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A novel dynamic feature extraction algorithm is proposed to help improve speech recognition robustness in noise
environmental conditions. Owing to the modulation spectrum having time-frequency agglomeration performance,
according to different reflections in the modulation spectrum for interference and speech signals, we first calculate
the Multiple Signal Classification (MUSIC) spectrum and then get the modulation spectrum. We then filter the
modulation spectrum signal. For the filter signal, use a 32 frames signal is used as a processing unit to get the
modulation spectrum energy vector. This reveals the close correlation between the speech signal frames and
can well reflect speech dynamic characteristics. Finally, the cepstrum coefficients are extracted as the feature
parameter. It not only adequately reflects speech dynamic characteristics, but also has lower sensitivity for the
speech environment. The effectiveness of the feature is discussed in view of the class separability and speaker
variability properties. We evaluated the feature under different kinds of noise (white noise, pink noise, street noise,
and panzer noise) and different signal-to-noise ratios (-5 dB, 0 dB, 5 dB, 10 dB, and 15 dB). The experimental
results show that the novel feature has good robustness and computational efficiency under low signal-to-noise
ratios and plays a very good foreshadowing role in latter speech research.

NOMENCLATURE

MFCC: Mel Frequency Cepstral Coefficient
MUSIC: Modulation Spectrum; Multiple Signal

Classification
LPC: Linear Prediction Coefficients
LSP: Linear Spectrum Pair
FFT: Fast Fourier Transform
LDA: Linear Discriminant Analysis
DM: Determinant Measure
HMM: Hidden Markov Model
BPNN: Back-Propagation Neural Networks
SNR: Signal-to-Noise Ratio

1. INTRODUCTION

Research on the robustness of speech recognition was still a
challenging task, especially in the development of core speech
processing algorithms. One example was feature extraction
from speech signals. Namely, extracting features that could
reflect speech characteristics from the speech waveforms. It
not only could reduce the number of calculations and stor-
age, but could also filter out useless and redundant informa-
tion and was one of the most fundamental and important as-
pects of speech recognition. Some time domain features, such
as amplitude feature, short-time frame average energy, short-
time frame zero crossing rate, short-time autocorrelation coef-
ficient, et cetera appeared. With the development of recogni-
tion technology, we found that the stability and separating ca-
pacity for the time domain features were not good, so we began

using the frequency domain feature as a speech feature, such as
pitch period, formant frequency, linear prediction coefficients
(LPC), linear spectrum pair (LSP), cepstrum coefficient, and
so on. Among them, the MFCC, which was based on the audi-
tory model, was a widely-applied feature at present. However,
once these features were used in the noise environment, their
performance droped sharply.1–4

The features mentioned above reflect the static feature of
speech signal, while a dynamic feature was part of speech di-
versity, which was different from a stationary random process.
It had time correlation, and revealed the close relationship be-
tween speech signal (pre and post). We could get the dynamic
feature by differential parameters and acceleration parameters
for the static feature. However, differential parameters and ac-
celeration parameters could not fully dig out dynamic infor-
mation. Therefore, studying the dynamic feature of the speech
signal was an inevitable trend to improve the performance of
speech recognition.

Estimating the time-varying spectrum was a key first step
in the speech feature extraction.5–10 MFCC was computed
by applying a Mel-scaled filter bank either to the short-time
Fast Fourier Transform (FFT) magnitude spectrum or to the
short-term LPC-based spectrum. However, both FFT and LPC-
based spectrum were very sensitive to noise contamination.
Eigenvector-based methods, such as MUSIC, were popular in
sinusoidal frequency estimation due to their high resolution
and less prior information. Moreover, MUSIC algorithm had
well noise restraining ability. We adopted the MUSIC spec-
trum instead of the traditional method.
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Owing to the modulation spectrum having time-frequency
agglomeration performance, it not only adequately reflected
speech dynamic characteristics, but also had lower sensitivity
for the speech environment. In the modulation spectrum, the
interference component produced by additive noise and chan-
nel distortion eased to separate from speech signal. Which is
why we used modulation spectrum technology in this study to
extract feature, which will be better.

2. ALGORITHM DESCRIPTION

2.1. MUSIC Algorithm
According to matrix theory, linear space v1,v2 . . .vN ,

could decompose into a direct sum of two subspaces V1 and
V2, that is:11–13

V1 = [v1,v2, . . .vp] ; (1)

V2 = [vp+1,vp+2, . . .vN ] ; (2)

then:
V = [V1 V2] . (3)

For the signal consisting of p sinusoidal components,
the complex amplitudes and frequencies were gk, ωk, k =

1, 2, . . . p respectively, then the signal could be expressed as:

X = Sg + W; (4)

where W was white noise with a zero mean and a variance
σ2, XT = [X1,X2, . . .XN ], S = [e(ω1), e(ω2), . . . e(ωp)],
eT (ωk) =

[
1, ejωk , . . . ej(N−1)ωk

]
, gT = [g1, g2, . . . gp],

WT = [w1, w2, . . . wN ].
The autocorrelation matrix for signal Xn, n = 1, 2, . . . N

can be shown as:

RXX = E
[
XXH

]
= SGSH + σ2I; (5)

where G was the autocorrelation matrix with p sinusoidal com-
ponents.

According to the matrix theory, eigenvalue decomposition
for Eq. (5) was:

RXX = VΛVH =

N∑
i=1

λiviv
H
i ; (6)

where V = [v1,v2, . . .vN ], Λ = diag [λ1, λ2, . . . λN ].
MUSIC algorithm was a noise subspace frequency estima-

tor; the weighted spectrum estimation is as follows:

P (ω) =

N∑
i=p+1

uk
∣∣eH(ω)vi

∣∣2 ; (7)

where vi, i = p + 1, p + 2, . . . N was the eigenvector cor-
responding to noise subspace and uk was a group of posi-
tive weights, eH =

[
1, ejω, . . . ej(N−1)ω

]
. Notice here, when

ω = ωi, P (ωi) = 0, i = 1, 2, . . . p, the reciprocal of P (ω)
was the peak function in the frequency domain. This provided

a method for sinusoidal component frequency estimation. So
the power spectrum function was as follows:

PMUSIC(ω) =
1

N∑
i=p+1

|eH(ω)vi|2
. (8)

According to the process of the MUSIC algorithm, we
could see that the mathematical principle of this algorithm was
through singular value decomposition for the signal autocor-
relation matrix. The signal eigenspace was decomposed into
signal subspace relative to the signal component and noise sub-
space orthogonal to the signal component, and then estimated
signal frequencies using the orthogonality of the two spaces.
So, in theory, this method had the advantages that FFT could
not substitute. Therefore, it was called the super-resolution
frequency estimation algorithm.

2.2. Modulation Spectrum Principle

The definition of speech modulation spectrum is as follows:

M(ω, η) =

1

2π

∞∫
−∞

∞∫
−∞

x(t+
τ

2
)x∗(t− τ

2
)e−jωτe−jητdτdt =

X∗(ω − η

2
)X(ω +

η

2
); (9)

where τ is delay time, ω and η are speech frequency and mod-
ulation spectrum respectively.
M(ω, η) could be considered as the two dimensional trans-

form of the autocorrelation function x(t) or as the autocorre-
lation function for X(ω). However, there was also some un-
wanted coherent term. So we had to smooth process on the
modulation spectrum M(ω, η) via short window. We usually
choose a Hamming window as the window function. After
smoothing, the modulation spectrum is as follows:

Msp(ω, η) =MW (ω, η) ∗Mx(ω, η); (10)

whereMW (ω, η) is the modulation spectrum for window func-
tion W (t).

Figure 1 and Fig. 2 show the improvements of clean speech
recognition rate and noise speech recognition rate on different
modulation spectrum frequency bands respectively.14–16

The figures, from the first section to the thirteenth section
express the frequency in the range of 0–0.5 Hz, 0.5–1 Hz, 1–
1.4 Hz, 1.4–2 Hz, 2–2.8 Hz, 2.8–4 Hz, 4–5.7 Hz, 5.7–8 Hz, 8–
11.3 Hz, 11.3–16 Hz, 16–22.6 Hz, 22.6–32 Hz, and 32–40 Hz
respectively.

From Figs. 1 and 2, we can see that almost all the useful
features for speech recognition were concentrated on 1–13 Hz.
Among them, the characteristics around 4 Hz were the most
important. We could also see that all of the modulation com-
ponents were useful in a clean speech environment, but in a
noise speech environment, the modulation components under
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Figure 1. The improvement of recognition accuracy by including the modula-
tion frequency for clean speech.

Figure 2. The improvement of recognition accuracy by including the modula-
tion frequency for noise speech.

0.5 Hz and over 16 Hz did not affect the recognition rate; if we
had used them, the recognition rate would have decreased.

According to the characteristics of the modulation spectrum,
we designed a band-pass filter to suppress interfering compo-
nents with passband of 1–13 Hz. The transfer function was as
follows:

H(z) = 0.1z4
2 + z−1 + z−3 − 2z−4

1− 0.98z−1
. (11)

The frequency response is shown in Fig. 3.

3. DF-MMS FEATURE EXTRACTION

The new feature was called DF-MMS. Figure 4 shows a
schematic diagram of the DF-MMS.

We assumed that x(n) denoted an input speech signal the
proposed DF-MMS algorithm could be summarized as fol-
lows:

Step 1: Speech signal x(n) underwent a series of prepro-
cessing, which included preemphasis, frame, window intercep-
tion and endpoint detection.

Figure 3. The frequency response for filter.

Figure 4. A schematic diagram of the DF-MMS.

Step 2: Calculated the MUSIC spectrum using Eq. (8).

PMUSIC(ω) =
1

N∑
i=p+1

|eH(ω)vi|2
. (12)

Step 3: Let speech MUSIC spectrum at the time t be
PMUSIC(t, ω), then the modulation spectrum will be:

Msp(ω, η) =

∫
PMUSIC(t, ω)W (t)e−jηtdt. (13)

The filter of Eq. (11) was then used to suppress interfering
components for the modulation spectrum and get the signal
spectrum F (ω, η).

Step 4: For the molulation spectrum filtering signal F (ω, η),
32 frames signal was used as a processing unit to get a F ×
32 matrix. The sum of squares of the same row data were
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then calculated. We could get a vector, that is, the modulation
spectrum energy vector t(i), 0 ≤ i ≤ F , F was frame size.

Step 5: Calculated the Log for the front F/2 + 1 features.

u(i) = log(t(i)), i = 0, 1, . . . F/2. (14)

Step 6: Took the DCT.

c[n] = cos[n · (i+ 0.5) · π

F/2 + 1
] ∗ u(i); (15)

where i = 0, 1, . . . F/2, 1 ≤ n ≤ L; L was the desired order
of DF-MMS.

4. EXPERIMENT AND RESULT ANALYSIS

4.1. Class Separability and Interspeaker
Variability

The effectiveness of a feature extraction scheme depended
mainly on how well separated the different speech classes and
suppress speaker dependent information were. We described a
measure based on the linear discriminant analysis (LDA) tech-
nique in order to analyze class separability and interspeaker
variability .

4.1.1. Class separability analysis

Class separability could be measured by using Fishers
LDA.17 The class mean mc and global mean m were com-
puted as:

mc =
1

Nc

Nc∑
i=1

xc,i; (16)

m =
1

N

C∑
c=1

Nc∑
i=1

xc,i; (17)

where xc,i, c = 1, 2, . . . C, i = 1, 2, . . . Nc wasD dimensional
feature vectors for speech class c. N =

∑C
c=1 stood for the

total sample numbers.
The within-class scatter matrices SW and the between-class

scatter matrices SB were computed as:

SW =
1

N

C∑
c=1

Nc∑
i=1

(xc,i −mc)(xc,i −mc)
Txc,i; (18)

SB =
1

N

C∑
c=1

Nc(mc −m)(mc −m)T . (19)

We considered a linear projection of the feature vectors onto
a d dimensional subspace, where d � D. The projection
matrix A was chosen so that the projected feature vectors be-
longed to one class. This was achieved by computing a projec-
tion that maximized the objective function of the ratio between
the within-class variance and the between-class variance in the
projected space:

A = argmax
L

∣∣LSBLT
∣∣

|LSWLT |
. (20)

The columns of A were the eigenvectors corresponding to the
largest eigenvalues of S−1W SB . The optimum value of objective
function was the product of the d largest eigenvalues. We used
the logarithm of product as the Determinant Measure (DM):

DM = log

(
d∏
i=1

λi

)
. (21)

We used the Hidden Markov Model (HMM) stated as the
speech classes. For all the features, we generated D =

96 dimensional feature vectors by splicing eight consecutive
frames. These feature vectors were then projected onto a
d = 30-dimensional subspace using LDA. The DM values for
DF-MMS and differential parameter for MFCC were −70.42
and −83.06 respectively. The results indicated that DF-MMS
achieved the best class separability among all schemes consid-
ered.

4.1.2. Interspeaker variability analysis

We used a simple modification of the LDA method to evalu-
ate the robustness of speaker variability.17 The following equa-
tion was used to define the mean of class c for speaker s:

mc,s =
1

Nc,s

Nc,s∑
i=1

xc,s,i; (22)

where xc,s,i, c = 1, 2, . . . C, s = 1, 2, . . . S, i = 1, 2, . . . Nc,s
was D dimensional feature vector for speech class c and
speaker s. Let Mc denote the total number of speakers that
had samples in class c, Nc,s 6= 0. For the large databases,
all the speakers had samples from all classes. Hence, Mc will
equal to S. We can now compute the class means as:

mc =
1

Mc

∑
s

mc,s. (23)

The global mean for the entire database was computed as:

m =
1

M

C∑
c=1

Mcmc; (24)

where M was the total number of such means.

The between-class SB and the within-class SW scatter ma-
trices were computed as:

SW =
1

M

C∑
c=1

∑
s

(mc,s −m)(mc,s −m)T ; (25)

SB =
1

M

C∑
c=1

Mc(mc −m)(mc −m)T . (26)

Using the above expressions for SB and SW , the DM val-
ues for DF-MMS and differential parameter for MFCC were
−63.85 and −80.94 respectively. The results indicated that
DF-MMS had the largest DM.
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4.2. Recognition Efficiency
Some experiments were conducted to evaluate the proposed

feature for speech recognition system performance. They
could be considered in two aspects: recognition rate and com-
putational consideration. The recognition rate was evaluated
under different noises (white noise, pink noise, street noise,
and panzer noise) and different SNR (-5 dB, 0 dB, 5 dB, 10 dB,
and 15 dB). The data was recorded at 11.025 kHz sampling rate
and coded into 256 sampling points with a frame shift of 80
sampling points, where each frame was represented by a 13 di-
mension vector. We used improved Back-Propagation Neural
Networks (BPNN) as the classifier and binary coding output to
improve the real-time performance.18

The noisy speech data was derived by adding noisy data into
the clean speech signal. Because the noise could be divided
into additive noise and multiplicative noise, the multiplicative
noise could be transformed to additive noise through homo-
morphic transform. Therefore, discussing additive noise had
representative. In this paper, we used global SNR as follows:

SNR = 10 log

N−1∑
k=0

s2(k)

N−1∑
k=0

n2(k)

; (27)

where s(k) was the clean speech signal through the endpoint
detector, and was n(k) was the noisy speech signal.

Figures 5(a)–(d) show the recognition performance curves
of using DF-MMS and differential parameter for MFCC under
white noise, pink noise, street noise, and panzer noise respec-
tively.

From Figs. 5(a)–(d), we can see that the feature DF-MMS
improved the recognition rate and robust performance com-
pared with a differential parameter for MFCC under low SNR.
This was because we used MUSIC spectrum and the modula-
tion spectrum. In particular, the use of the modulation spec-
trum not only reflected speech dynamic characteristics, but
also had lower sensitivity for the speech environment. And
we used a 32 frames signal as a processing unit to get the mod-
ulation spectrum energy vector, which revealed the close cor-
relation between the speech signal frames could well reflect
speech dynamic characteristics.

5. CONCLUSIONS

In this paper, we proposed a robust speech feature extraction
method based on MUSIC and the modulation spectrum. The
results show that significant advances have been achieved in
this area. Although feature DF-MMS can be seen to be modest
increase over the differential parameter for MFCC, it compen-
sates for the loss in the search and its kernel algorithm has been
used in the voice controlled system of a company.
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