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In this paper, the vibrations of a circular plate with a rotationally restrained edge that has concentric rigid ring
support are studied. The influences of the rotational restraint parameter and radius of internal rigid ring support on
the vibration of the plate’s natural frequencies are investigated. Frequencies for the first three modes of vibration
are obtained and plotted graphically. The cross-over radius and the optimum location point of internal rigid ring
support are determined. The results presented in this paper are from exact analysis, and hence can serve as standard
values for estimating the accuracy of results obtained from various approximate methods.

1. INTRODUCTION

In many branches of engineering—such as naval, automo-
bile, and civil—continuous plates are extensively used. There
exists a great deal of literature on the present subject area of
circular plate vibrations, predominantly with free, clamped,
and simply supported edges.1–4 Leissa5–10 has reported natural
frequency results in many of his papers on continuous circu-
lar plates, and other researchers have reported results on the
influence of internal rigid ring supports on the dynamic char-
acteristics of circular plates.

Bodine11 has premeditated the axisymmetric free vibrations
of the circular plates, and Laura, et al.12 presented useful re-
sults on the natural frequencies of axisymmetric modes of vi-
bration. The case of the influence of rigid supports along with
mode switching was studied by Bodine,13 varying the values of
the ring support radius and Poisson’s ratio of the circular plate
material. Ding Zhou14 studied the free vibration of arbitrarily
shaped plates with concentric ring elastic and/or rigid supports.
In realistic circumstances, to fortify the load-carrying capabil-
ity of the plate, occasionally internal stiffeners and/or concen-
tric supports are used. In such cases, vibrational characteristics
of the plate will vary significantly. Hence, the stiffeners’ prop-
erties and concentric support should be included in the analysis
of the circular plates. Many researchers studied the vibration
characteristics of the circular plates with a range of boundary
situation and internal intensification.15–26 Wang26 studied the
problem of fundamental frequency of a circular plate on a ring
and free boundary and presented the results for the fundamen-
tal frequency related to an anti-symmetric mode of vibration
when the support radius is small. Many researchers studied
the problem of vibrations of circular plates with concentric ring
support, as well.27–30

Najafizadeh and Mirkhalaf Valashani31 carried out the vi-
bration analysis of circular plates that have an eccentric circu-
lar perforation and a free edge with an attached concentrated
mass at any arbitrary position on the plate. The Rayleigh-Ritz
variational method was applied to determine the fundamental
natural frequency coefficient for the circular plates with the
eccentric circular perforation and arbitrarily attached concen-

trated mass based on the classical plate theory (CPT). Mirkha-
laf Valashani32 utilized the Rayleigh-Ritz method to investi-
gate the transverse vibration of clamped and simply supported
circular plates with an eccentric circular perforation and at-
tached concentrated mass. Wang33 studied the vibration of a
circular plate with an attached core and clamped, simply sup-
ported, free and sliding boundary conditions.

However, as we know, in practical industrial engineering sit-
uations, we seldom come across such ideal edge conditions.
The review of research on the vibration of circular plates re-
strained against rotation can be found in the studies made by
Laura, et al.,34 Laura and Grossi,35 Narita and Leissa,36 Irie,
et al.,37 and Veera, et al.38 It is well-established that the stipu-
lation on an edge frequently tends to be in between the classi-
cal edge conditions (simply supported, free and clamped) and
may be in contact with elastic restraints, such as rotational re-
straints.39–42 However, there is no other research in the litera-
ture addressing the common boundary conditions with a rota-
tional restrained edge at the plate’s periphery.

In many practical situations such as bolted connections, the
plate edge becomes something between a classical simply sup-
ported edge and a clamped edge. Often, the edge conditions
can be simulated by using a rotational spring. This is exactly
what is attempted in this paper. The main intention of this
paper is therefore to study the effect of a rigid ring support ra-
dius along a concentric circle, and a plate with a rotationally
restrained edge (shown in Fig. 1) using an exact method of so-
lution approach. The natural frequencies of a circular plate for
varying values of rotational restraint along the plate edge, and
the ring support radius for a wide range of non-dimensional
parameters, are presented in graphical form for use in design.

2. ANALYTICAL FORMULATION

Consider a plate of radius R, Poisson’s ratio ν, density ρ,
modulus of elasticity E, and thickness h. Figure 1 shows a
plate which has an outer boundary rotationally restrained and
simply supported (radius R), and a rigid ring support at radius
bR.
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Figure 1. Rotationally restrained circular plate resting on a concentric rigid
sing support.

Subscript I denotes b ≤ r ≤ 1 (outer region) and subscript II
denotes 0 ≤ r ≤ b (inner region). b, 1 denotes the radius of the
inner and outer regions, respectively, after normalizing every
length by R. The following fourth-order differential equation3

describes vibration of plate:

D∇4w + ρh
∂2w

∂t2
= 0. (1)

Here, D represents the flexural rigidity of plate. The general
form of the lateral displacement of the vibration of a plate can
be expressed as w = u(r) cos(nθ)eiωt, where (r, θ) are polar
coordinates, w is the transverse displacement, n is the number
of nodal diameters, ω is the frequency, and t is time. The func-
tion u(r) is a linear combination of Bessel functions Jn(kr),
Yn(kr), In(kr), Kn(kr), and k = R(ρω2/D)1/4 is the square
root of the non-dimensional frequency.3 The general solutions
for regions I and II are

uI(r) = C1Jn(kr) + C2Yn(kr) + C3In(kr) + C4Kn(kr);
(2)

uII(r) = C5Jn(kr) + C6In(kr). (3)

Considering the rotationally restrained and simply supported
edge at the outer region, the boundary conditions can be for-
mulated as

Mr(r, θ) = KR1
∂wI(r, θ)

∂r
; (4)

wI(r, θ) = 0. (5)

The radial moment at the external periphery is expressed as

Mr(r, θ) = −
D

R

[
∂2wI(r, θ)

∂r2
+

ν

(
1

r

∂wI(r, θ)

∂r
+

1

r2
∂2wI(r, θ)

∂θ2

)]
. (6)

From Eqs. (4) and (6) yields the following expression:[
∂2wI(r, θ)

∂r2
+ ν

(
1

r

∂wI(r, θ)

∂r
+

1

r2
∂2wI(r, θ)

∂θ2

)]
=

−R11
∂wI(r, θ)

∂r
. (7)

Equations (5) and (7) yield the following:

u′′I (r) + ν
[
u′I(r)− n2uI(r)

]
= −R11u

′
I(r); (8)

uI(r) = 0. (9)

At the outer region (at r = 1), the boundary conditions are as
follows:

u′′I (1) + ν
[
u′I(1)− n2uI(1)

]
= −R11u

′
I(1); (10)

uI(1) = 0; (11)

where R11 = KR1R
D is the normalized spring constant KR1 of

the rotational elastic spring at outer periphery.
Apart from the rotationally restrained boundary at the outer

edge, the continuity requirements at concentric ring (r = b)
are as follows:

uI(b) = 0; (12)
uII(b) = 0; (13)

u′I(b) = u′II(b); (14)

u′′I (b) = u′′II(b). (15)

The non-trivial solutions to Eqs. (10)–(15) are required. From
Eqs. (2), (3), and (10)–(15), we obtained the subsequent equa-
tions:[

k2
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k

2
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2
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)
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]
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4
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2
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k2

2
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Kn(k)

]
C4 = 0;

(16)

[Jn(k)]C1 + [Yn(k)]C2 + [In(k)]C3 + [Kn(k)]C4 = 0;
(17)

Jn(kb)C1 + Yn(kb)C2 + In(kb)C3 +Kn(kb)C4 = 0; (18)
Jn(kb)C5 + In(kb)C6 = 0; (19)[
k

2
P ′1

]
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C6 = 0;

(21)

where

P1 = Jn−1(k)− Jn+1(k); P2 = Jn−2(k) + Jn+2(k);

Q1 = Yn−1(k)− Yn+1(k); Q2 = Yn−2(k) + Yn+2(k);

R1 = In−1(k) + In+1(k); R2 = In−2(k) + In+2(k);

S1 = Kn−1(k) +Kn+1(k); S2 = Kn−2(k) +Kn+2(k);

P ′1 = Jn−1(kb)− Jn+1(kb); P ′2 = Jn−2(kb) + Jn+2(kb);

Q′1 = Yn−1(kb)− Yn+1(kb); Q′2 = Yn−2(kb) + Yn+2(kb);

R′1 = In−1(kb) + In+1(kb); R′2 = In−2(kb) + In+2(kb);

S′1 = Kn−1(kb) +Kn+1(kb); S′2 = Kn−2(kb) +Kn+2(kb).

3. SOLUTION

For the given values of n, ν, R11, and b Eqs. (16)–(21)
derived above are solved to obtain an exact characteristic fre-
quency equation by suitably eliminating the coefficients C1,
C2, C3, C4, C5, and C6. The frequency parameter k can be
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Figure 2. Frequency of a circular plate and concentric rigid ring support radius
b for R11 = 2.5.

Figure 3. Fundamental frequency k of a circular plate and concentric rigid
ring support radius b for R11 = 5.

determined from the characteristic equation by a simple root
search method. Using Mathematica, computer software with
symbolic capabilities is used to solve this problem. Poisson’s
ratio utilized in these studies is 0.3.

4. RESULTS AND DISCUSSION

The fundamental frequency parameters for the first three
modes for diverse values of rotational restraints (R11 = 2.5,
5, 20, 50, 100, 500, 1000, and 1016) are computed. Results
for first three modes of vibrations are determined and pre-
sented in Figs. 2–9. As seen in Fig. 2, for a particular value
of R11 = 2.5, the curve is unruffled with different segments
because of mode switching. The fundamental frequency is re-
lated to asymmetric n = 1 mode when the concentric ring sup-
port radius b is small. Within this segment (the spotted lines in
Fig. 2), the fundamental frequency reduces as the value of ring
support radius b decreases. On the higher concentric rigid sup-
port radius, the fundamental frequency is related to the axisym-
metric mode. Within the other segment (the continuous lines
in Fig. 2), the fundamental frequency increases as b increases
up to a peak point, corresponding to the maximum frequency,
and thereafter decreases as b increases in value, as shown in
Fig. 2.

Mode switching takes place at b = 0.012427, and the funda-
mental frequency parameter depends on the asymmetric mode
when b ≤ 0.012427 (as shown by spotted lines in Fig. 2).

Figure 4. Fundamental frequency k of a circular plate and concentric rigid
ring support radius b for R11 = 20.

Figure 5. Fundamental frequency k of a circular plate and concentric rigid
ring support radius b for R11 = 50.

When the value of b goes beyond 0.012427, the axisymmetric
mode leads to an accurate fundamental frequency, as shown by
constant lines in Fig. 2. The optimum location is the critical ra-
dial point for the concentric rigid ring support corresponding to
the maximum frequency parameter. The optimum location of
concentric rigid ring support and corresponding fundamental
frequencies are b = 0.4 and k = 5.62304, respectively, which
are equal to the nodal radius related to the axisymmetric mode
and its frequency.

Similarly, it has been observed from Figs. 3–9, for varying
values of the rotational restraint (R11 = 2.5, 5, 20, 50, 100,
500, 1000, and 1016) parameter, that the curve is unruffled
with different segments because of the switching of vibration
modes. The fundamental frequency is related to the asymmet-
ric n = 1 mode when the concentric ring support radius b is
small. Within this segment (the spotted lines in Figs. 3–9), the
fundamental frequency reduces as the value of the ring support
radius b decreases. On higher values of the concentric rigid
support radius, the fundamental frequency is related to the ax-
isymmetric mode. Within this segment (the continuous lines in
Figs. 3–9), the fundamental frequency increases as b decreases
up to a peak point corresponding to the maximum frequency,
and thereafter decreases as b decreases in value, as shown in
Figs. 3–9. The cross-over radius is the radius of the ring sup-
port where the switching of vibration mode occurs. The cross-
over radius bcor and the corresponding frequency parameters
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Figure 6. Fundamental frequency k of a circular plate and concentric rigid
ring support radius b for R11 = 100.

Figure 7. Fundamental frequency k of a circular plate and concentric rigid
ring support radius b for R11 = 500.

kcor are determined and presented in Table 1. In addition, the
optimal solutions (the optimal position of concentric rigid ring
support bopt and subsequent fundamental frequency kopt) are
determined and presented in Table 2.

From the results obtained, it can be observed that the cross-
over radius increases from 0.01242 to 0.017216 as the rota-
tional restraint parameter R11 varies from 2.5 to 1016. The op-
timal location is 0.4, which remains constant from R11 = 2.5
to 0.4 for R11 = 1016. However, the fundamental frequency
increases from 5.62304 to 6.27065 at the respective optimal
locations.

In addition to the variation of the fundamental frequency pa-
rameters for the first three modes for diverse values of rota-
tional restraints (R11 = 2.5, 5, 20, 50, 100, 500, 1000, and
1016) as shown in Figs. 2–9, the percentage of variation of
frequency due to the rotational restraints are computed. The
percentage increment in the frequency parameter for the first
three modes is presented in Table 3. It is noted that for a given
radius, the percentage increment decreases for the first three
modes (n = 0, n = 1, and n = 2) as the rotational restraint
parameter R11 varies from 2.5 to 1016 in each case, i.e. for the
first three modes. The percentage of variation of frequency as
the rotational restraint parameter R11 varies from 2.5 to 1016

for the first three modes is shown in Fig. 10. It is noted from
Fig. 10, which, for a given mode and as the rotational restraint
parameter R11 varies from 2.5 to 1016, that the percentage in-

Figure 8. Fundamental frequency k of a circular plate and concentric rigid
ring support radius b for R11 = 1000.

Figure 9. Fundamental frequency k of a circular plate and concentric rigid
ring support radius b for R11 = 1016.

crement in frequency increases first and then decreases as the
rigid ring radius parameter increases. Also, it is observed that
there is a cross-over radius of the variation of frequency with
three modes.

Results of this type are not available in the published liter-
ature. The values of the fundamental frequency for the ax-
isymmetric mode very closely resemble those presented by
Laura, et al.12 A comparison of the results is shown in Ta-
ble 4, wherein the values of the exact fundamental frequency
for the plate with a free boundary (setting R11 → 0 to the cur-
rent predicament) are compared to those presented by Wang.26

From a realistic point of view, when the rotational stiffness
parameter becomes small, the edge tends to become a quasi-
simply supported edge, and when it becomes larger, it tends to
become very close to that of a clamped edge.

5. CONCLUSIONS

The fundamental frequencies of a rotationally restrained cir-
cular plate resting on a concentric rigid ring support have been
obtained for a wide range of parametric values in this paper.
It can easily be seen that the fundamental mode of frequency
switches from n = 1 to n = 0 at a specific radius of the con-
centric ring. Mode switching is noted and computed exactly.
The optimal solutions for internal concentric rigid ring support
and the corresponding fundamental frequency are computed
exactly, and the results are obtained from closed form solu-
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Table 1. The cross-over radius, bcor and the corresponding frequency parameters, kcor.

R11 2.5 5 20 50 100 500 1000 1016

bcor 0.01242 0.01436 0.01640 0.01704 0.01738 0.01713 0.01682 0.017216
kcor 4.16626 4.32284 4.60973 4.71843 4.76269 4.7977 4.79848 4.80809

Table 2. Optimal locations (concentric rigid support, bopt and subsequent frequency, kopt).

R11 2.5 5 20 50 100 500 1000 1016

bopt 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
kopt 5.62304 5.77268 6.06861 6.17972 6.22338 6.26089 6.26567 6.27065

Table 3. Percentage increment of frequency for the first there modes as the
rotational restraint parameter R11 varies from 2.5 to 1016.

b
n = 0 n = 1 n = 2(

R11=2.5 to 1016
) (

R11=2.5 to 1016
) (

R11=2.5 to 1016
)

0 15.04128004 14.74715067 11.87518234
0.1 15.5284128 14.75920692 12.14681841
0.2 16.1720786 15.21135106 12.82798834
0.3 16.35934421 15.80606952 13.74803696
0.4 11.51707973 16.13928891 14.74936342
0.5 3.341207227 11.22475509 15.10117797
0.6 1.928786856 2.289155392 5.179809962
0.7 1.531773363 1.262661622 1.178654743
0.8 1.188432836 0.988562572 0.83312529
0.9 0.706107481 0.639596197 0.580342714
1 0 0 0

Table 4. Comparison of fundamental frequency for ν = 0.3, with Wang,26

for free edge.

Ring support radius, b Wang26 Present
0 0 0

0.02 1.501 1.50077
0.05 1.634 1.63422
0.1 1.789 1.78911

0.15 1.922 1.92226
0.2 2.051 2.05103

tions. Thus, the results presented in this paper are expected
to serve as benchmark solutions for comparison to those from
approximated methods. The exact results presented in the var-
ious graphs and tables included in this paper are also expected
to be of use in various design-engineering applications.
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