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A nonlinear torsional vibration model with meshing errors, time varying meshing stiffness, damping coefficients,
and gear backlashes was presented to analyse the nonlinear dynamic behaviour of the planetary gear train system,
which was used to machine the Circular-Arc-Tooth-Trace cylindrical gear. Its dimensionless equations of the sys-
tem were derived, and the solution of the equations was carried out by using the method of numerical integration.
The bifurcation diagrams indicated that the system had abundant bifurcation properties with the dimensionless
speed, and the damping ratios of meshing pairs could influence the vibration amplitudes and bifurcation character-
istic greatly. The phase plane plots and Poincar maps revealed that the motion state of the system would through
the regions such as harmonic response, non-harmonic response, 2T-periodic harmonic response, 4T-periodic har-
monic response, quasi-harmonic response, and chaotic response. The chaotic regions will cause the system failure
and instabilities, so these regions should be avoided.

1. INTRODUCTION

The planetary gear was used in the processing device for ma-
chining the Circular-Arc-Tooth-Trace cylindrical gear (CATT
gear—it is a new type gear) due to its advantages, such as com-
pactness, large torque-to-weight ratio, large transmission ra-
tios, reduced vibrations, and translational property.1 The pro-
cessing device consists of planetary gear sets that have trans-
lational and rotary motions, which can form the ideal tooth
profile of the CATT gear,2 and its vibration influences the cor-
rect manufacturing of the tooth profile. That is the reason why
this paper focuses on the vibration of the planetary gear trans-
mission system. The structures of the processing device of
the CATT gear are shown in Figs. 1 and 2. Similarly, there
have been numerous studies about the vibration of planetary
gears in recent decades. The factors influencing the vibration-
and noise-related dynamic responses of planetary gear systems
have been investigated by many researchers. Velex and Fla-
mand,3 Kahraman and Blankenship,4 and Lin and Parker5 in-
vestigated the time-varying mesh stiffness. Kahraman, Parker,
et al. analysed the natural modes of planetary gears with un-
equally spaced planets and an elastic ring gear.6, 7 Ericson and
Parker8, 9 investigated the effects of torque on the dynamic be-
havior and system parameters of planetary gears by experi-
mental measurement and finite element analysis, and the study
provided good methods for the CATT gear research. The trans-
mission errors, the spacing, and backlash-related nonlinear dy-
namics were the main focus in much published research.10–12

Xihui, Liang, et al.13 investigated the vibration properties of a
planetary gear set and evaluated the mesh stiffness effectively.
Li, Wu, and Zhang14 formulated a nonlinear time-varying dy-

namic model for a multi-stage planetary gear train. However,
these published studies investigated the vibration based on the
conventional planetary gears. Fewer studies are available about
the investigations on the translational planetary gear train.

Although many models in previous research are different
from this planetary gear set, some studies can provide many
available methods, as in some of the work referenced in this
paper. A. Kahraman used a family of torsional dynamic mod-
els of compound gear sets to predict the free vibration charac-
teristics under different kinematic configurations resulting in
different speed ratios, but he investigated the planetary gear
sets without nonlinear models.15 Robert G. Parker examined
the effectiveness of planet phasing to suppress planetary gear
vibration in certain harmonics of the mesh frequency based
on the physical forces acting at the sun-planet and ring-planet
meshes.16 This research proposed a method to suppress the
vibration of the planetary gears. J. Lin and R. G. Parker also
investigated the natural frequency and vibration mode sensitiv-
ities to system parameters for both tuned and mistuned plane-
tary gears.17, 18 V. K. Ambarisha, et al. investigated the com-
plex, nonlinear dynamic behaviour of spur planetary gears us-
ing two models: a lumped-parameter model and a finite ele-
ment model.19 In this paper, mesh phasing rules to suppress
rotational and translational vibrations in planetary gears were
valid even when nonlinearity formed tooth contact loss occurs.
Sun Zhimin, et al. used a clearance-type nonlinear dynamic
model of a 2K-H planetary gear train to analyse the nonlinear
dynamic behaviour of the gear train excited by a static trans-
mission error in addition to a mean torque.20 His research re-
sults indicate that the backlash induces complicated nonlinear
dynamic behaviour in the 2K-H planetary gear train. Simi-
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Figure 1. 3D model of the CATT gear processing device.

larly, Li Tongjie, et al. established a nonlinear torsional vibra-
tion model of a planetary gear train with errors of transmission,
time varying stiffness, and gear backlashes. His study results
revealed that the systems motion state would change into chaos
in the way of crisis as speed increased, and a smaller damp-
ing coefficient would make the systems periodic motion state
change into a complex state.21

This study proposes a planetary gears device whose plane-
tary gear centre could move with translational motion. Then, a
nonlinear torsional vibration model of the planetary gear train
is established. This model includes the transmission, time
varying meshing stiffness, and gear backlashes. By using the
method of numerical integration, the frequency content and ge-
ometry of the dynamic response of spur planetary gears in the
rotating and stationary reference frames are investigated. This
paper tries to improve the stability of the planetary gear train
processing device by examining the vibration characteristics of
the model.

2. MODELLING METHODOLOGY

The planetary gear train processing device consists of a sun
gear (s), N inside planetary gears (q), N outside planetary gears
(p), and a carrier (c) without a ring gear. Figures 1 and 2 are the
3D models of the CATT gear processing device with four gear
sets, and these gear sets have to be evenly distributed around
the sun gear. All gears are spur gears, and the motion of the sun
gear is constrained. Each element has one rotational degree-of-
freedom without considering translations.

The planetary gear dynamic model used is based on the one
developed by Lin and Parker.5, 18 But the structure and the mo-
tions of the model are different from those in previous research.
According to the motion properties of the planetary gear de-
vice, the vibration system can be a simplified spring-damping
vibration system with meshing errors and gear backlashes. The
torsional vibration model is shown in Fig. 3.

Figure 2. The CATT gear and its planetary gear train processing device.

Figure 3. Torsional vibration model of planetary gears.

The model is normally selected with three or four gear sets
for vibration analysis. Rotational motions of the carrier, inside
planets, and outside planets are denoted by θh, h = c, q, p,
and 1...N , where N indicates the number of planets. The
gear bodies are assumed to be rigid with moments of inertia
Jc, Jqi, Jpi(i = 1, 2, ..., N). Not only the sun and inside planet
tooth meshes, but also the inside planet and the outside planet
tooth meshes, are modelled as linear springs with time-varying
stiffness Ksqi(t),Kpiqi(t)(i = 1, 2, ..., N). Simultaneously,
the non-linear factors such as the damping Csqi, Cpiqi, clear-
ance bsqi, bpiqi , and meshing error esqi(t), epiqi(t) are consid-
ered in the determination of instability boundaries. By using
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the Lagrange equation, the systems equations of motion are

Jqiθ̈qi − (Dsqi + Psqi −Dpiqi − Ppiqi) rbqi = 0

Jpiθ̈pi + TL1 = (Ppiqi +Dpiqi) rbpi(
Jc +

N∑
i=1

(mpirc2 +mqirc1)

)
θ̈c + TL2

+
N∑
i=1

(Dsqi + Psqi) rbs cosα = TD

; (1)

where rbs, rbqi, rbpi(i = 1, 2, , N) are the base circle radii
of the sun, inside planets and outside planets, respectively.
The parameters rc1 and rc2 are the radii of the circle passing
through the planets centres for the carrier. ms,mqi,mpi,mc

are the masses of the sun gear, inside planet, outside planet,
and carrier. Td, TL1, TL2 are external torques. Psqi, Ppiqi(i =
1, 2, ..., N) are the elastic meshing forces, andDsqi, Dpiqi(i =
1, 2, ..., N) are the viscous meshing forces.16 They can be ex-
pressed as{

Psqi = Ksqi(t)f (θcrc1 − θqirbqi − esqi(t), bsqi)
Ppiqi = Kpiqi(t)f (θqirbqi − θpirbpi − epiqi(t), bpiqi)

;

(2) Dsqi = Csqi

(
θ̇crc1 − θ̇qirbqi − ėsqi(t)

)
Dpiqi = Cpiqi

(
θ̇qirbqi − θ̇pirbpi − ėpiqi(t)

) ; (3)

where f(x, b) is the nonlinear function of clearance, and it can
be represented by22

f (x, b) =


x− b, (x > b)
0, (−b ≤ x ≤ b)
x+ b, (x < −b)

. (4)

For spur gears, rectangular waves are often used to approxi-
mate mesh stiffness alternating between n and n + 1 pairs of
teeth in comtact.5 Each mesh stiffness is represented by{

Ksqi(t) = Kmsqi +Kasqi sin(ωt+ ϕsqi)
Kpiqi(t) = Kmpiqi +Kapiqi sin(ωt+ ϕpiqi)

; (5)

where Kmsqi,Kmpiqi(i = 1, 2, ..., N) are mean values, and
Kasqi,Kapiqi(i = 1, 2, ..., N) are time-varying components
of ith the sun to inside planet, and inside planet to outside
planet meshes. ω is the mesh frequency of the sun-planet, and
ϕsqi, ϕpiqi(i = 1, 2, ..., N) are the phases.
Csqi, Cpiqi are the damping coefficients, and they can be

expressed as20{
Csqi = 2ξ1

√
Kmsqi/(1/Ms + 1/Mqi)

Cpiqi = 2ξ2
√
Kmpiqi/(1/Mpi + 1/Mqi)

; (6)

where ξ1, ξ2 are the damping ratios of meshing pairs for the
sun to inside planet, and the inside planet to outside planet.
Mc,Mqi,Mpi,Ms are the equivalent masses of the sun, plan-
ets, and carrier. Their expressions will be written in the follow-
ing part of the paper. esqi(t), epiqi(t) are the gear backlashes,
and can be represented by20{

esqi(t) = Esqi sin(ωt+ φsqi)
epiqi(t) = Epiqi sin(ωt+ φpiqi)

; (7)

where Espi, Epiqi are the synthetical meshing errors, and
φspi, φpiqi are the phase angles.

In order to eliminate the displacement of the rigid body, the
generalized coordinates are introduced as

{
Xsqi = xc − xqi − esqi(t)
Xpiqi = xqi − xpi − epiqi(t)

. (8)

Eq. (8) can also be expressed as

{
Xsqi = θcrc1 − θqirbqi − esqi (t)
Xpiqi = θqirbqi − θpirbpi − epiqi (t)

. (9)

Substituting Eqs. (2), (3), and (9) into Eq. (1), we obtain the
following:



Ẍsqi = rc1
Mcrbc2

(
TD − TL2

−
(
N∑
i=1

Ksqi(t)f(Xsqi, bsqi)

+
N∑
i=1

CsqiẊsqi

)
rbs cosα

)
− 1

Mqi

(
CsqiẊsqi +Ksqi(t)

· f(Xsqi, bsqi) − CpiqiẊpiqi

−Kpiqi(t)f(Xpiqi, bpiqi)
)
− ësqi(t)

Ẍpiqi = 1
Mqi

(
CsqiẊsqi +Ksqi(t)f(Xsqi, bsqi)

−CpiqiẊpiqi −Kpiqi(t)f(Xpiqi, bpiqi)
)

− 1
Mpirbpi

((
Kpiqi(t)f(Xpiqi, bpiqi)

+CpiqiẊpiqi

)
rbpi − TL1

)
− ëpiqi(t)

; (10)

where Mc,Mqi,Mpi,Ms can be expressed as

Mc = (Jc +

N∑
i=1

(mpirc2 +mqirc1))
/
r2bc ;

Mqi = Jqi/r
2
bqi;

Mpi = Jpi/r
2
bpi; Ms = Js/r

2
bs. (11)

In order to simplify the solutions of the equations and the
analysis of the results, we use dimensionless variables, intro-
ducing the parameters

ωn =
√
Kmsqi(1/Ms + 1/Mc); X̄ = X/bc;

˙̄X = Ẋ
/
ωnbc;

¨̄X = Ẍ
/
ωn

2bc;

b̄ = b/bc; ¨̄e = ë
/
ωn

2bc;

Ω = ω/ωn; τ = ωnt; (12)

where τ is dimensionless time and bc is the nominal size of
displacement.
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Substituting Eq. (12) into Eq. (11), we obtain the following:

¨̄Xsqi = rc1
Mcrbc2ωn

2bc
(TD − TL2)

− rc1rbs cosα
Mcrbc2ωn

2

N∑
i=1

Ksqi(τ)f(X̄sqi, b̄sqi)

− rc1rbs cosα
Mcrbc2ωn

N∑
i=1

Csqi
˙̄Xsqi

− 1
Mqiωn

Csqi
˙̄Xsqi

− 1
Mqiωn

2Ksqi(τ)f(X̄sqi, b̄sqi)

+ 1
Mqiωn

Cpiqi
˙̄Xpiqi + 1

Mqiωn
2

·Kpiqi(τ)f(X̄piqi, b̄piqi) − ¨̄esqi(τ)

¨̄Xpiqi = 1
Mqiωn

Csqi
˙̄Xsqi + 1

Mqiωn
2Ksqi(τ)

· f(X̄sqi, b̄sqi) − 1
Mqiωn

Cpiqi
˙̄Xpiqi

− 1
Mqiωn

2Kpiqi(τ)f(X̄piqi, b̄piqi)

− 1
Mpiωn

2Kpiqi(τ)f(X̄piqi, b̄piqi)

− 1
Mpiωn

Cpiqi
˙̄Xpiqi + TL1

Mpirbpiωn
2bc

− ¨̄epiqi(τ)

; (13)

where Ksqi(τ),Kpiqi(τ), ēsqi(τ), ēpiqi(τ) can be represented
by{

Ksqi(τ) = Kmsqi +Kasqi sin(Ωτ + ϕsqi)
Kpiqi(τ) = Kmpiqi +Kapiqi sin(Ωτ + ϕpiqi)

; (14)

{
ēsqi(τ) =

Esqi

bc
sin(Ωτ + φsqi)

ēpiqi(τ) =
Epiqi

bc
sin(Ωτ + φpiqi)

. (15)

3. THE STEADY-STATE RESPONSE OF THE
SYSTEM

In order to investigate the vibration characteristics of the
planetary gear processing device, this paper uses a set of ba-
sic parameters: m = 3.0 mm, α = 20◦, Esqi = Epiqi =
10 µm, ϕsqi = ϕpiqi = 0, φsqi = φpiqi = 0, zs = 40,
zqi = 30, zpi = 40, N = 3, bc = 10 µm, B = 15 mm,
bsqi = bpiqi = 50 µm, Kmsqi = 0.8256 GN/m, Kmpiqi =
1.06 GN/m, Kasqi = Kapiqi = 0.2 GN/m, TD = 1100 Nm,
TL1 = 100 Nm, and TL2 = 1000 Nm.

This paper uses a numerical integration algorithm to solve
the nonlinear Eq. (13) with the four order Runge-Kutta
method, and investigates the steady-state responses of the plan-
etary gear system. The bifurcation diagram of the system with
the non-dimensional speed is shown in Fig. 4.

Figure 4 shows that the system is stable excepting the critical
speed Ω = 0.75 to 2.3, and the region is also called the chaotic
region. Simultaneously, when the non-dimensional speed is at
Ω = 0.75 to 2.3, the non-dimensional displacement X̄spi has
a magnitude of nearly 2 to 4.

Figure 5 shows that the bifurcation diagram of the vibra-
tion system changes with the dimensionless speed Ω when the
damping ratios are at ξ1 = ξ2 = 0.1. The bifurcation diagram
is different from the diagram in Fig. 4. The amplitude range of
the non-dimensional displacement shows a sharp decline com-
pared to the system in Fig. 5. In addition, the vibration system
only passes through a short chaotic region with the speed Ω
form 1 to 2, and the displacement amplitudes in Fig. 4 change

Figure 4. Bifurcation diagram of the system with non-dimensional planetary
speed Ω (ξ1 = ξ2 = 0.05).

Figure 5. Bifurcation diagram of the system with non-dimensional planetary
speed Ω (ξ1 = ξ2 = 0.1).

more than those in Fig. 5. Simultaneously, the vibration state
is in the stage of aperiodic motion. So, this paper pays more
attention to the vibration with ξ1 = ξ2 = 0.05.

Figure 6 shows that the vibration of the system is a harmonic
response by the excitation for Ω = 0.2. The time histories are
sinusoidal waves, and the phase plot shows an ellipse. Whats
more, the Poincar map is a single scatter, and the Fourier spec-
tra shows that the frequency occurs at Ω. The results indicates
that the system is stable.

Figure 7 shows that the vibration of the system is a non-
harmonic response by the excitation for Ω = 0.4. The time
histories are nearly single periodic motions, which consist of
different sinusoidal waves, but the phase plot does not show
an ellipse. The Poincar map has many scatters that are close
to each other. The Fourier spectra shows that the frequency
occurs at kΩ (k is a positive integer). The results indicate that
the system response is a super-harmonic response.

Figure 8 indicates that the vibration of the system is a 2T-
periodic harmonic response by the excitation for Ω = 0.56.
The time histories are nearly two periodic motions, which con-
sist of sinusoidal waves, and the phase plot shows two ellipses.
The Poincar map has two scatters that are not close to each
other. The Fourier spectra shows that the frequency occurs at .
The results indicate that the system response is stable.

Figure 9 shows that the system creates a 4T-periodic har-
monic response by the excitation for Ω = 0.72. The time his-
tories are nearly four periodic motions which consist of sinu-
soidal waves, and the phase plot shows four quasi ellipses. The
Poincar map has four scatters that are not close to each other.
The Fourier spectra shows that the frequency occurs at Ω. The
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Figure 6. Harmonic response (Ω = 0.2). (a) Time histories; (b) Poincaré
map; (c) Phase plant plot; (d) Fourier spectrum.

results indicate that the system response is still stable.

Figure 10 shows that the vibration of the system is a quasi-
periodic response by the excitation for Ω = 0.74. The time
histories are quasi-periodic motions which consist of different
kinds of sinusoidal waves, and the phase plot consists of many
analogical ellipses. The Poincar map has many scatters, which
form the instability attractor. The results indicate that the sys-
tem response is in a critical state, and the results reveal that the
device is easy to work in the next state.

Figure 11 shows that the system creates the chaotic responce
by the excitation for Ω = 1.5. The time histories are not pe-
riodic motions which consist of different kinds of waves, and
the phase plot consists of many different ellipses or spiral lines.
The Poincar map has many scatters, which form the instabil-
ity attractor and irregular shape. The results indicate that the
system response is not stable, and the device is easily dam-

Figure 7. Non-harmonic response (Ω = 0.4). (a) Time histories; (b) Poincaré
map; (c) Phase plant plot; (d) Fourier spectrum.

aged. That is to say, the planetary gear processing device will
be damaged in the form of fatigue.

Figure 12 shows that the vibration of the system returns to
the harmonic response by the excitation for Ω = 3. The time
histories are still periodic motions which consist of sinusoidal
waves, and the phase plot consists of only one ellipse. The
Poincar map has many scatters, which are close to each other.
The results illstrate that the system response is stable, and the
planetary gear processing device will vibrate in the form of
harmonic motion.

4. CONCLUSIONS

This paper analyszed the planetary gear processing device
and established the nonlinear dynamic model. This vibration
model considered errors of transmission, time varying meshing
stiffness, and gear backlashes. Then, the solution of the dimen-
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Figure 8. The 2T-periodic harmonic response (Ω = 0.56). (a) Time histories;
(b) Poincaré map; (c) Phase plant plot; (d) Fourier spectrum.

sionless equations of the system was carried out by using the
method of numerical integration. By comparison to Poincar
maps and bifurcation diagrams, the vibration properties of the
planetary gear system were investigated, and the following re-
sults were found:

1. The planetary gear train system with translational motion
has abundant bifurcation characteristics because of the
complex inflluences of many nonlinear factors. The re-
sults reveal that the motion state of the system will change
into chaos in the way of crisis as the dimensionless speed
increases.

2. The system will be in the chaotic state when the di-
mensionless speed is increased to a certain value range.
Therefore, the system should avoid these critical regions
for reducing fatigue-failure of the processing device.

Figure 9. The 4T-periodic harmonic response (Ω = 0.72). (a) Time histories;
(b) Poincaré map; (c) Phase plant plot; (d) Fourier spectrum.

3. The time histories, phase plane plots, Poincar maps, and
Fourier spectras prove the planetary gear train system has
a harmonic response, a 2T-period harmonic response, a
4T-period harmonic response, a quasi-harmonic response,
and a chaotic response, but the chaotic state is not stable
and should be avoided.

4. The damping ratio can influence the vibration amplitudes
greatly, and it should be increased when the processing
device is designed. Also, the damping ratio can easily
influence the bifurcation characteristics.
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Figure 10. The quasi periodic response (Ω = 0.74). (a) Time histories; (b)
Poincaré map; (c) Phase plant plot; (d) Fourier spectrum.
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