Vibroacoustic Models of Air-Core Reactors

Thiago A. Fiorentin

Universidade Federal de Santa Catarina — UFSC, Mobility Engineering Center, 89218-035 — Joinville — SC, Brazil

Leonardo Ferreira Lopes

Universidade do Oeste de Santa Catarina — UNOESC, Technological Center, 89600-000 — Joaçaba — SC, Brazil

Olavo Mecias da Silva Junior and Arcanjo Lenzi

Universidade Federal de Santa Catarina — UFSC, Department of Mechanical Engineering, 88040-900 — Florianópolis — SC, Brazil

(Received 8 January 2015, accepted: 21 October 2015)

The purpose of this paper is to provide an overview of the sound power radiation mechanism of air-core reactors and to describe the method that is used to calculate sound power by using the electrical load. Sound power radiation of an air-core reactor is related to the alternating current harmonics, the mechanical tension stiffness and, most importantly, the breathing mode resonance. An analytical model that is based on electrical loads and mechanical properties of the air-core reactor is developed to calculate radial and axial forces caused by the radial and axial magnetic induction fields. This study employs the hemispherical spreading theory, which is a simple and common method that is used to predict sound propagation. Additionally, a numerical model is proposed. In this, the excitation of the acoustic field that surrounds the reactor is introduced by considering the radial and axial displacements of the reactor's windings, as the windings are subjected to the action of the radial and axial electromagnetic forces. Finally, a comparison is presented between analytical and numerical models and it is observed that the models are correlated.

NOMENCI ATURE

OMENCLATURE		i	electrical current
		K	stiffness of a mechanical system
B	magnetic induction field	K_{eq}	equivalent stiffness
B_{radial}	radial magnetic induction field	K_{fib1}	stiffness of fiber layer 1
B_{axial}	axial magnetic induction field	K_{fib2}	stiffness of fiber layer 2
$B_{avrg,z}$	average magnetic induction field	l	height of the material
	at z direction	l_{ms}	perimeter of measurement surface
$B_{avrg,x}$	average magnetic induction field	$\overline{L_P}$	average sound pressure
	at x direction	L_P	sound pressure level
c_0	speed of sound in air	L_W	sound power level
dl	infinitesimal element	M	mass of the winding
E	equivalent Young's modulus	N	number of turns per unit of length
E_{fib}	Young's modulus of the fiberglass	nbr	total average number of turns in the winding
e	thickness of the winding	p	sound pressure
e_{fib}	thickness of the fiberglass	p_0	reference sound pressure
e_{iso}	thickness of the insulation	R	average radius of the winding
F	electromagnetic force	R_e	external radius of the winding
$F_{avrg,x}$	average force at x direction	R_i	internal radius of the winding
F_{axial}	axial electromagnetic force	r	distance point to source
F_{radial}	radial electromagnetic force	r_{sr}	distance source-receiver
$F_{Z,avrg}$	average force at z direction	S	surface of contact between two materials
f	frequency of the current	S_m	surface area of measurement
G_{xy}	shear modulus at plane xy	S_W	sound radiating surface
G_{xz}	shear modulus at plane xz	S_0	reference area
G_{yz}	shear modulus at plane yz	t	time
Η	average height of the winding	ν_{rad}	average radial speed of the winding
h_{ws}	height of the reactor without the spiders	W	radiated sound power
I_{eff}	effective current	W_0	reference power