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The study and three-dimensional simulation of the field of the second harmonic wave at the scattering of nonlin-
early interacting acoustic waves by an elongated spheroid are carried out in this work. The problem is presented in
the elongated spheroidal coordinate system, and the foci of the spheroid coincide with foci of the spheroidal coor-
dinate system. The description of the occurring wave processes is presented on the basis of the obtained relation
for acoustic pressure of the second harmonic wave. The scattering diagrams for the acoustic pressure field of the
second harmonic wave are presented, and three-dimensional models of a scattering diagram are created.

1. INTRODUCTION

The problem of acoustic waves scattering by elongated
spheroids was formulated for the first time about half a cen-
tury ago.1–3 Some of this research considered the problem of
the sound scattering by an elongated spheroid with different
boundary conditions.1 Other research considered the problem
of the sound scattering by a rigid spheroid in the long-wave
approximation.2 And other work is devoted to the problem of
sound waves scattering by an elongated spheroid.3 The angu-
lar characteristics of the acoustic waves scattering by a soft and
rigid elongated spheroid were presented.

The process of the plane acoustic waves scattering by thin,
acoustically rigid and resilient bodies of revolution was con-
sidered in some of the research used in this study.4, 5 In other
works, the problem of the plane acoustic wave scattering by
spheroidal shells was investigated.6, 7 These works study the
surface waves directly on scatterers, and the frequency depen-
dence of the backscattering amplitude in the far field is pre-
sented. With the exception of the works on the linear scatter-
ing by spheroids, there are several papers devoted to nonlinear
acoustic spectroscopy. Some studies used here consider the
problem of nonlinear acoustic diagnostics of defects in mate-
rials and structures.8 Other research presented here is devoted
to solving the problem of the nonlinear acoustic spectroscopy
of defects in geomaterials.9

However, the problem of interacting nonlinear acoustic
waves scattered by an elongated spheroid has not been ex-
amined elsewhere. This problem becomes essential when an
acoustic parametric antenna is used for remote diagnostics of
a water medium, as well as in the medical tomography field.

In the present work, the study and simulation of the sec-
ondary field of the second harmonic wave is carried out. The
study of the secondary field of the difference-frequency wave
for nonlinearly interacting plane acoustic waves scattered by
a rigid elongated spheroid was also performed.10 However,

the scattering process for the high-frequency second harmonic
wave has a purely geometrical character (k2ωh0 � 1). But the
difference-frequency wave covers the Rayleigh- (k−h0 � 1)
and resonance- (k−h0 ≈ 1) scattering regions. A multi-
frequency analysis will lead to an increase in informativeness
of the scattered signal.

2. STATEMENT OF PROBLEM

The problem of wave diffraction by elongated bodies is of-
ten described in ellipsoidal coordinates. These coordinates are
used in the study of radiation and the scattering of acoustic
waves by ellipsoids, or cigar-shaped bodies, and when study-
ing the diffraction by circular apertures.11

The elongated spheroidal coordinate system, ξ, η, and ϕ, is
used for the study of diffraction by cigar-shaped bodies . The
foci of the spheroid coincide with foci of the spheroidal coor-
dinate system. The spheroid is formed by rotating the ellipse
ξ0 around its major axis, which coincides with the x-axis in the
Cartesian coordinate system. The geometry of the problem is
presented in Fig. 1. The ξ = const spheroids and η = const

two-sheeted hyperboloids are the coordinate surfaces in this
case.

Elongated spheroidal coordinates are related to Cartesian
coordinates by the following equations:12

x = h0ξη, y = h0
√

(ξ2 − 1)(1− η2) cosϕ,

z = h0
√

(ξ2 − 1)(1− η2) sinϕ;

where h0 = d/2 and d is the interfocal distance. Spheroidal
coordinates ξ, η, and ϕ vary within the limits 1 ≤ ξ < ∞;
−1 ≤ η ≤ 1; and 0 ≤ ϕ ≤ 2π.

The perfect elongated spheroid is placed into a homoge-
neous medium. The spheroid’s surface is characterized by the
radial coordinate ξ0. In our case, the spheroid is supposed to
be acoustically rigid. Consequently, the Neumann boundary
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Figure 1. Geometry of the problem.

condition is satisfied at the surface. We assume that interact-
ing high-frequency plane acoustic waves of the unit pressure
amplitude fall onto the spheroid at an arbitrary polar angle θ0
(θ0 = arccos η0) and an azimuthal angle ϕ0 in the spheroidal
coordinate system:11

pni = exp [−i(knr0 cos θ0 − ωnt)] =

− 2 exp(iωnt)

∞∑
m=0

∞∑
l≥m

i−lSml(knh0, η0)Sml(knh0, η) ·

R
(1)
ml (knh0, ξ) cosm(ϕ− ϕ0); (1)

where kn is the wavenumber; n = 1, 2 according to the waves
with frequencies ω1 and ω2; r0 is the radius-vector of the po-
lar coordinate system; Sml(knh0, η) is the normalized angular
first-order function; and R(1)

ml (knh0, ξ) is the radial spheroidal
first-order function.

After the plane wave scattering by the spheroid, the scattered
spheroidal wave with pressure3 will propagate in the environ-
ment

pns(ξ, η, ϕ) = 2 exp(iωnt)

∞∑
m=0

∞∑
l≥m

Aml(knh0, ξ0) ·

Sml(knh0, η)R
(3)
ml (knh0, ξ) cosmϕ; (2)

whereAml(knh0, ξ0) is the coefficient dependent on boundary
conditions on the spheroid surface, and R(3)

ml (knh0, ξ) is the
radial spheroidal third-order function.

When the scattered spheroidal wave occurs, the total acous-
tic pressure of the primary field around the spheroid will be

p(1) = pni + pns =[ ∞∑
m=0

∞∑
l≥m

Bml(knh0) exp
[
i(ωnt− lπ/2)

]
+

∞∑
m=0

∞∑
l≥m

Dml(knh0) exp
[
i(ωnt−mϕ)

]]
+ (c.c.); (3)

where

Bml(knh0) = 2Sml(knh0, η0)Sml(knh0, η)R
(1)
ml (knh0, ξ) ·

cosm(ϕ− ϕ0),

Dml(knh0) = 2Aml(knh0, ξ0)Sml(knh0, η)R
(3)
ml (knh0, ξ) ·

cosmϕ,

and (c.c.) is the complex-conjugate part.
When solving problems of nonlinear interaction, it is neces-

sary to take into account the reality of sound pressure; there-
fore, Eq. (3) is presented with the complex-conjugated part.

The nonlinear wave processes around the spheroid can be
described by the inhomogeneous wave equation13

∆p(2) − 1

c20

∂2p(2)

∂t2
= −Q = − ε

c40ρ0

∂2p(1)

∂t2
; (4)

where Q is the volume density of the sources of secondary
waves, c0 is the sound velocity in the medium, ε is the
quadratic nonlinearity parameter, ρ0 is the density of the un-
perturbed medium, and p(1) and p(2) are the total acoustic pres-
sures of the primary and secondary fields.

The wave in Eq. (4) is solved by the method of successive
approximations. In the first approximation, the solution is rep-
resented by Eq. (3) for the total acoustic pressure of the pri-
mary field p(1). To find the solution in the second approxi-
mation, p(2), the right side of Eq. (4) should feature four fre-
quency components: second harmonics of the incident waves,
2ω1, 2ω2, and the combination frequency waves, ω1 + ω2,
ω2 − ω1 = Ω.

The equation for the volume density of secondary waves
sources Q2ω at the second harmonic 2ω1 is

Q2ω =
8εω2

1

c40ρ0

[ ∞∑
m=0

∞∑
l≥m

B2
ml(k1h0) cos(2ω1t− lπ) +

∞∑
m=0

∞∑
l≥m

2Bml(k1h0)Dml(k1h0) cos(2ω1t− lπ/2−mϕ) +

∞∑
m=0

∞∑
l≥m

D2
ml(k1h0) cos(2ω1t− 2mϕ)

]
. (5)

3. SOLUTION OF NONLINEAR WAVE
EQUATION FOR THE SECOND
HARMONIC WAVE

To solve the inhomogeneous wave shown in Eq. (4) with the
right-hand side given by Eq. (6) in the second approximation,
we seek the solution in the complex form

p
(2)
2ω =

1

2
P

(2)
2ω exp

(
i(2ω1t+ δ)

)
+ (c.c.). (6)

The inhomogeneous Helmholtz equation is obtained by sup-
planting Eq. (6) into the inhomogeneous wave Eq. (4):

∆P
(2)
2ω + k22ωP

(2)
2ω = −q2ω(ξ, η, ϕ); (7)
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where k22ω = 2k1 is the wavenumber of the second harmonic
2ω1, and q2ω(ξ, η, ϕ) is the function of the sources of sec-
ondary waves

q2ω(ξ, η, ϕ) =

8εω2
1

c40ρ0

[ ∞∑
m=0

∞∑
l≥m

B2
ml(k1h0) exp

(
i(2ω1t− lπ)

)
+

∞∑
m=0

∞∑
l≥m

2Bml(k1h0)Dml(k1h0) exp
(
i(2ω1t−lπ/2−mϕ)

)
+

∞∑
m=0

∞∑
l≥m

D2
ml(k1h0) exp

(
i(2ω1t− 2mϕ)

)]
.

The solution to the inhomogeneous Helmholtz equation in
Eq. (7) takes the form of a volume integral of the product of the
Green’s function with the secondary wave sources density13, 14

P
(2)
2ω (ξ, η, ϕ) =

∫
V

q2ω(ξ′, η′, ϕ′)G(r1)hξ′hη′hϕ′ dξ′dη′dϕ′;

(8)
where G(r1) is the Green function, r1 is the distance between
the current point of the volume M ′(ξ′, η′, ϕ′) and the obser-
vation point M(ξ, η, ϕ), and hξ′ , hη′ , hϕ′ are the scale factors
(coefficients of Lame).15

The Green’s function in the far zone r′ � r is determined
by the asymptotic equation

G(r1) ≈ exp
[
− ik2ω

(
h0ξ − h0ξ′ηη′−

h0ξ
′
√

(1− η2)(1− η′2)× cos(ϕ− ϕ′)
)]/

h0ξ. (9)

The integration in Eq. (8) is performed over the volume
V occupied by the second wave sources and bounded in the
spheroidal coordinates by relations ξ0 ≤ ξ′ ≤ ξS , −1 ≤ η′ ≤
1, 0 ≤ ϕ′ ≤ 2π.

This volume represents a spheroidal layer of the medium,
stretching from the spheroidal scatterer surface to the bound-
ary of the nonlinear interaction area. A spheroidal surface with
the coordinate ξS is the boundary of this area. The coordinate
ξS is defined by the length of the nonlinear interaction area
(attenuation area) of the initial high-frequency waves. The
length of this area is inversely proportional to the coefficient
of viscous sound absorption at the corresponding pumping fre-
quency. The scattered waves’ interaction can be neglected due
to attenuation beyond this area. For the interacting incident
waves, the boundary introduction is equivalent to placing the
absorption filter at the boundary.

As a result of the final integration over coordinates ϕ′ and
η′ when taking into account the equation for the sources of

secondary waves, Eq. (8) takes the form16

P
(2)
2ω (ξ, η, ϕ) =

P
(2)
2ωI(ξ, η, ϕ) + P

(2)
2ωII(ξ, η, ϕ) + P

(2)
2ωIII(ξ, η, ϕ) =

C2ω
1

k2ωh0η

[ ξS∫
ξ0

Tξ′ sin(k2ωh0ξ
′η)dξ′ −

ξS∫
ξ0

T
sin(k2ωh0ξ

′η)

ξ′
dξ′

]
; (10)

where

C2ω =
32πh30εω

2
1 exp(−ik2ωh0ξ)
c40ρ0ξ

,

T =

[ ∞∑
m=0

∞∑
l≥m

B2
ml(k1h0) exp(−ilπ) +

∞∑
m=0

∞∑
l≥m

2Bml(k1h0)Dml(k1h0) exp
(
− i(lπ/2 +mϕ)

)
+

∞∑
m=0

∞∑
l≥m

D2
ml(k1h0) exp(−2imϕ)

]
,

(and from here on, the time factor exp(i2ω1t) is omitted).
In contrast with the different frequency wave in Eq. (10),

the total acoustic pressure of the second harmonic wave
P

(2)
2ω (ξ, η, ϕ) consists of three spatial components. Therefore,

the contribution of the separate components in the total field
will increase.

The first component, P (2)
2ωI(ξ, η, ϕ), corresponds with the

part of the total acoustic pressure of the second harmonic wave,
which is formed in the spheroidal layer of the nonlinear inter-
action area by the incident high-frequency plane wave ω1. The
second component, P (2)

2ωII(ξ, η, ϕ), describes the interaction of
the incident plane wave with the scattered spheroidal wave of
frequency ω1. The third component, P (2)

2ωIII(ξ, η, ϕ), charac-
terizes the self-interaction of the scattered spheroidal wave of
frequency ω1. It should also be noted that these components
characterize the nonlinear interaction of incident and scattered
waves with different spatial configurations of the wave fronts.

After the final integration over the coordinate ξ′, the equa-
tion for the first component P (2)

2ωI(ξ, η, ϕ) takes the following
form:

P
(2)
2ωI(ξ, η, ϕ) = P

(2)
2ωI1 + P

(2)
2ωI2 + P

(2)
2ωI3 + P

(2)
2ωI4; (11)

where

P
(2)
2ωI1,2ωI2 = ± C2ω

2k22ωh
2
0η(η0 ∓ η)

·[
ξS exp

[
−ik2ωh0(η0∓η)ξS

]
− ξ0 exp

[
−ik2ωh0(η0∓η)ξ0

]]
,

P
(2)
2ωI3,2ωI4 = ∓ C2ω

2i(k2ωh0η)
·[

− Ei
[
− ik2ωh0(η0 ∓ η)ξS

]
+ Ei

[
− ik2ωh0(η0 ∓ η)ξ0

]]
,

260 International Journal of Acoustics and Vibration, Vol. 20, No. 4, 2015



I. B. Abbasov: STUDY OF SECONDARY FIELD WAVES AT SCATTERING OF NONLINEARLY INTERACTING ACOUSTIC WAVES. . .

and Ei(ax) =
∫ exp(ax)

x is the integral exponential func-
tion.17, 18

Analysing what was obtained in Eq. (11) for the first compo-
nent, P (2)

2ωI(ξ, η, ϕ), of the total acoustic pressure of the second
harmonic wave, one can note that the scattering diagram of
this component is determined by the behaviour of the function
1/(η0±η). This function depends on the coordinate η0, i.e. on
the angle of incidence θ0 of the high-frequency plane waves in
the polar coordinate system.

Now consider the second component of Eq. (10),
P

(2)
2ωII(ξ, η, ϕ), for the total acoustic pressure of the second har-

monic wave, which characterizes the nonlinear interaction of
the incident plane wave with the scattered spheroidal wave.
After the final integration, the equation for the second compo-
nent of the total acoustic pressure of the second harmonic wave
takes the form

P
(2)
2ωII(ξ, η, ϕ) = P

(2)
2ωII1 + P

(2)
2ωII2 + P

(2)
2ωII3 + P

(2)
2ωII4; (12)

where

P
(2)
2ωII1,2ωII2 = ∓ iC2ωA(k1k0)

2k1k2ωh20η
√

(1− η0)(1− η)
·[

exp(−iu2ωξS)− exp(−iu2ωξ0)

u2ω

]
,

P
(2)
2ωII3,2ωII4 = ± C2ωA(k1k0)

2k1k2ωh20η
√

(1− η0)(1− η)
·[

exp(−iu2ωξS)

ξS
− exp(iu2ωξ0)

ξ0
−

iu2ω
[
Ei(−iu2ωξS)− Ei(−iu2ωξ0)

]]
,

and u2ω = (k1h0η − k1h0 ∓ k2ωh0η).
An analysis of Eq. (12) shows that the scattering diagrams

of the second component P (2)
2ωII(ξ, η, ϕ) are determined mainly

by the function 1/η
√

(1− η0)(1− η), where the dependence
on the incident angle θ0 (that is η0) is not very pronounced.

Now, we consider the third component of Eq. (10),
P

(2)
2ωIII(ξ, η, ϕ), for the total acoustic pressure of the second

harmonic wave, characterizing the nonlinear self-interaction
of the scattered spheroidal wave frequency ω1. After the final
integration, the equation for the third component of the total
acoustic pressure of the second harmonic wave takes the form

P
(2)
2ωIII(ξ, η, ϕ) = P

(2)
2ωIII1 + P

(2)
2ωIII2 + P

(2)
2ωIII3 + P

(2)
2ωIII4; (13)

where

P
(2)
2ωIII1,2ωIII2 = ∓ C2ωA

2(k1k0)

2ik2ωh30k
2
1η(1− η0)(1− η)

·[
− u3ω

[
Ei(−iu3ωξS)− Ei(−iu3ωξ0)

]]
,

P
(2)
2ωIII3,2ωIII4 = ∓ C2ωA

2(k1k0)

4ik2ωh30k
2
1η(1− η0)(1− η)

·[
iu3ω

(
exp(−iu3ωξS)

ξS
− exp(iu3ωξ0)

ξ0

)
+

u23ω
[
Ei(−iu3ωξS)− Ei(−iu3ωξ0)

]]
,

and u3ω = (k2ωh0 ∓ k2ωh0η).
The scattering diagrams type is defined mainly by the func-

tion 1/η(1− η0)(1− η) of Eq. (13).

4. DRAWING OF SCATTERING DIAGRAMS

To reveal the features of the acoustic field of the second
harmonic wave, we consider the scattering diagrams for sepa-
rate spatial components. The diagrams of the second harmonic
wave components P (2)

2ω (ξ, η, ϕ) scattered by a rigid elongated
spheroid ξ0 = 1.005 are presented in Fig. 2 (relation axis
1:10, h0 = 0.01 m, distance from focal points r1 = 0.01 m,
r2 = 0.0101 m) at: ξ = 7, angle of incidence shown an arrow
θ0 = 30o, f2 = 1000 kHz, f1 = 976 kHz (k1,2h0 ≈ 40),
2f1 = 1952 kHz, k2ωh0 = 82, (k−h0 = 1). The initial pa-
rameter values of the second harmonic wave are connected to
values for the difference-frequency wave.10

The scattering diagram for the first component P (2)
2ωI(ξ, η, ϕ)

has maxima in the direction of the angle of incidence and in
the symmetrical (with respect to the z-axis) direction (30o and
150o). The diagrams of other components have major maxima
in the reverse and lateral directions (0o and ±90o) and do not
show dependence on the angle of incidence.

The scattering diagrams for the second harmonic wave
P

(2)
2ω (ξ, η, ϕ) on a rigid elongated spheroid ξ0 = 1.005 (h0 =

0.01 m) for different radial distance values ξ are presented in
Fig. 3 (the size of the re-radiating volume) at: θ0 = 30o, f2 =

1000 kHz, f1 = 976 kHz, (k1,2h0 ≈ 40), 2f1 = 1952 kHz,
k2ωh0 = 82 (k−h0 = 1), ξ = 3; 7; 15.

The scattering diagrams for different wave dimensions of
the spheroid and for different sizes of the interaction area were
calculated. As a result, it was found that increasing the wave
dimension of the spheroidal scatterer leads to minor changes
in the maxima levels (in contrast with the difference-frequency
wave). An increase in the size of the interaction area around
the elongated spheroidal scatterer (coordinates ξ) leads to nar-
rowing of these maxima.

In Fig. 4 are presented the scattering diagrams of the sec-
ond harmonic wave P (2)

2ω (ξ, η, ϕ) by a rigid elongated spheroid
ξ0 = 1.005 (h0 = 0.01 m) for the different incidence angle
values of the initial pumping waves θ0 = 0o; 60o; 90o (f2 =

1000 kHz, f1 = 976 kHz, (k1,2h0 ≈ 40), 2f1 = 1952 kHz,
k2ωh0 = 82 (k−h0 = 1), ξ = 7).

The scattering diagrams of the second harmonic wave
P

(2)
2ω (ξ, η, ϕ) for the different incidence angle values θ0 =

0o; 60o; 90o reproduce the features of the scattering diagrams
of the difference-frequency wave P (2)

− (ξ, η, ϕ).
The scattering diagram of the second harmonic wave retains

the general regularity in directions to the maxima. However,
unlike the difference-frequency wave, the diagram does not un-
dergo significant changes for different values of the spheroid’s
wave dimensions in accordance with the maxima, and it has
more sharpened maxima. These features are associated with
the geometric character of the scattering process.

Figures 5 and 6 show spatial models of the scattering dia-
grams of the second harmonic wave P (2)

2ω (ξ, η, ϕ) by a rigid
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Figure 2. Scattering diagrams for the second harmonic wave P (2)
2ω (ξ, η, ϕ)

components on a rigid elongated spheroid ξ0 = 1.005 for: ξ = 7, θ0 = 30o,
f2 = 1000 kHz, f1 = 976 kHz, 2f1 = 1952 kHz, k2ωh0 = 82 (k−h0 =

1).

Figure 3. Scattering diagrams of the second harmonic wave P (2)
2ω (ξ, η, ϕ)

on a rigid elongated spheroid ξ0 = 1.005 for different ξ values for: f2 =

1000 kHz, f1 = 976 kHz, 2f1 = 1952 kHz, k2ωh0 = 82, θ0 = 30o,
ξ = 3; 7; 15.

elongated spheroid ξ0 = 1.005 for the angle of incidence
θ0 = 0o; 30o. These diagrams provide a visual representation
of the spatial distribution of the scattered pressure field.

5. DISCUSSION AND COMPARISON
OF RESULTS

Further, it should be noted that the acoustic pressure of the
second harmonic wave was calculated in the far field of the
spheroidal scatterer, in the Fraunhofer zone. Therefore, the
scattering field can be considered to be formed since the ob-
servation point M(ξ, η, ϕ) was located at the radial distance
ξ = 7 and 15. This distance exceeds 3 to 5 times the quasi-
diffraction zone length.

The scattering diagrams are shown in the plane xOz. The
polar angle θ varies in the range from 0o to±180o since the di-
agrams are axisymmetric with respect to the x-axis. The value
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Figure 4. Scattering diagrams of the second harmonic wave P (2)
2ω (ξ, η, ϕ)

on a rigid elongated spheroid ξ0 = 1.005 for angles of incidence θ0 =

0o; 60o; 90o for: f2 = 1000 kHz, f1 = 976 kHz, 2f1 = 1952 kHz,
k2ωh0 = 82 (k−h0 = 1), ξ = 7.

Figure 5. Three-dimensional wireframe model of scattering diagram of the
second harmonic wave P (2)

2ω (ξ, η, ϕ) on a rigid elongated spheroid ξ0 =

1.005 at the angle of incidence θ0 = 0o (k2ωh0 = 82, ξ = 7).

Figure 6. Three-dimensional wireframe model of scattering diagram of the
second harmonic wave P (2)

2ω (ξ, η, ϕ) on a rigid elongated spheroid ξ0 =

1.005 at the angle of incidence θ0 = 30o (k2ωh0 = 74, ξ = 3).

of the angle θ = 0o corresponds to the axis x position, and the
value θ = 90o corresponds to the z-axis. The arrow shows the
direction of the initial plane waves’ incidence.

For clarity, the figures show the acoustic pressure
P

(2)
2ω (ξ, η, ϕ) dependence not on the angle of the hyperbola’s

asymptote η, but on more convenient polar angle θ = arccos η

in spherical coordinates. This representation is convention-
ally employed for the scattering diagrams in spheroidal coor-
dinates.2, 3, 19

In order to check the correctness of the obtained diagrams of
scattering by an elongated spheroid, we should compare them
with the results of other studies. It should be also noted that the
problem in the nonlinear formulation was not previously inves-
tigated, neither theoretically nor experimentally. Within the
framework of our consideration, in the case of primary high-
frequency waves, the scattering by a spheroid is linear. The
secondary field is generated by the secondary wave sources lo-
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cated in the volume around the spheroid. In the linear case,
they are located on the spheroid’s surface. In general, it can be
emphasized that the obtained scattering diagrams are in good
agreement with diagrams in the works cited in this paper.3, 5, 20

In the far field, the spheroidal coordinates are transformed
into the spherical ones P (2)

+ (ξ, η, ϕ)→ P
(2)
+ (r, θ, ϕ). The dia-

grams of scattering by an elongated spheroid in the far field are
in good agreement with the author’s study results on scattering
by a sphere.21, 22 However, unlike the case of a sphere, where
the scattered field does not depend on the angle of incidence
θ, the lobes in the directions of incidence and reflection of the
initial plane waves appear in the case of a spheroid.
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