investigated in this section.

In the experiment, the signal generator generates a sine volt-
age signal with frequency 1.524 Hz and amplitude 5 V. The
sine signal is amplified fifteen times by the PZT power ampli-
fier and it then goes into the PZT exciter in order to introduce
beam forced vibration. The two PZT actuators are used for
controlling the vibration. The optimal control strategy is ap-
plied as control. From Eq. (10), large Q̄1 means that the cor-
responding state will be quickly suppressed and large Q̄2 will
penalize the control inputs. So increasing Q̄1 or decreasing
Q̄2 within the capacity of the actuator, the better control effect
will be obtained. In the controller design, the weighting ma-
trices in Eq. (10) are chosen as Q̄1 = diag[100, 100, 1, 1] and
Q̄2 = diag[4 × 10−6, 4 × 10−6] because the electrical field
intensity keeps linear relationship with the strain of PZT only
when external electrical field intensity does not exceed 150 V.

The no-delay controller design is applied to control the sys-
tem without time delay. The beam tip responses and the PZT
applied voltage are shown in Fig. 4. The dotted line refers to
the results with no control while the solid line refers to the
results with control. Fig. 4a are the simulation results, and
Fig. 4b are the experimental ones. As observed in Fig. 4b1, the
maximum amplitude without control is 0.0262 m and that with
control is 0.0108 m. The beam vibration could be effectively
suppressed.

The time-delay controller is subsequently investigated here.
Two cases are considered: one with a short time delay (λ1 =

0.05s, λ2 = 0.04s), and another with a long time delay (λ1 =

0.2s, λ2 = 0.1s). A time-delay controller can be designed with
reference to the method described in Section 3.2. The results

using a time-delay controller for controlling beam vibration
are shown in Figs. 5 and 6, where the dotted line donates the
results without control, and the solid line donates the results
with control. Figs. 5b1 and 6b1 show that the amplitudes with
control are 0.0112 m, 0.013 m, respectively. We can observe
that the beam vibration can be suppressed effectively by the
time-delay controller, and the proposed time-delay controller
is also applicable to short and long time delays.

5.2. Results of Free Vibration Case

Further examples for the control of beam free vibration are
presented here to demonstrate the effectiveness of the proposed
time-delay controller. An external force is applied to create an
initial displacement 0.04 m with zero initial velocity at the free
end of the beam. With such conditions, Actuators I and II are
used to control the free vibration. A control strategy based on
the variable structure control method is used. In the controller
design, ε = 0.01 and q = 10 are chosen in Eq. (19). Q̃ is
chosen as Q̃(1, 1) = 100, Q̃(2, 2) = 100, Q̃(4 + l1, 4 + l1) =

5× 10−7, Q̃(4 + l1 + l2, 4 + l1 + l2) = 5× 10−7 with other
elements being zero.

A short time delay (λ1 = 0.05s, λ2 = 0.08s) and a long
time delay (λ1 = 0.2s, λ2 = 0.3s) are considered. A time-
delay controller is designed using the method described in Sec-
tion 3.3. Numerical and experimental results are shown in
Figs. 7 and 8 where the dotted line donates the results with-
out control, and the solid line donates the result with control.
From Figs. 7b1 and 8b1, the logarithmic decay ratios of the
first period are 0.0179 and 0.0145, respectively. As observed
in Figs. 7 and 8, the time-delay controller is able to control
the beam vibration effectively and the experiment results agree
better with respect to simulation.
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6. CONCLUSION

In this paper, delayed feedback control for vibration of
a flexible beam is studied numerically and experimentally.
Time-delay controllers are proposed to suppress the beam vi-
bration. The discrete optimal control method and the discrete
variable structure control method are used for designing the
controllers. An experiment system based on a DSP board is
introduced. The numerical and experimental results show that
the proposed time-delay processing method is effective in sup-
pressing beam vibration. It is applicable to any time delays.
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Figure 4. Tip response of the beam and applied voltages on the two actuators (without time delay; optimal controller): (a) simulation result, (b) experimental
result.

202 International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015



Ch. Long-Xiang, et al.: ACTIVE CONTROL EXPERIMENT STUDY OF A FLEXIBLE BEAM WITH MULTIPLE TIME DELAYS

Figure 5. Tip response of the beam and applied voltages on the two actuators (λ1 = 0.05 s, λ2 = 0.04 s; time-delay optimal controller): (a) simulation result,
(b) experimental result.
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Figure 6. Tip response of the beam and applied voltages on the two actuators (λ1 = 0.2 s, λ2 = 0.1 s; time-delay optimal controller): (a) simulation result, (b)
experimental result.
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Figure 7. Tip response of the beam and applied voltages on the two actuators (λ1 = 0.05 s, λ2 = 0.08 s; time-delay variable structure controller): (a) simulation
result, (b) experimental result.
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Figure 8. Tip response of the beam and applied voltages on the two actuators (λ1 = 0.2 s, λ2 = 0.3 s; time-delay variable structure controller): (a) simulation
result, (b) experimental result.
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