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This paper studies the parameter identification of a flexible hub-beam system based on the input-output data.
Firstly, the first-order approximation coupling (FOAC) model is presented. Then, active position control for the
system is studied using optimal tracking control theory. Finally, the observer/Kalman filter identification (OKID)
and eigensystem realization algorithm (ERA) method are applied to identify the frequency of the system. In
the simulations, the effectiveness of the identification method presented in this paper is verified by comparing
the identification results of several different external excitations. Simulation results indicate that the anticipated
position of the system may be traced by the proposed controller, and the residual vibration of the beam may be
suppressed as well. The frequency of the system can be effectively identified using OKID and ERA. It is feasible
and effective to identify the frequency using the control data.

1. INTRODUCTION

Spacecraft is composed of a central body and several flexi-
ble attachments. It is a typical rigid-flexible dynamic system
with characteristics of dense frequencies and small damping.
System assembly on the ground (1G gravity environment) is
very difficult in many circumstances because of the flexibility
of the structures; it is even more difficult to do vibration exper-
iments on structures due to factors such as air damping, gravity
effect, etc. Moreover, in some cases, the experimental appara-
tus may not be able to meet the experimental requirement of
tests on the ground. On the other hand, flexible parameters of
spacecraft, especially the natural frequencies of flexible solar
array, may have great effect on the control of the spacecraft’s
attitude, since the flexible parameters will be used in control
design. Due to the difference between ground and space envi-
ronments, vibration behaviour of the solar array in two envi-
ronments is different, too. So, the flexible parameters obtained
by experiments on the ground cannot reflect the actual state of
spacecraft in outer space. Therefore, it is necessary to study
the on-orbit identification technology for the spacecraft to im-
prove the accuracy in identifying flexible parameters. Since
the flexible parameters obtained by the on-orbit identification
are based on the real vibration of a spacecraft in outer space, it
is more likely that these parameters are of high accuracy, and
then control design based on these parameters can ensure high
accuracy of attitude control. Furthermore, a system dynamic
model may be modified by comparing the on-orbit test with
the ground test so as to establish the quantitative relationships
among the on-orbit test, the ground test, and the dynamic sim-
ulation. This will be helpful for the follow-up development of
the spacecraft. The on-orbit identification needs the vibration
response of spacecraft under certain excitation, which could be
provided by the attitude manoeuvre, which means the realiza-

tion of on-orbit identification is possible.

On-orbit parameter identification is conducted by directly
using the input and output data, with no need of the exact
dynamic model of the system. Generally speaking, the pa-
rameter identification methods can be divided into frequency
domain methods and time domain methods, and the time do-
main method has better performance than the frequency do-
main method. Theoretical studies and engineering applica-
tions of the on-orbit identification technique have been com-
pleted in past research. For example, Haugse, et al.1 de-
veloped an accelerometer measurement system to gather data
from an operational, on-orbit, and deployed space vehicle, and
Fast Fourier Transform (FFT), Power Spectral Density (PSD)
and Eigensystem Realization Algorithm (ERA) are employed
for system modal identification. Kim, et al.2 presented a
data processing strategy to generate equivalent free-decay re-
sponses from structural response data and used a free-decay
time-domain modal identification technique for modal identifi-
cation of Space Station Freedom. Tokio Kasai, et al.3 used the
extended Kalman filter (EKF) technique to extract the modal
parameters of a satellite with flexible solar panels. On the
Engineering Test Satellite VI, impulse and random excitation
were applied to the central body, and the measurement data
were packed and downloaded via S-band digital serial teleme-
try for the off-line analysis by the ERA method. The identified
modal parameters were then used in the synthesis of control
law.4–8

On the International Space Station (ISS), the shuttle booster
ignition pulse was used as an excitation to finish an on-orbit
modal parameter identification test five times. The dynamic re-
sponses of the Shuttle-ISS mated structure were measured by
the Shuttle payload bay video camera photogrammetric sys-
tem, the Internal Wireless Instrumentation System (IWIS) ac-
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Figure 1. Structural model of the flexible hub-beam system.

celerometers, and the IWIS strain gauges. The measured data
were processed and analysed based on the ERA to identify
the structural modal parameters, including frequencies, damp-
ing, and mode shapes.9, 10 On the Mir Space Station, the ex-
ternal excitations used in on-orbit modal experiment included
Shuttle and Mir thruster firings, Shuttle-Mir and Progress-
Mir dockings crew exercise and push offs, and ambient noise
during night-to-day and day-to-night orbital transitions. The
data from the Mir Auxiliary Sensor Unit (MASU), which con-
tains a total of 19 accelerometers, were used for modal iden-
tification by a time-domain free-decay method based on the
ERA.11–14 It can be concluded from above that some practical
work on spacecraft parameter identification has been done re-
cently. However all the tests above are specially designed for
parameter identification, which is separated from other space
missions. Every space mission is extremely expensive, as is
well known. We are then inspired to consider the following
question: Can the attitude manoeuvre data of spacecraft be di-
rectly used for parameter identification? We need the dynamic
response of spacecraft, which could be exactly provided by the
attitude manoeuvre of spacecraft, to realize the on-orbit iden-
tification. If possible, it is unnecessary to carry out solely on-
orbit identification, saving costs on space missions. And it may
also provide new methods for parameter identification in other
fields.

In this paper, a frequency identification technique is inves-
tigated using a flexible hub-beam system as the object of the
research, and the feasibility of identification using control data
of the system is verified. The hub-beam system is a typical
rigid-flexible coupling dynamic system. This system is ap-
plied to many engineering objects in practice, such as space-
craft, robots, turbine blades, etc. Today there are many stud-
ies on modelling and active control of the flexible hub-beam
system. This paper is organized as follows: Section 2 briefly
presents the first-order approximation coupling (FOAC) model
for a flexible hub-beam system. Active controller design using
optimal trajectory theory is presented in Section 3. Section 4
presents the OKID and ERA methods for the parameter iden-
tification. The numerical simulation results are shown in Sec-
tion 5, and finally, Section 6 generalizes the conclusions of the
research.

2. THE FIRST-ORDER APPROXIMATION
COUPLING MODEL

A hub-beam rotating in the horizontal plane is considered
here, as shown in Fig. 1, where the hub is a rigid body and
the beam is flexible. The coordinate system o0 − x0y0 is an
inertial frame, while the coordinate system o − xy is fixed to
the end of the beam, and this beam is fixed to the hub. The
effect of gravity on the hub and the beam is neglected. The
flexible beam is characterized by its length L, Young’s modu-
lus E, cross-sectional area moment of inertia I , mass density
per unit volume ρ, and cross-sectional area A. The radius of
the hub is rA, u is an external rotating torque acting on the hub,
and θ describes the angular rotation of the hub. In the past few
decades, researchers have proposed various dynamic models
for the flexible hub-beam system, among which the zero-order
approximation coupling (ZOAC) model and the first-order ap-
proximation coupling (FOAC) model are the most famous. The
ZOAC model assumes the deformation in structural dynamics
is small where axial and transverse displacements at any point
in the beam are uncoupled; it may result in divergence to the
system dynamic problem with high rotational speed, and it is
only capable of solving cases with low rotational speed. In
the FOAC model, the second-order coupling term of axial dis-
placement caused by the transverse displacement of the flexi-
ble beam is considered, so the FOAC model is capable of both
cases with low or high rotational speed. Cai, et al. conducted
thorough studies on these two models. Details can be found
in their research referenced in this study.15–18 In this paper,
the FOAC model is adopted to describe the flexible hub-beam
system, and is given below.

In many of the sources referenced here,15, 16, 18 the FOAC
model of the hub-beam system is analysed in detail using
the Hamilton’s theory and the assumed-mode discretization
method. It is expressed as

MŸ + (2θ̇G + Ct)Ẏ + KY = Q + F; (1)

where

Y =

 θq1

q2

 , M =

JH+Mθθ Mθq1 Mθq2

Mq1θ Mq1q1 0

Mq2θ 0 Mq2q2

 ,
G =

0 0 0

0 0 Gq1q2

0 Gq2q1 0

 , Q =

QθQq1

0

 , F =

u0
0

 ,
K =

0 0 0

0 Kq1q1 0

0 0 Kq2q2

 , Ct =

CH 0 0

0 α1M1 0

0 0 α2M2

+

β1
ρA

Mθθ Mθq1 Mθq2

Mq1θ Mq1q1 0

Mq2θ 0 Mq2q2

+
β2θ̇ sgn(θ̇)

ρA

C12 CT
21 CT

31

C21 C22 0

C31 0 C33

 ;

and where q1 and q2 are n × 1 vectors representing modal
coordinates of axial and transverse vibrations of the beam, re-
spectively. The parameter Mθθ is a scalar representing the
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total rotary inertia of the hub-beam system; Mq1q1 = M1

and Mq2q2 = M2, in which M1 and M2 are n × n gener-
alized elastic mass matrices of the beam; Mθq1 = MT

q1θ
and

Mθq2 = MT
q2θ

are 1 × n vectors representing inertia effects
caused by nonlinear coupling between large rotating motion
and elastic deformation; Gq1q2 and Gq2q1 are n × n matrices
resulted from gyroscopic effects; CH is the viscous damping
coefficient of the bearing of hub; α1 and α2 are the damp-
ing coefficients of the beam in axial and transverse directions,
respectively; β1 and β2 are the viscous and square damping
coefficients caused by the windward side of the beam, respec-
tively; C11 is a scalar; C21 and C31 are both n × 1 vectors;
C22 and C33 are both n × n matrices; Kq1q1 and Kq2q2 are
n × n stiffness matrices; Qθ is a scalar; and Qq1 is a n × 1

vector. These quantities are defined as follows:

Mθθ = J1 + qT1 M1q1 + qT2 M2q2 + 2(rAU01 + U11)q1 −
qT2 (rAD0 + D1)q2; (2)

Mq1θ = MT
θq1 = −Rq2; (3)

Mθq2 = MT
q2θ = rAU02 + U12 + qT1 R; (4)

Mq1q1 = M1 =

∫ L

0

ρAΦT
1 Φ1 dx; (5)

Mq2q2 = M2 =

∫ L

0

ρAΦT
2 Φ2 dx; (6)

Gq1q2 = −GT
q2q1 = −R; (7)

Kq1q1 = K1 − θ̇2M1; (8)

Kq2q2 = K2 − θ̇2M2 + θ̇2(rAD0 + D1); (9)

Qθ = −2θ̇
[
(qT1 M1q̇1 + qT2 M2q̇2) + (rAU01 + U11)q̇1 −

qT2 (rAD0 + D1)q̇2

]
; (10)

Qq1 = θ̇2(rAUT
01 + UT

11); (11)

C11 =

∫ L

0

ρA(rA + x)3dx+ qT1

[
rAM1 +∫ L

0

ρAxΦT
1 Φ1dx

]
q1 + qT2

[
rAM2 +

∫ L

0

ρAxΦT
2 Φ2dx

]
q2 +

2
[
r2AU01 + 2rAU11 +

∫ L

0

ρAx2Φ1dx
]
q1 −

qT2

[
r2AD0 + 2rAD1 +

∫ L

0

ρAx2S(x)dx
]
q2; (12)

C21 = −
[
rAR +

∫ L

0

ρAxΦT
1 Φ2dx

]
q2; (13)

C31 = r2AUT
02 + 2rAUT

12 +

∫ L

0

ρAx2ΦT
2 dx+[

rAR +

∫ L

0

ρAxΦT
2 Φ1dx

]
q1; (14)

C22 = rAM1 +

∫ L

0

ρAxΦT
1 Φ1dx; (15)

C33 = rAM2 +

∫ L

0

ρAxΦT
2 Φ2dx; (16)

where K1 and K2 in Eqs. (8) and (9) are n × n generalized
elastic stiffness matrices of the beam. Parameters Φ1(x) and

Φ2(x) in the above equations are 1×n vectors. They represent
mode functions of axial and transverse vibrations of the beam,
respectively, and they assume mode functions of the cantilever
beam. The constant parameters in Eqs. (2)–(11) are given as
follows:

J1 =

∫ L

0

ρA(rA + x)2dx; (17)

K1 =

∫ L

0

EAΦ′T1 Φ′1dx; (18)

K2 =

∫ L

0

EIΦ′′T2 Φ′′2dx; (19)

U0j =

∫ L

0

ρAΦjdx, j = 1, 2; (20)

U1j =

∫ L

0

ρAxΦjdx, j = 1, 2; (21)

D0 =

∫ L

0

ρAS(x)dx; (22)

D1 =

∫ L

0

ρAxS(x)dx; (23)

R =

∫ L

0

ρAΦT
1 Φ2dx; (24)

where J1 is a scalar; U0j and U1j are both 1× n vectors; and
D0, D1, and R are all n × n matrices. The parameter S(x)

in Eqs. (22) and (23) is the coupling shape function, and this
n × n matrix, discussed in sources used here,15, 16, 18 is given
by

S(x) =

∫ x

0

Φ′T2 (ξ)Φ′2(ξ)dξ. (25)

3. ACTIVE CONTROL DESIGN

The FOAC model given above is nonlinear and time-
varying. Control design directly using this model is difficult,
since nonlinear control theory is still under intensive and con-
tinuous development, though nowadays linear control theory
is comprehensive, and linear control design has many practical
applications. Here, we linearise the FOAC model, and use a
linear optimal tracking control method to design a controller
to control the flexible hub-beam system.

3.1. Linearisation of the FOAC Model

The effect of axial vibrations of the flexible beam on system
dynamics is much smaller than that of transverse vibrations,
and can be neglected. In classical linearisation for the flexible
hub-beam system, it is often assumed that the angular velocity
of rotational motion is small, so the related terms and their
higher order terms are neglected.19 Increment of rotary inertia
of the beam caused by its elastic deformation is also small,
which results in the omission of terms related to q1 and q2 in
Eq. (2).19 So, the linearised model of hub-beam system can be
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written as18, 19

[
JH+J1 Mθq2

Mq2θ M2

][
θ̈

q̈2

]
+

[
CH+ β1

ρAJ1
β1

ρAMθq2
β1

ρAMq2θ

(
α2+

β1

ρA

)
M2

][
θ̇

q̇2

]
+[

0 0

0 K2

][
θ

q2

]
=

[
u

0

]
; (26)

where J1, Mθq2 , Mq2θ, M2, and K2 are given by Eqs. (17),
(4), (6) and (19), respectively. In the expressions of Mθq2 and
Mq2θ, the term of qT1 R should be neglected.

In matrix form, Eq. (26) may be written as

M̂ ¨̂Y + Ĉ ˙̂Y + K̂Ŷ = Hu; (27)

where Ŷ =

[
θ

q2

]
, M̂ =

[
JH+JB Mθq2

Mq2θ M2

]
, Ĉ =[

CH+ β1

ρAJ1
β1

ρAMθq2
β1

ρAMq2θ

(
α2+

β1

ρA

)
M2

]
, K̂ =

[
0 0

0 K2

]
, and H =

[
1

0

]
.

In state-space formulation, Eq. (27) becomes

ẋ = Ax + Bu; (28)

where x =

[
Ŷ
˙̂Y

]
, A =

[
0 I2(n+1)×2(n+1)

−M̂−1K̂ −M̂−1Ĉ

]
, and

B =

[
0

M̂−1H

]
.

3.2. Controller Design

The optimal tracking controller is investigated in this sec-
tion. The desired state trajectory of the system is assumed to

be given by xd =
[
ŶT
d ,

˙̂Y
T

d

]T
, where ŶT

d =
[
θd, qT2d

]T
.

The following state error vector is defined as

e = xd − x; (29)

and the performance index is defined as

J =
1

2

∫ ∞
0

(
eTQe +Ru2

)
dt; (30)

where Q is a 2(n+ 1)× 2(n+ 1) weighting matrix, which is
positive definite and symmetric, and R is a positive weighting
scalar. The optimal tracking control law may be obtained as20

u = −R−1BT
Px +R

−1
B
T [

PBR
−1

B
T − A

T ]−1
Qxd;

(31)
where P is the solution of the Riccati equation

PA + A
T
P − PBR

−1
B
T
P = −Q. (32)

In the controller Eq. (31), the first term is a linear function of
state x, representing the regulating role of negative feedback.
The second term is a linear function of the desired state xd,
representing a driving action resulting from xd.

4. PARAMETER IDENTIFICATION OF THE
SYSTEM

In this section, parameter identification technology will be
investigated for the system. The observer/Kalman filter identi-
fication (OKID) and eigensystem realization algorithm (ERA)
will be used in the parameter identification. These two meth-
ods are both time-domain identification techniques and have
successful applications in spacecraft.

4.1. Description for OKID Technique
The OKID is a time-domain identification technique, pro-

posed by Juang, et al.21 Consider the following discrete linear
system {

x(k+1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
; (33)

where x is 2(n + 1)-dimensional state vector; u is the input
torque; and y is q × 1 output vector. The matrices A, B, C,
and D are the system matrix, input matrix, output matrix, and
influence matrix, respectively. From the recursive relations of
Eq. (33), one can obtain the expression of the system output at
kT moment (T denotes the data sampling period) as

y(k) = CAkx(0) +

k−1∑
τ=0

CAτBu(k−τ−1) + Du(k)

= CAkx(0) +

k−1∑
τ=0

Yτu(k−τ−1) + Du(k); (34)

where Yτ = CAτB and D are the system Markov parame-
ters to be identified. If the initial condition of the system is zero
or given, i.e., if x(0) at k = 0 is known, the system Markov
parameters can be determined directly using Eq. (34).21 How-
ever, for a practical engineering structure, the exact value of
initial condition is difficult to determine. Even though the
structure is at an equilibrium state and does not suffer from
any external excitation, the zero initial condition cannot be ex-
actly guaranteed; yet, there are always certain affecting factors
that make it impossible for the initial condition to be zero. Er-
rors may occur inevitably when the system Markov parameters
are identified using Eq. (34) based on the input-output data of
the system. To eliminate the influence of the initial conditions
on the identification of system Markov parameters, we firstly
construct a state observer whose Markov parameter equation is
independent of the initial condition, and by solving this equa-
tion based on the input-output data to get the observer’s pa-
rameters, and then by establishing the relationship of Markov
parameters between the observer and the original system, we
finally work out the Markov parameters of the original system.
The detailed process is described below.

The following state observer is constructed as21
x̂(k+1) = Ax̂(k) + Bu(k)− F

[
y(k)− ŷ(k)

]
= (A + FC)x̂(k) + (B + FD)u(k)− Fy(k)

ŷ(k) = Cx̂(k) + Du(k)

;

(35)
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where F is the weighting matrix of the observer. The eigen-
values of A + FC are adjusted by the selection of F such that
the state x̂(k) of the observer approaches the real state x(k) of
the system. The output of the observer at kT moment can be
written as

ŷ(k) = C(A + FC)kx̂(0) +

k−1∑
τ=0

Ŷτ

[
uT (k−τ−1) yT (k−τ−1)

]T
+ Du(k); (36)

where Ŷτ and D are the observer Markov parameters; Ŷτ is
expressed as

Ŷτ =
[
C(A + FC)τ (B + FD) −C(A + FC)τF

]
=
[
Ŷ

(1)
τ Ŷ

(2)
τ

]
; (37)

where Ŷ
(1)
τ = C(A+FC)τ (B+FD) and Ŷ

(2)
τ = −C(A+

FC)τF.
By selecting F to make the pole of A + FC on the origin,

the eigenvalue equation of A + FC will be (λ − λi)
2(n+1);

where λi is the i-th eigenvalue. Then by the Hamilton-Cayley
theorem, we have (A + FC)2(n+1) = 0. From Eqs. (33) and
(34) and by some derivation, the state error equation can be
written as

x(k+1)− x̂(k+1) = (A + FC)[x(k)− x̂(k)]. (38)

By the recurrence of the state error equation, when k ≥ n, we
have

x(k+1)− x̂(k+1) = (A + FC)[x(k)− x̂(k)]

= (A + FC)2[x(k−1)− x̂(k−1)]

...

= (A + FC)2(n+1)[x(k−2n−1)− x̂(k−2n−1)]

= 0. (39)

From Eq. (39), when k ≥ 2(n + 1), the state x̂(k) of the
observer will converge to the real state x(k), i.e., x(k) = x̂(k)

(k ≥ 2(n + 1)). So, from the second equation of Eq. (35),
the output ŷ(k) of the observer will converge to the real output
y(k) when k ≥ 2(n + 1), i.e., y(k) = ŷ(k) (k ≥ 2(n + 1)).
From Eq. (37), we know that Ŷτ = 0 when τ ≥ 2(n + 1).
Therefore, when k ≥ 2(n+ 1), Eq. (36) can be written as

y(k) =

2n+1∑
τ=0

Ŷτ

[
u(k−τ−1) yT (k−τ−1)

]T
+ Du(k),

k ≥ 2(n+ 1). (40)

Equation (40) holds strictly and is independent of the ini-
tial condition of the system. But Eq. (36) is subject to the
initial condition. Using the least squares to solve Eq. (40),
the Markov parameters Ŷτ and D of the observer can be ob-
tained.21 The relationship of Markov parameters between the
original system and the observer is21, 22

Yτ = CAτB = Ŷ(1)
τ +

τ−1∑
k=0

Ŷ
(2)
k Ŷτ−k−1 + Ŷ(2)

τ D. (41)

Based on the input-output data of the system, Markov pa-
rameters of the observer can be obtained from Eq. (40), and
Markov parameters of the original system can be obtained
from Eq. (41). The minimal state-space realization of the sys-
tem can be determined by using the eigensystem realization
algorithm (ERA) given in the following Section 4.2. From the
above process, we can observe that the specific value of F is
not needed in the entire calculation for Markov parameters.

4.2. Eigensystem Realization Algorithm
(ERA)

The ERA is a well-established algorithm for parameter
identification in time domain. It utilizes impulse response
data of the system to seek the minimal state-space realization
(Ar,Br,Cr,Dr) by the singular value decomposition of the
Hankel block matrix.

The (s + 1) × (t + 1) Hankel block matrix is constructed
as23, 24

H(τ) =


Yτ Yτ+1 · · · Yτ+t

Yτ+1 Yτ+2 · · · Yτ+1+t
...

...
. . .

...
Yτ+s Yτ+s+1 · · · Yτ+s+t

 . (42)

The matrix H(τ) can be written as the following form:

H(τ) = VsA
τWt; (43)

where Vs =
[
CT (CA)T (CA2)T . . . (CAs)T

]T
, Wt =[

B AB A2B . . . AtB
]

are the controllable and observable
matrices of the system, respectively. It is well known that for
the system with the order 2(n+ 1), the minimal dimension of
the system matrix is 2(n+1)× 2(n+1). If s+1 ≥ 2(n+1),
t+1 ≥ 2(n+1), and the system is controllable and observable,
the rank of Vs and Wt will be both n; therefore, the rank of
the Hankel block matrix H(τ) will be 2(n+1). By performing
the singular value decomposition of H(0), we have

H(0) = UNVT ; (44)

where U and V are both unitary matrix, and N is the eigen-
value diagonal matrix, given by

N = diag(d1, d2, . . . , dr, dr+1, . . .),

d1 ≥ d2 ≥ . . . ≥ dr ≥ dr+1 ≥ . . . ≥ 0. (45)

Assuming that the order of minimal realization of the system
is r, r can be determined using the following singular value
truncation threshold ε:

dr
d1

≥ ε,
dr+1

d1
≤ ε. (46)

Let Ur be the first r columns of U, let Vr be the first r
columns of V, and let Nr = diag(d1, d2, . . . , dr). Now define
the following matrices:

ET
q =

[
Iq 0q×(l−1)q

]
, ET

m =
[
Im 0m×(l−1)m

]
; (47)
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where Iq and Im are q-dimensional and m-dimensional
unit matrices, respectively. The minimal realization
(Ar,Br,Cr,Dr) of the system can be determined as23, 24

Ar = N−1/2r UT
r H(1)VrN

−1/2
r ,

Br = N1/2
r VrEm,

Cr = ET
q UrN

1/2
r . (48)

By solving the eigenvalues of Ar, we can obtain

ψ−1Arψ = Λ, Λ = diag(λ1, λ2, . . . , λ2(n+1)); (49)

where ψ is the eigenvector matrix of Ar and λi (i =

1, 2, . . . , 2(n+1)) is the i-th eigenvalue. Define the following
parameter:

si =
ln(λi)

T
, i = 1, 2, . . . , 2(n+ 1); (50)

where T is the data sampling period. Then, the natural fre-
quency ωi can be obtained as

ωi =
√

[Re(si)]2 + [Im(si)]2, i = 1, 2, . . . , 2(n+ 1);

(51)
where Re(si) and Im(si) are the real part and imaginary part
of si, respectively.

5. NUMERICAL SIMULATIONS

In this section, numerical simulations are carried out to
demonstrate the effectiveness of the identification method pro-
posed in this paper. The radius of the hub is assumed to be
rA = 0.05 m, and its rotary inertia is JH = 0.30 kgm2. The
properties of the flexible beam are given as follows: The length
is L = 1.8 m, the cross-section area is A = 2.5 × 10−4 m2,
the area rotary inertia is I = 1.3021 × 10−10 m4, the mass
density is ρ = 2.766 × 103 kg/m3, and the modulus of elas-
ticity is E = 6.90 × 1010 N/m2. The damping parameters
adopted in Yang’s study of dynamic modelling theory25 are set
to α1 = α2 = 0.011, β1 = 0, β2 = 0.0353, and CH = 0. For
the flexible cantilever beam with no large motion, the funda-
mental frequency is 0.622 Hz.

Assume that the following rotating torque is put on the hub:

u(t) =

u0 sin
(

2π
T t
)
, 0 ≤ t ≤ T

0 t > T
; (52)

where T = 2 s and u0 = 1 Nm. The tip transverse response of
the beam and the time history of angle displacement of large
motion of the hub are displayed in Fig. 2. The domain fre-
quency of the tip transverse response of the beam based on the
FOAC model is the first-order frequency (1.381 Hz), and the
weightiness of the second order frequency is very small. Due
to the effect of large motion, the first-order frequency now is
2.2 times that of the fundamental frequency without rotation.
This is the so-called dynamic stiffening phenomenon, which
results from the additional stiffness caused by the coupling of

Figure 2. The tip response of the beam and the time history of angular dis-
placement of the hub.

large rotation of the rigid hub and small elastic vibration of
the flexible beam.25 In Yang’s study, dynamics experiments of
flexible hub-beam system were done, in which several beams
of different lengths were taken into account, and the experi-
mental results indicate that the domain vibration frequency of
the beam with rotation is always about 2.2 times that of the fun-
damental frequency of the beam without rotation.25 Based on
this conclusion, the first-order frequency is set to be the target
of parameter identification.

In the identification simulations, three cases are considered:
white-noise excitation, position control, and constant-speed ro-
tation control. A white-noise case means that the external
torque on the hub is a white-noise signal. A position control
case means that a controller on the hub is designed to drive the
system from one position to another, and the residual vibra-
tion of the beam should be suppressed by this controller after
the arrival of position. Constant-speed rotation control means
that a controller is designed to drive the system to rotate with
a constant angular velocity, and the residual vibration of the
beam should be suppressed. The angular displacement and an-
gular velocity of the hub, and the tip transverse response of the
beam, will be used as the output of the system in the parameter
identifications. The detailed input-output arrangements are:

• Case 1: white-noise torque is used as the input of the sys-
tem; the angular velocity of the hub and the tip transverse
response of the beam are used as the output of the system,
respectively.

• Case 2: the position controller is used as the input; the
angular displacement of the hub and the tip transverse re-
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Figure 3. The responses of the system under white-noise excitation: (a) tip
displacement of the beam, (b) angular velocity of the hub, and (c) white-noise
excitation.

sponse of the beam are used as the output, respectively.

• Case 3: the constant-speed rotation controller is used as
the input; the angular velocity of the hub and the tip trans-
verse response of the beam are used as the output, respec-
tively.

Then, parameter identifications will be done for the above
three cases. The data sampling period is all chosen as 100 Hz
in the simulations. First, we consider the white-noise case. The
tip transverse response of the beam, the time history of angular
velocity of the hub, and white noise torque are displayed in
Fig. 3. So, the input and output data of the system are both
known; thus the OKID and ERA may be used to identify the
first-order frequency of the system, and the results are given
in the third and fourth rows of Table 1. The theoretical result
is given in the second row of Table 1 for comparison, as well.
We can observe from Table 1 that the identification results are
very close to the theoretical ones, which proves the validity of
the methods in this paper.

Table 1. The identification results of the first-order frequency of the system.

Case Output signal Frequency (Hz) Error (%)
Theoretical

1.3810
results

Tip transverse
1.3841 0.224475

White-noise response of beam
excitation Angular velocity

1.3834 0.173787
of beam
Tip transverse

1.3762 0.347574
Position response of beam
control Angular displace-

1.3722 0.637219
ment of hub
Tip transverse

1.3811 0.007241
Constant-speed response of beam
control Angular velocity

1.3810 0.000000
of hub

Next, we consider the active position control of a flexible
hub-beam system. The desired position trajectory adopted by
Cai, et al. and Zhang18, 19 is used here, given by

θ =


2θ0
T 2 t

2 t ≤ T
2

θ0
2 + 2θ0

T

(
t− T

2

)
− 2θ0

T 2

(
t− T

2

)2
T
2 < t ≤ T

θ0 t > T

.

(53)
Equation (53) indicates that the system rotates with an accel-
erated motion from the initial condition. The angular veloc-
ity of the system reaches its maximum value at the moment
T/2, and then the system rotates with a decelerated motion,
and the angular velocity turns zero after the moment T . The
controller to be designed is required to drive the system to a
desired position and suppress the residual vibration of beam
after arrival. Assume that the end position of angular displace-
ment in Eq. (53) is θ0 = π/3 = 60◦. The parameter T = 2 s is
taken in Eq. (53). In designing the active controller, the weight-
ing matrix and the weighting scalar in Eq. (32) are chosen as
Q = diag(1000, 100, 10, 1, 1, 1), and R = 1. The responses
of the system are given in Fig. 4. It is observed from Fig. 4
that the desired position may be achieved and the residual vi-
bration of the beam may be suppressed. Using the OKID and
ERA to identify the vibration frequency, the results are shown
in rows 5 and 6 of Table 1, and they are also very close to the
theoretical value.

Finally, we consider the constant-speed rotation control of
the hub-beam system. It is assumed that the system rotates
with an accelerated motion from the initial condition. The
aim of control design is to drive the system to rotate from the
zero moment and reach an angular velocity θ̇ at moment T .
Then, the system is required to rotate with this constant an-
gular velocity θ̇. At the same time, residual vibration of the
beam should be suppressed by this controller. θ̇ = 1 rad/s and
T = 2 s here. In controller design, the weighting matrix Q

and the weighting scalar R are the same as the above cases.
The responses of the system are displayed in Fig. 5. Using the
input and output data to identify the vibration frequency of the
system, the results are shown in rows 7 and 8 of Table 1. Sim-
ilar to the above two cases, the identification results are almost
identical to the theoretical one, and the identification precision
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Figure 4. The responses of the system for the position control case: (a) tip
displacement of the beam, (b) angular displacement of the hub, and (c) control
torque.

is higher than in the above two cases, as well.
From the above simulations we can draw a conclusion that

the first-order frequency of the system can be effectively iden-
tified using the OKID and ERA as long as the input and output
data of the system are known. This technique may possibly
be applied to the on-orbit identification of spacecraft. The on-
orbit identification needs the vibration response of spacecraft,
and the attitude manoeuvre of spacecraft exactly provides an
excitation, so it can be accomplished without adding additional
space missions.

6. CONCLUSIONS

In this paper, active control and parameter identification are
studied based on a flexible hub-beam system. The first-order
approximation coupling (FOAC) model is introduced. The op-
timal tracking control theory is used for the active control of
the system. A parameter identification technology is presented
using the OKID and ERA. The research results indicate that

Figure 5. The responses of the system for the constant-speed case: (a) tip
displacement of the beam, (b) angular velocity of the hub, and (c) control
torque.

the desired position of the system may be achieved by using
the controller, and the residual vibration of the beam can be
suppressed, as well. The system frequency may be identified
effectively by the OKID and ERA, no matter what kind of ex-
ternal torque is put on the hub. It is feasible and effective to
obtain the system frequency using the control data.
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