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This paper discusses our study on the flutter of an unrestrained aircraft wing carrying a fuselage at its semispan
and arbitrary placed external stores under roll maneuver. Maneuver terms are combined in the governing equations
which are obtained using the Hamilton’s principle. The wing is represented by a classical beam and incorporates
bending-torsion flexibility. Theodorsen unsteady aerodynamic pressure loadings are considered to simulate the
aeroelastic loads. The Galerkin method is subsequently applied to convert the partial differential equations into
a set of ordinary differential equations. Numerical simulations are validated against several previous published
results and good agreement is observed. In addition, simulation results are presented to show the effects of the
roll angular velocity, fuselage mass, external stores mass, and their locations on the wing flutter of an aircraft in
free-flight condition. Parametric studies show that the predicted flutter boundaries are very sensitive to the aircraft
rigid body roll angular velocity, fuselage mass and external stores mass and locations.

NOMENCLATURE

b Wing semi chord
eF Distance between the fuselage center of gravity

and wing elastic axis
ep Distance between the store center of gravity

and wing elastic axis
E Young’s modulus
G Shear modulus
I Wing cross-section moment of inertia
J Wing cross-section polar moment of inertia
l Wing length
L Wing sectional lift
m Mass of the wing per unit length
M Aerodynamic moment
Rwi

Displacement vector of an arbitrary point of
wings

T Kinetic energy
U Strain energy
vf Nondimensional flutter speed
wi Bending displacement
xe, ye, ze The external mass location in x, y and z direc-

tions, respectively
δ Variational operator
εij Strain component
Λ Sweep angle
θi Twist angle
ρ Density of the wing
ρ∞ Air density
σij Stress component

ωf Flutter frequency
ωθ Torsional frequency
Ω Roll angular velocity

1. INTRODUCTION

The flutter prediction of an unrestrained aircraft wing with
stores is of paramount importance for the analysis and design
of an aircraft. Clearly, estimating the aeroelastic instabilities
of such aircraft with different wing configurations is critical to
establish the flight envelope of newly designed aircrafts.

Many of the previous efforts made to simulate wing flutter
have considered uniform straight wings with external stores.
One of the first works devoted to the aeroelasticity of aircraft
wings with external store is the paper by Goland and Luke
on the determination of the flutter speed of a uniform can-
tilever wing with tip mass.1 They verified the flutter speed
by integration of the differential equations of the wing mo-
tion. Harry and Charles2 analyzed the flutter of a uniform
wing and made a comparison between the analytical and the
experimental results. Lottati considered the aeroelastic stabil-
ity of a swept wing with tip weights for an unrestrained ve-
hicle.3 In his work, a composite wing has been studied, and
it was observed that flutter occurs at a lower speed as com-
pared with a clean wing configuration. Gern and Librescu have
made some efforts to show the effects of externally mounted
masses on the static and dynamic aeroelasticity of advanced
swept cantilevered wings.4, 5 The dynamic response of adap-
tive cantilevered beams carrying externally mounted stores and
exposed to time-dependent external excitations has been con-
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sidered by Na and Librescu.6 Moreover, Librescu and Song7

investigated the free vibration and dynamic response to ex-
ternal time-dependent loads of aircraft wings carrying eccen-
trically located heavy stores. They have modeled the wing
as a thin-walled anisotropic composite beam. Also, Edwards
and Wieseman8 studied the flutter and divergence of three
check cases that include unrestrained airfoils and wing mod-
els. The bending-torsional flutter characteristics of an aircraft
wing containing an arbitrarily placed mass under a follower
force have been studied by Fazelzadeh et al.9 They showed the
important influence of the location and magnitude of the store
mass and the follower force on the flutter speed and frequency
of the wing. Also, Mazidi and Fazelzadeh10 investigated the
flutter of an aircraft wing with a powered engine. They con-
firmed that the engine thrust and locations have a considerable
effect on the wing aeroelastic stability region.

Although these works and several others addressed the prob-
lem of the wing-store aeroelasticity, the effect of the aircraft
maneuvers on the unrestrained aircraft wing instability has not
received much attention in the literature and only few works
about the maneuver effects on the aeroelastic behavior of
cantilever wing-stores configuration have been conducted.11, 12

The maneuver has a significant influence on the dynamic re-
sponse and instability of the wing-store configuration, espe-
cially for unrestrained aircraft wing. Since rigid body rotations
due to maneuver angular velocities, such as the one produced
by a roll maneuver, can adversely affect the aircraft aeroelastic
stability region, it is critical to include maneuvering angular
velocities in aeroelastic analysis.

To add to the aforementioned bulk of literature in this field,
the aeroelastic modeling and flutter study of an unrestrained
aircraft under roll maneuver is considered in this study. The
aircraft is modeled as a wing carrying a fuselage at its semispan
and arbitrarily placed external stores.

2. GOVERNING EQUATIONS

An unrestrained aircraft with swept wings, shown in Fig. 1,
is considered. As it can be seen in Fig. 1(b) the aircraft fuse-
lage is modeled as a concentrated mass and inertia located at
the center of the unrestrained swept wings. The structural flex-
ibility as well as the roll angular velocity is taken into account
when deriving the aeroelastic governing equations. The wing
model is valid for long, straight, homogeneous beams and is
derived based on the Goland wing model.

The equations of motion and boundary conditions are de-
rived using Hamilton’s variational principle that may be ex-
pressed as:13

∫ t2

t1

[
δUT − δTT − δWT

]
dt = 0,

δw = δθ = 0 at t = t1 = t2; (1)

where U and T are strain energy and kinetic energy, and W is
the work done by non-conservative forces. Also, the subscript
‘T ’ means the total system. The use of Hamilton’s principle is
especially convenient in cases of unusual boundary conditions
because the equation(s) of motion and boundary conditions are
determined in a unified procedure. Therefore, the Hamilton’s

Figure 1. Schematic of an unrestrained aircraft wing under roll maneuver,
(a) Top view; (b) Front view.

principle yields the equations of motion in the form of par-
tial differential equations with accompanying boundary condi-
tions.

The kinetic energy can be divided into three parts: wing,
fuselage, and store, i.e. TT = Tw + Te + TF . The subscripts
w, e, and F identify the wing, externally mounted mass, and
aircraft fuselage, respectively. The first variation of the wing
kinetic energy is:

δTw = δTw1
+ δTw2

; (2)

where δTw1
and δTw2

are the first variation of the right and left
wing kinetic energy, respectively. Also,

δTw1
=

∫ l

0

∫∫
A

ρṘw1
δṘw1

dx dA;

δTw2 =

∫ l

0

∫∫
A

ρṘw2δṘw2 dx dA. (3)

Rw’s are displacement vectors of arbitrary points of the right
and left wings that are given by

Rw1 = RO1 + rw1 = (RX cosΛ−RY sinΛ)i1 +

(RX sinΛ+RY cosΛ)j1 + [w1+(y1−ab)θ1−RZ ]k1;

Rw2
= RO2

+ rw2
= (RX cosΛ−RY sinΛ)i2 +

(−RX sinΛ−RY cosΛ)j2 + [w2+(y2+ab)θ2−RZ ]k2;
(4)

where RO’s are the wings root position vector with respect to
airplane center of gravity, shown in Fig. 1 and rw’s are the
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position vector of arbitrary points of the wings with respect to
the wings root. The velocity vector of any points on the wing
can be obtained through transport theorem as below:14

Ṙwi =
∂Rwi

∂t
+ (Ω×Rwi) + Vairplane. (5)

In this equation, two first terms represent the velocity of the
point and refer to the coordinate system located on the airplane
center of gravity. The third term represents the velocity of the
airplane and refers to the inertial reference coordinate system
located on Earth:

Vairplane = vxaÎ + vyaĴ + vzaK̂. (6)

Here it is assumed that the airplane has roll maneuver, so
the angular velocity equations of the airplane that refer to right
and left wing coordinate systems are:

Ω1 = −Ω sinΛ i1 + Ω cosΛ j1;

Ω2 = −Ω sinΛ i2 + Ω cosΛ j2. (7)

By substitution of Eqs. (3)–(7) in Eq. (2), the first variation
of the wing kinetic energy can be represented. Using the same
kinematical procedure, the first variation of the engine kinetic
energy can be derived as:

δTe =

N∑
i=1

meδD(x−xei)
{[
−ẅ1−ep cosΛθ̈1−Ḧ+RXα+

2αRY sinΛ cosΛ+Ω2w1+Ω2ep cosΛθ1−Ω2RZ
]
δw1 +[

−ep cosΛẅ1−k2e cos2Λθ̈1−ep cosΛḦ+

ep cosΛRXα+2αRY ep sinΛ cos2Λ+ep cosΛΩ2w1+

k2e cos2ΛΩ2θ1−ep cosΛΩ2RZ
]
δθ1

}
+

N∑
i=1

meδD(x−xei)
{[
−ẅ2−ep cosΛθ̈2−Ḧ−RXα+

Ω2w2+Ω2ep cosΛθ2−Ω2RZ
]
δw2 +[

−ep cosΛẅ2−k2e cos2Λθ̈2−ep cosΛḦ−
ep cosΛRXα+ep cosΛΩ2w2+k2e cos2ΛΩ2θ2−

ep cosΛΩ2RZ
]
δθ2

}
. (8)

In this equation, xe denotes the store distance from the wing
root, and ep is the distance between the engine center of gravity
and the wing elastic axis. Also, me and ke are the store mass
and radius of gyration, respectively. It should be noted that
the velocity vector of any point on the engine, as before, is
obtained through transport theorem. Also, the first variation of
the fuselage kinetic energy can be derived as:

δTF = mF
~VF δ~VF

=
[
−mF ẅ1−eF θ̈1−Ḧ+Ω2w1+Ω2eF θ1

]
δw1

∣∣
x=l

+[
−mF eF ẅ1−mF k

2
F θ̈1−mF eF Ḧ+mF eFΩ2w1+

mF k
2
FΩ2eF θ1

]
δθ1
∣∣
x=l

; (9)

wheremF and kF are the fuselage mass and radius of gyration,
respectively, and eF is the distance between the fuselage center
of gravity and the wing elastic axis.

The strain energy is considered next. The total strain energy,
normally, consists of wing, fuselage, and store strain energy.
Here, it is assumed that the fuselage and stores are rigid bodies.
Consequently, the total strain energy is equal to the wing strain
energy. The first variation of the strain energy is:14

δU =

∫
V

[
σxxδεxx + σxηδεxη + σxξδεxξ

]
dx dA; (10)

where σij and εij are stress and strain components, respec-
tively. η and ξ are the principal axes of the wing cross section
that defines a local coordinate system on the shear center of the
cross section.

The use of strain-displacement relations, together with the
generalized Hooke’s law, permits the strain energy to be ex-
pressed in terms of deformation quantities.15 Using these ex-
pressions and integrating by parts, Eq. (10) recasts as:

δUw1
=

∫ l

0

{[
EIw′′′′1 + abEIθ′′′′1

]
δw1 +[

abEIw′′′′1 + Sθ′′′′1 −GJθ′′1
]
δθ1

}
dx;

δUw2
=

∫ 2l

l

{[
EIw′′′′2 + abEIθ′′′′2

]
δw2 +[

abEIw′′′′2 + Sθ′′′′2 −GJθ′′2
]
δθ2

}
dx; (11)

where δUw1
and δUw2

are the right and left wing strain energy,
respectively.

The virtual work of the aerodynamic forces acting on the
wing may be expressed as:

δWnc =

∫ l

0

(
L1δw1+M1δθ1

)
dx +

∫ 2l

l

(
L2δw2+M2δθ2

)
dx;

(12)
whereL andM are aerodynamic lift and moment, respectively.
It should be noted here that the engine aerodynamic is not ac-
counted for in governing equations. Aerodynamic lift and mo-
ment are derived from Theodorsen’s unsteady thin-airfoil the-
ory. These are:

L(x, t) = −πρ∞ω2b3
[w
b
Lhh +

∂w

∂x
Lhh′ + θeffLhθ +

b
∂θeff

∂x
Lhθ′

]
; (13)

M(x, t) = πρ∞ω
2b4
[w
b
Mθh +

∂w

∂x
Mθh′ + θeffMθθ +

b
∂θeff

∂x
Mθθ′

]
; (14)

where Lhh, Lhh′ , . . . ,Mθθ′ are the aerodynamic coeffi-
cients.16, 17

By substituting Eqs. (3)–(12) into Eq. (1), and noticing that
for every admissible variation (δw1, δθ1, δw2, δθ2) the coeffi-
cient of these variations must be zero, the aeroelastic governing
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equations are obtained as:

−EIw′′′′1 +mẅ1+mxθ θ̈1+mḦ−mRXα−
2mRY α sinΛ cosΛ−mΩ2w1−mxθΩ2θ1+mΩ2RZ+

mF

(
ẅ1+eF θ̈1+Ḧ−Ω2w1−Ω2eF θ1

)
|x=l+

N∑
i=1

meδD(x1−xei)
(
ẅ1+ep cosΛθ̈1+Ḧ−RXα−

2RY α sinΛ cosΛ−Ω2w1−Ω2ep cosΛθ1+ Ω2RZ
)
−

L1 = 0; (15)

−GJθ′′1 +mxθẅ1+Iθ θ̈1+mxθḦ−mxθRXα−
2mxθRY α sinΛ cosΛ−mxθΩ2w1−IθΩ2θ1+mxθΩ

2RZ+

N∑
i=1

meδD(x1−xei)
(
ep cosΛẅ1+k2e cos2Λθ̈1+ep cosΛḦ−

ep cosΛRXα−2epRY α sinΛ cos2Λ−ep cosΛΩ2w1−
k2e cos2ΛΩ2θ1+ep cosΛΩ2RZ

)
−M1 = 0; (16)

−EIw′′′′2 +mẅ2+mxθ θ̈2+mḦ−mRXα−
mΩ2w2−mxθΩ2θ2+mΩ2RZ+

N∑
i=1

meδD(x2−xei)
(
ẅ2+ep cosΛθ̈2+Ḧ+RXα−Ω2w2−

Ω2ep cosΛθ2+Ω2RZ
)
− L2 = 0; (17)

−GJθ′′2 +mxθẅ2+Iθ θ̈2+mxθḦ−mxθRXα−
mxθΩ

2w2−IθΩ2θ2+mxθΩ
2RZ+

N∑
i=1

meδD(x2−xei)
(
ep cosΛẅ2+k2e cos2Λθ̈2+ep cosΛḦ+

ep cosΛRXα−ep cosΛΩ2w2−k2e cos2ΛΩ2θ2+

ep cosΛΩ2RZ
)
−M2 = 0. (18)

3. SOLUTION METHODOLOGY

Due to intricacy of aeroelastic governing equations, it is
difficult to get the exact solution. Therefore, in order to
solve the aeroelastic governing equations in a general way, the
Galerkin’s method is used.18 To this end, wi, θi (bending and
torsion generalized coordinates) are represented by means of
series of trial functions, ϕji , that should satisfy the boundary
conditions, multiplied by time dependent generalized coordi-
nates, qji :

wi = ϕT1iq1i ; θi = ϕT2iq2i . (19)

The following family of orthogonal functions for w and θ is
used here:16

ϕ1i =
(x/l)1+i{6 + i2(1− x/l)2 + i[5− 6x/l + (x/l)2]}

i(1 + i)(2 + i)(3 + i)
;

ϕ2i = sin
( iπx

l

)
. (20)

Table 1. Validation of the flutter speed and frequency for a wing in free flight
condition.

Flutter
Error

Flutter
Error

Method Speed
(%)

Frequency
(%)

(m/s) (rad/s)
Exact (Goland & Luke1) 292.72 — 19.17 —
Lottati3 289.68 1.04 19.42 1.3
Gern & Librescu5 293.61 0.31 21.68 13.09
Present 308.72 5.46 18.30 4.53

Two bending modes and two torsion modes are considered
for each wing. By applying the Galerkin procedure on govern-
ing equations and using orthogonal properties in the required
integrations, the following set of ordinary differential equa-
tions are obtained:

Mq̈ + Cq̇ + Kq = 0. (21)

Herein, M, C, and K denote the mass matrix, the damping
matrix and the stiffness matrix, respectively, while q is the
overall vector of generalized coordinates. Finally, Eq. (21)
converts to

Ż = [A]Z; (22)

where the state vector Z is defined as

Z =
{
qT q̇T

}T
; (23)

and the system matrix [A] has the form

[A] =

[
[0] [I]

−[M]−1[K] −[M]−1[C]

]
. (24)

The problem is now reduced to that of finding out the eigen-
values of matrix [A] for given values of the air speed pa-
rameter U∞. The eigenvalue ω is a continuous function of
the air speed U∞. For U∞ 6= 0, ω is in general complex,
ω = Re(ω) + iIm(ω). When Re(ω) = 0 and Im(ω) 6= 0, the
wing is said to be in critical flutter condition. At some point,
as U∞ increases, Re(ω) turns from negative to positive so that
the motion turns from asymptotically stable to unstable.

4. RESULTS

As stated in the previous section, the solution to this aeroe-
lastic problem through the extended Galerkin method is sought
by using a numerical integration scheme. Two bending modes
and two torsion modes for each wing are considered in the so-
lution procedure to this end. The effects of the external mass
value and location and the roll angular velocity on the flutter
speed of unrestrained wings are simulated. Relevant data for
the particular wing-weight combination used here are the same
as those utilized in the work of Goland and Luke.1 Also, di-
mensionless parameters used in the numerical simulation are

vf =
Uf
bωθ

; ωf =
ωf
ωθ

; Xe =
xe
l

; ηF =
mF

ml
; ηe =

me

ml
;

(25)
where Uf and ωf are the flutter speed and frequency, respec-
tively.

Our results, without the angular roll velocity, are in good
agreement and have been obtained with results from previously
published papers, as shown in Table 1.
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Figure 2. Effects of the spanwise position of the external mass on the aircraft
flutter boundary for case1 (ep = 0) and case2 (ep = 0.63). (a) Flutter speed;
(b) Flutter frequencies.

4.1. Non-Maneuver Aircraft
First, the flutter results of the non-maneuvering unrestrained

aircraft are considered. Figure 2 shows a parametric study in-
vestigating the effect of the store spanwise location on the flut-
ter speed and frequency for two selected values of ep. The
store mass is assumed to be ηe = 0.5, and the fuselage mass
is ηF = 0.5. The lowest value of the flutter speed takes place
around Xe = 0.6. So, one can say that this point is the critical
location for store mounting for this wing characteristic.

This behavior is the same as those reported in previous pub-
lished papers.5, 10 Also, it can be seen in this figure that in-
creasing the distance of the engine center of gravity from the
wing elastic axis will decrease the flutter speed. Figure 2(b)
also reveals that the flutter frequency drops in the usual way
by moving the external mass towards the wing tip.

The effect of the store mass on the flutter boundary and cor-
responding flutter frequency of the unrestrained wing is illus-
trated in Fig. 3 for two selected values of ep. The store is as-
sumed to be placed at the middle of the wing span and the
fuselage mass is ηF = 0.5. Figure 3(a) shows that increasing
the store mass restricts the stability region. Also, effects of the
store distance from the wing elastic axis on the wing flutter are
clear in this figure. Figure 3(b) illustrates that increasing the
engine mass value will decrease the flutter frequency, notice-
ably.

Figure 4 shows the variation of the flutter speed and fre-
quency of the wing due to variations in the aircraft fuselage

Figure 3. Effects of the store mass on the aircraft flutter boundary for case1
(ep = 0) and case2 (ep = 0.63). (a) Flutter speed; (b) Flutter frequencies.

mass for selected values of ep. The results show that an in-
crease of fuselage mass can induce a higher flutter speed. Also,
the effect of the store distance from the wing elastic axis on the
flutter speed and frequency is clearly highlighted.

4.2. Rolling Maneuver Aircraft
This subsection focuses on the flutter simulations of the un-

restrained aircraft under roll maneuver. The effect of the store
mass on the flutter boundary and corresponding flutter fre-
quency is illustrated in Fig. 5 for different values of the roll
angular velocity.

The stores are assumed to be placed at the middle of the
wings span and the nondimensional fuselage mass is ηF = 1.
Figure 5(a) shows that the stability region is limited when the
larger external mass is attached to the wing. This is almost
independent of the roll angular velocity. Also, effects of the
roll maneuver angular velocity on postponing the wing flutter
are clear in this figure. Figure 5(b) illustrates that increasing
the store mass value will decrease the flutter frequency, notice-
ably, for all values of the aircraft roll angular velocity.

The influence of the spanwise location of the store on the
flutter speed and frequency of the unrestrained wing for se-
lected values of the roll angular velocity is shown in Fig. 6. In
this case, the store and fuselage mass ratio is ηe = ηF = 1
and the store is assumed to be located at the wing elastic axis.
It can be seen in Fig. 6(a) that increasing the distance of the
stores from the wing root, in this case, increases the flutter
speed. Also, it can be seen that increasing the roll angular ve-
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Figure 4. Effects of the fuselage mass on the aircraft flutter boundary for case1
(ep = 0) and case2 (ep = 0.63). (a) Flutter speed; (b) Flutter frequencies.

locity will decrease the flutter speed, noticeably. Figure 6(b)
also reveals that the flutter frequency drops in the usual way
by moving the stores towards the wings tip. Moreover, the
magnitude of the roll angular velocity has noticeable influence
on the flutter frequency.

Figure 7 demonstrates the effect of the spanwise location of
the stores on the flutter speed and frequency of the unrestrained
aircraft with four stores for the selected values of the roll an-
gular velocities. For every wing, the first store is assumed to
be placed at the Xe1 = 0.3, and only the second store slides
from the middle of the wing to the wing tip. Both stores and
fuselage have equal mass ratio of ηe1 = ηe2 = ηF = 1. It is
clear from Fig. 6(a) that increasing the distance of the second
engine from the wing root, in this case, will increase the flut-
ter speed. Influence of the second engine spanwise location on
the flutter frequency is shown in Fig. 6(b). It can be seen that
sliding the engine toward the wing tip will decrease the flutter
frequency for all values of the roll angular velocity.

5. CONCLUSIONS

In this study, the aircraft is considered as an unrestrained
wing carrying fuselage at its semi span and some arbitrarily
placed stores. The effect of the roll maneuver, one of the most
popular flight maneuvers, on flutter of the unrestrained wing is
considered. To this end, the complete aeroelastic equations for
an isotropic, unrestrained Goland wing under roll maneuver
are formulated. The equations include effects of both maneu-
ver induced and flow induced forces.

Figure 5. Effects of the store mass on the aircraft flutter boundary for ηF = 1.
(a) Flutter speed; (b) Flutter frequencies.

Results show the influence of the roll angular velocity, fuse-
lage mass, and the stores mass and locations on the flutter
speed of the wing. The rolling maneuver restricts the wing
dynamic stability region in most of cases. Also, it is found that
the flutter speed in the case of heavy stores is lower than those
obtained for light ones, independent of the maneuver condi-
tions.
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