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This paper deals with the approach of using multiscale permutation entropy as a tool for feature selection for fault
diagnosis in ball bearings. The coefficients obtained from the wavelet transformation of the vibration signals of the
bearings are used for the calculation of statistical parameters. Based on the minimum multiscale permutation en-
tropy criteria, the best scale is selected and statistical parameters such as crest factor, form factor, and permutation
entropy are calculated. Finally, the faults are classified by considering the statistical parameters and permutation
entropy as features in supervised and unsupervised machine learning methods, such as a support vector machine
and self-organizing maps, respectively. Results revealed that the multiscale permutation entropy-based feature
extraction techniques provide higher classification accuracy in comparison to the other methodologies that have
been proposed in previous published works. The methodology proposed in this paper also gives good results for
unsupervised learning methods, i.e. self-organizing maps.

1

NOMENCLATURE
C penalty constant
m embedding dimension
M total number of samples
N length of data
s scale
t1 time
z time series
Y sj coarse-grain time series
w weight
ξi slack variable
π permutation pattern
τ time delay

1. INTRODUCTION

Techniques designed to monitor the conditions of rolling el-
ement bearings receive considerable attention from researchers
across the globe. Faults in the bearings are the major source of
the breakdown of machinery. When a defect in the surface of
one bearing strikes the surface of another, impulsive force is
generated. This effect has been exploited by several vibration
analysis methods, as well as various signal processing tech-
niques.1 Incipient fault diagnosis in rolling element bearings
is essential for production efficiency and plant safety. Fault di-
agnosis depends mainly on the feature extraction techniques,
because the signals carry dynamic information about the state
of the machinery. The patterns of vibration signals, due to de-
fects in various rotating parts, exhibit specific features. That
is to say, faults can be identified by looking at pattern abnor-
malities in plant machinery and rotating parts. Signal process-
ing techniques such as time domain, frequency domain, and
combined time frequency domain (such as wavelet transfor-
mation) have been investigated by various researchers.2–5 Due
to variations in friction, loading conditions, interaction of vari-
ous rotating elements, and clearance and nonlinear stiffness of
the bearings,6, 7 the vibration signals generated by machinery

are often characterized by nonlinearity. Thus, nonlinear pa-
rameter estimation techniques have been widely used by many
researchers.8–12 Numerous methods such as the correlation di-
mension13 and the Lyapunov exponent14 have been developed
recently to detect nonlinearity. Entropy estimation is an im-
portant parameter for measuring system complexity. Analy-
sis of the vibration signals generated from rotating machin-
ery, using complexity measure such as approximate entropy15

and multiscale entropy,16 was used for the bearing fault di-
agnosis. Permutation entropy was introduced by Bandt and
Pompe,18 and is a new nonlinear parameter estimation tool that
was efficiently used for the fault diagnosis.17 By comparing
neighbouring values, the complexity of a time series can be
extracted using permutation entropy. Shannon entropy is use-
ful for the estimation of the complexity of a time series based
on a single scale, while multiscale permutation entropy is use-
ful for calculating the complexity of a time series after com-
paring neighbouring values and entropy over multiple scales.
Bandt and Pompe18 presented permutation entropy, as a pa-
rameter of average entropy, to describe the complexity of a
time series. It should also be noted that feature vectors con-
sisting of multiscale permutation entropy provide better infor-
mation about physical phenomena such as the occurrence of
faults in the rotor bearing system.19 The use of permutation
entropy for chatter detection in the turning process,20 known
as electroencephalography (EEG) signal analysis,21 has been
used for chaotic time series. Signals obtained from complex
mechanical systems that have several components are usually
complicated. Approximate entropy and permutation entropy
are based on a single scale, and are therefore inefficient in di-
agnosing the signals correctly. Multiscale permutation entropy
was proposed by Costa, et al.,22 and this concept was utilized
by Wu, et al.23 and Vakharia, et al.,24 for bearing fault diagno-
sis and classification.

In this paper, raw vibration signals are used, and the concept
of permutation entropy is utilized for the selection of scale.
Wavelet coefficients are calculated by considering coiflet as
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Figure 1. Proposed fault diagnosis strategy.

mother wavelet, and a scale giving the least permutation en-
tropy is selected for the calculation of statistical parameters.
A feature vector includes these statistical parameters: speed,
loading condition, and permutation entropy. A feature vector
is fed as the input for fault classification using a support vec-
tor machine (SVM) and self-organizing maps (SOM). Results
revealed that the proposed feature extraction method gives im-
proved results compared to the conventional feature extraction
methods. The complete methodology for fault diagnosis is
shown in Fig. 1.

2. PERMUTATION ENTROPY

Signals obtained from complex machinery parts using EEG
show that stock markets are very complex in nature. Initially,
entropy was used for quantifying the predictability of a time
series on a single scale. It does not give insight between reg-
ularity and complexity. Costa, et al.22 have developed mul-
tiscale entropy for the analysis of physiologic time series, in
which initial sample entropy is calculated and, based on the
concept of multiscale, various entropies can be calculated.

Permutation entropy was introduced as a computational ef-
ficient method for extracting the information from compound
systems. For a given time series,

Z(t) = (Z1, Z2, Z3, . . . , Zn); (1)

at each time t1, a vector composed of the mth subsequent val-
ues is constructed as:25

t1 → (Zt1 , Zt1+1, . . . , Zt1+(m−2), Zt1+(m−1)); (2)

Figure 2. Coarse grain procedure.

where m is called embedding dimension and tells how much
information is present in a vector. Further, by considering time
delay of τ , Eq. (2) can be rewritten as

t1 → (Zt1 , Zt1+τ , . . . , Zt1+τ(m−2), Zt1+τ(m−1)). (3)

For a given embedding dimension, there will be m! possi-
ble permutation π of order m. Permutation entropy employs
the concept of Shannon entropy by analysing the relative fre-
quency of patterns generated from a time series. The permuta-
tion entropy is defined as:

PE = −
m!∑
i=1

πi lnπi. (4)

Permutation entropy depends mainly on the selection of em-
bedding dimension m and time delay τ . Bandt and Pompe18

suggested in their study that value of embedding dimension m
should be 3 ≤ m ≤ 7 and time delay τ = 1.

Normalized permutation entropy is given by

NPE =
PE
lnm!

; (5)

where lnm! denotes maximum PE value.

2.1. Multiscale Permutation Entropy
The concept of multiscale entropy has been proposed by

Costa, et al.22 For a given time series and 3 scales, the data
points are averaged by selecting non-overlapping windows of
increasing length to form multiple coarse-grained time series
as shown in Fig. 2.

For the scale factor s, the elements of coarse-grained time
series are evaluated by

Y sj =
1

s

js∑
i=(j−1)s+1

zi, 1 ≤ j ≤ N

s
; (6)

whereN denotes the length of the data. For scale 1, the coarse-
grained time series is simply the original time series.

3. MACHINE LEARNING TECHNIQUES

Machine learning is a type of artificial intelligence technique
used essentially for classification and regression. An important
task of machine learning is classification where algorithms are
constructed between different data based on their specific pat-
terns. Algorithms can be broadly categorized into supervised
and unsupervised algorithms.
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Figure 3. Schematic diagram of rotor bearing system.

3.1. Supervised Learning
In supervised learning, a label is associated with each fea-

ture of training data. Training data consists of input and de-
sired result. The task of an algorithm is to search for patterns
and develop mathematical models. Based on their prediction
accuracy, models are evaluated. Naive Bayes, artificial neural
networks, and support vector machines are some examples of
supervised learning methods.

The support vector machine (SVM) is a statistical learning
method based on the principle of structural risk minimization
and was introduced by Vapnik.26 SVM is a supervised learning
algorithm in which a learning machine has allotted some set of
features to a class of labels.

For linearly separable data, a hyperplane is constructed
which separates hyperspace to achieve maximum separation
between the classes known as the margin. The nearest data
points that are used to define the margin are known as support
vectors.

The optimal hyperplane separating the data can be obtained
as a solution to the following optimization problem:
Minimize

1

2
||w||2 + C

M∑
i=1

ξi (7)

subject to

yi (w
′xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . ,M. (8)

3.2. Unsupervised Learning
An unsupervised learning model is not provided with cor-

rect results during training. The task is to identify hidden
patterns in unlabelled data. It can also be used for clustering
the input data in to classes based on their statistical property.
Self-organizing maps, K means, and blind signal separation are
among the techniques which come under unsupervised learn-
ing.

A self-organizing map (SOM) is a type of neural network
model commonly used for unsupervised classification.27 In
self-organizing maps, “self-organizing” means that no super-
vision is required. The models learn on their own through un-
supervised competitive learning, while the “map” is used to
map their weights according to the given input data.

Table 1. Parameters of bearing 6205 (SKF).

Parameter Value
Outer race diameter 52 mm
Inner race diameter 25 mm
Ball diameter 7.94 mm
Ball number 10
Contact angle 0o

In the initial stage, all node weights are initialized and a vec-
tor is randomly chosen from the set of training data and for-
warded to network. Every node in the network is then used to
calculate which weights are similar to the input vector. Nodes
which are within the boundary of the best-matching unit are
adjusted to make them like the input vector. Finally, the loca-
tion of the most similar node is arranged in such a way that a
topographic map is generated. The locations of the most sim-
ilar nodes indicate statistical features contained in the input
patterns.

4. EXPERIMENTAL SETUP AND DATA
ACQUISITION

In the present study, an experimental test rig has been used,
and vibration responses for healthy bearings and bearings with
faults are obtained. A schematic diagram of a rotor bearing
system is shown in Fig. 3. Table 1 shows the dimensions of the
ball bearing used for this study. The vibration signals from the
rig are taken after some hours of initial running.

The signals are measured at rotor speeds 1000, 1500, and
2000 rpm, and in all five classes with no loader, one loader, and
two loader conditions, respectively. The following five bearing
conditions are considered for the study:

1. Bearing with no defect (BND);

2. Bearing with spall on inner race (SI);

3. Bearing with spall on outer race (SO);

4. Bearing with spall on ball (SB);

5. Combined defects (CD).

The combined defects represent bearing conditions which have
a spall on the inner race, the outer race, and ball together.

5. FEATURE EXTRACTION

Statistical analysis of vibration signals gives different pri-
mary and secondary parameters.

The continuous wavelet coefficients (CWC) of all signals
were calculated at the 7th level of decomposition (27 scales). A
scale giving the least permutation entropy was selected, and the
statistical features of CWC corresponding to that scale were
calculated for both horizontal and vertical directions. The se-
lected embedded dimension m and the time delay τ of multi-
scale permutation entropy are 5 and 1, respectively.

The following features were selected for both horizontal and
vertical conditions:

a. Permutation entropy, defined by Eq. (4).

b. Form factor, defined as the ratio of the RMS value and the
average value of the signal.
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Table 2. Sample input feature values for SOM/SVM.

Horizontal response Vertical Response
Permutation entropy Crest factor Form factor Permutation entropy Crest factor Form factor Loader Speed Class

0.6188 -0.9115 -1.0971 0.7100 0.8356 1.1968 0 1000 CD
0.5665 0.8123 1.2311 0.6356 -8.004 -1.2494 0 1500 CD
0.5823 -0.8453 -1.1831 0.7711 0.8259 1.2108 0 2000 CD
0.5169 -0.8519 -1.1738 0.5155 0.4019 2.4881 1 1000 SB
0.6154 0.4970 2.0121 0.8217 -0.6378 -1.5679 1 1500 SB
0.7166 -0.6240 -1.6025 0.7974 0.3539 2.8259 1 2000 SB
0.4255 0.8674 1.1528 0.4568 0.7593 1.3170 2 1000 SO
0.4120 0.8849 1.1301 0.7877 0.1105 9.0499 2 1500 SO
0.4939 -0.9028 -1.1076 0.8260 -0.5253 -1.9037 2 2000 SO
0.6045 0.8888 1.1251 0.5695 0.3862 2.5891 0 1000 BND
0.5901 0.2458 4.0691 0.5652 0.7917 1.2631 0 1500 BND
0.5666 -0.8682 -1.1518 0.6888 0.9204 1.0865 0 2000 BND
0.5093 0.7406 1.3503 0.7466 -0.7828 -1.2775 2 1000 SI
0.5712 -0.8311 -1.2032 0.5927 0.1317 7.5934 1 1500 SI
0.5241 0.4286 2.3334 0.5087 -0.6191 -1.6153 1 2000 SI

c. Crest factor, defined as the ratio of the peak value of the
signal to its RMS value.

These features were extracted from the vibration signals and
were fed as an input to machine learning techniques such as
SOM and SVM for the classification of faults.

6. RESULTS AND DISCUSSION

Testing and cross validation of feature sets have been car-
ried out using SOM and SVM as classifiers.28 These features
consist of permutation entropy, form factor, and crest factor,
each for horizontal and vertical responses, and the number of
loaders and rotor speed are also considered as the features for
testing and cross-validation purposes. A sample input feature
values are shown in Table 2.

The effects of bearing defects like ball defect, combined de-
fect, outer race defect and inner race defect on multiscale per-
mutation entropy are shown in Fig. 4. For the cases considered,
it was found that for the vertical response, multiscale permuta-
tion entropy is higher as compared to the horizontal response.

With no loader and 1500 rpm, maximum multiscale permu-
tation entropy is 0.7625 for ball defects under vertical response
conditions, and minimum multiscale permutation entropy is
0.4015 for outer race defects under horizontal response con-
ditions, as shown in Fig. 4(a). It can be interpreted that ball
defects under no-loader conditions and 1500 rpm exhibit more
disorder when compared to other classes, and outer race de-
fects contain less disorder.

From Fig. 4(b), it is observed that the maximum multiscale
permutation entropy, 0.8368, is for ball defects under vertical
response conditions, and the minimum value of 0.521 for in-
ner race defects is under horizontal response conditions. It can
be interpreted that when speed is increased, disorder increased
in ball defects and decreased in inner race defects. When the
load is increased and the speed is 1500 rpm, the maximum
multiscale permutation entropy is 0.836 for ball defects, the
vertical response conditions and minimum multiscale permu-
tation entropy is 0.3028 for combined defects, and the hori-
zontal response conditions are shown in Fig. 4(c). With one
loader and 2000 rpm, the maximum multiscale permutation en-
tropy is 0.7974 for ball defects, the vertical response conditions
and minimum multiscale permutation entropy is 0.5087 for in-
ner race defects, and vertical response conditions are shown in
Fig. 4(d). Thus, it is concluded that ball defects are severe as

compared to other defects considered in the present study for
all load conditions and speeds.

A total of 75 instances are considered which consist of 6,
16, 18, 17, and 18 cases of BND, SI, SO, SB, and CD, re-
spectively. For coiflet wavelets, a scale is selected based on
minimum multiscale permutation entropy. Testing and cross-
validation results are shown in Tables 3 and 4 for SOM and
SVM, respectively. Cross validation is a technique to evaluate
the performance of classifiers. Therefore, 10-fold cross vali-
dation, which is the standard method of testing classifiers, was
carried out.

From Table 3, for testing purpose 6/6, 16/16, 12/18, 17/17,
and 18/18 cases were predicted correctly for BND, SI, SO, SB,
and CD, respectively. Similarly, for cross-validation purposes,
4/6, 12/16, 11/18, 17/17, and 18/18 cases were predicted cor-
rectly. We infer that for SB and CD, SOM has correctly pre-
dicted 17/17 and 18/18 cases each for both testing and cross
validation. It is also clear that for SO, the prediction accuracy
rate is comparatively lower compared to other classes. It can be
concluded that for SO, about 22% (4/18) of the data matches
with CD, and about 16% (3/18) of the data matches with SI,
which suggests that while performing cross validation, SOM
is unable to distinguish between these fault classes efficiently.
A possible reason for spalls on the outer race is that the vibra-
tion data collected contains more noisy data compared to other
faults. Similarly, for SI about 12% (2/16) of the data matches
with SO, and 12% (2/16) of the data matches with SB. Another
possible reason for not correctly identifying these defects dur-
ing cross validation may be due to over fitting; i.e. the opti-
mization of the parameters for the SOM classifier is not done
properly.

Table 4 shows the prediction accuracy when SVM is used
as a classifier. For testing purposes, 6/6, 16/16, 18/18, 17/17,
and 18/18 cases are predicted correctly for BND, SI, SO, SB,
and CD, respectively. For cross validation, 6/6, 14/16, 14/18,
16/17, and 18/18 cases are predicted correctly for BND, SI,
SO, SB, and CD, respectively. Thus, it is clear that the pre-
diction accuracy of BND and CD is 100% for both testing and
cross validation when SVM is used as a classifier. SI and SO
are comparatively less accurately predicted. For SO, about
10% (2/18) of the data falls under CD. This means that 10%
of the data of SO matches with the CD class. Similarly, 10%
(2/18) of the data matches with the SI class during cross vali-
dation, which is an indication that SO contains more noisy data
compared to other classes. Similarly, for SI about 13% (2/16)

International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015 247



V. Vakharia, et al.: BALL BEARING FAULT DIAGNOSIS USING SUPERVISED AND UNSUPERVISED MACHINE LEARNING METHODS

Figure 4. Multiscale permutation entropy with load condition and speed.

Table 3. Confusion matrix for SOM.

Using Test Set Using 10 fold cross validation
BND SI SO SB CD Classified as BND SI SO SB CD Classified as

6 0 0 0 0 BND 4 0 1 0 1 BND
0 16 0 0 0 SI 0 12 2 2 0 SI
0 2 12 0 4 SO 0 3 11 0 4 SO
0 0 0 17 0 SB 0 0 0 17 0 SB
0 0 0 0 18 CD 0 0 0 0 18 CD

Table 4. Confusion matrix for SVM.

Using Test Set Using 10 fold cross validation
BND SI SO SB CD Classified as BND SI SO SB CD Classified as

6 0 0 0 0 BND 6 0 6 0 6 BND
0 16 0 0 0 SI 0 14 0 2 0 SI
0 0 18 0 0 SO 0 2 14 0 2 SO
0 0 0 17 0 SB 0 0 0 16 1 SB
0 0 0 0 18 CD 0 0 0 0 18 CD

Table 5. Classification accuracy.

Parameters SOM SVM
Test set 10 fold cross validation Test set 10 fold cross validation

Correctly classified instances 69 (92%) 63 (84%) 75 (100%) 68 (90.667%)
Incorrectly classified instances 6 (8%) 12 (16%) 0 (0%) 7 (9.33%)

Kappa statistic 0.8977 0.8161 1 0.8806
Total number of instances 75 75 75 75
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Table 6. A comparative study between the presented work and published literature.

References Machine
Learning
Method
used

Faults considered Efficiency of classification
(%)

Techniques used for vibra-
tion analysis

Remarks

Kankar, et
al.29

SOM,
ANN,
SVM

Spall in inner race, outer race,
rolling element, and combined
component fault, healthy bearing

70.66, 89.33, 90.66 by SOM,
ANN, and SVM, respectively
(cross validation)

Meyer, coiflet5, symlet2,
gaussian, complex morlet,
and shannon wavelet

Wavelets are compared

Kankar, et
al.30

ANN,
SVM

Spall in inner race, outer race,
rolling element, and combined
component fault, healthy bearing

71, 74 by ANN and SVM, re-
spectively (test set)

NA Time series data used

Seker, et
al.31

NA Fault at ball, inner race, outer race 71.33 Daubechies 15 and 20 Time series data used

Abbasion,
et al.32

SVM Bearing looseness, defects in
rolling elements and bearing
raceways

100 by SVM Meyer wavelet Wavelet denoising

Wu, et al.23 SVM Fault at ball, inner race, outer race,
and normal bearing

97–100 by SVM (training) NA Time series data used

Proposed
work

SOM,
SVM

Inner race, outer race, ball, com-
bined fault, and bearing with no
defect

92, 100 (test set) and 84,
91 (cross validation) by SOM
and SVM, respectively

coiflet2 Best scale is selected
using Permutation En-
tropy criterion

of the data matches exactly with SB, which also indicates that
the classifier is not able to distinguish between them during
cross validation.

Table 5 depicts the overall classification accuracy for both
the test set and the 10-fold cross validation set using two clas-
sifiers. It can be observed that, for SOM, 69/75 test instances
were classified correctly, which gives a 92% classification ac-
curacy rate, and for 10-fold cross validation, 63/75 test in-
stances were classified correctly, giving an 84% classification
accuracy rate. Similarly, for SVM, 75/75 test instances were
classified correctly, giving a 100% classification accuracy rate,
and for 10-fold cross validation, 68/75 test instances were clas-
sified correctly, giving a 90.66% classification accuracy rate, as
shown in Table 5.

The kappa statistic is used for assessing the degree to which
two or more classes that are testing the same data match when
it comes to assigning the data to classes. For complete match-
ing, the corresponding value of the kappa statistic is 1, and for
totally incomplete matching, its value is 0. For SVM, using a
testing set, the ideal value of 1 is achieved for the kappa statis-
tic. It is clear from the above mentioned results that the classifi-
cation accuracy of SVM is much better compared to SOM, and
is reported by Kankar, et al. in their study.29 SOM is a type of
unsupervised learning method in which the objective is to iden-
tify hidden structures in unlabelled data. Since the inputs given
are unlabelled, it becomes difficult for the learning algorithm to
train itself to correctly identify that particular feature belong-
ing to a specific class. This makes it quite difficult to correctly
predict the given feature set, and thus the classification accu-
racy is lower. On the other hand, the classification accuracy
of SVM is high because of its good generalization capability.
For demonstrating the effectiveness of the proposed methodol-
ogy, a comparative study between the present work and some
published literature is shown in Table 6. The proposed work
is compared in terms of the machine learning method used,
faults considered on the bearings, classification efficiency, and
the vibration analysis technique.

7. CONCLUSIONS

In the present study, a methodology is proposed for com-
paring supervised and unsupervised learning methods for fault

diagnosis of bearings. Raw vibration signals of various fault
categories are used and the concept of permutation entropy is
applied for the best scale selection of wavelet coefficients. Fea-
tures based on the best scale are extracted for both horizon-
tal and vertical response conditions. In total, 8 features have
been considered, including permutation entropy, form factor,
and crest factor for both horizontal responses and vertical re-
sponses, along with the number of loaders and shaft rotation.
The classification results of SOM and SVM are compared, and
the results show that SVM is able to give much better results
due to its better generalization capability. It is observed that
severe vibration is observed for ball defects. The prediction ac-
curacy rate of both learning algorithms is lower for outer race
defects and higher for combined defects. It can be concluded
that the proposed methodology based on scale selection using
multiscale permutation entropy along with supervised and un-
supervised machine learning techniques has potential for appli-
cation to the development of real-time fault diagnosis systems.
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