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Editor’s Space

Sound Propagation in Curvilinear Space Time

The theories of acoustics and
the derivation of the equations of

acoustics such as the. Helmholtz wave equation, KZK equa-
tion, Burgers equation, Westervelt equation, Christoffel equa-
tion for crystal acoustics are all based on the flat space time
or Minkowski space time. This limits sound propagation only
to 2D plane instead of 3D space. Also in so doing the equa-
tions will come out with the special theory of relativity. In
the extension of the calculations to the curvilinear space time,
general relativity will be involved. This will also include the
gravitational force. Also energy and momentum will affect the
curvature of the curvilinear space time.

The scenario of the acoustic field equation without involv-
ing the gravitational force is like the situation in a space sta-
tion. Sofar the acoustical cloaking is the first example of sound
propagation in a curvilinear space time. Curvilinear space time
will be a new platform for the derivation of the acoustic equa-
tions. There are numerous calculations in acoustics based on
curvilinear coordinates. But these are only for the description
of the geometrical structure of the objects under consideration.
Also in acoustical cloaking only one aspect of the general the-
ory of relativity is concerned. That is only the curvilinear co-
ordinates aspect of the problem is considered. The property of
gravitational force is not considered. It is of interest to mention
that in his original paper on the foundation of general relativ-
ity, Einstein mentioned curvilinear space time on two areas of
physics, that is electrodynamics and hydrodynamics which are
related to acoustics.

Besides acoustical cloaking, an area which is concerned
with curvilinear space time is acoustic radiation force (ARF).
ARF has wide applications to drug delivery, microfluidics,
acoustical imaging, force of levitation etc. Normally the grav-
itational force is neglected. The usual acoustics field equation
is derived from Newton’s equation of motion which is based
on flat space time. The proper procedure is to use the Ein-
stein field equations and action principles to derive the ARF.
This will allow the interaction of the ARF with the gravita-
tional force.

Another area to be considered is acoustical imaging. For
the case of curvilinear space time, the gravitational force term
has to be added to the source term on the right hand side of
the inhomogeneous Helmholtz equation. Also the multiple
scattering in an inhomogeneous medium now takes place in
a curvilinear space time. A form of acoustical imaging known

as elasticity imaging will be affected by the inclusion of the
gravitational force as the stress tensor. This will become part
of the energy momentum tensor in the Einstein field equations.
ii

In the field of nonlinear acoustics in curvilinear space time,
all the field equations like KZK equation, Burgers equation,
Westervelt equation will have to be derived using the Einstein
field equations relating the energy momentum tensor and the
curvature tensor. As a consequence, the gravitational force will
become an additional term in the equations along with terms
relating to diffraction, refraction, and nonlinearity. Curvilinear
space time is the umbrella of nonlinearity.

Elasticity in the curvilinear space time is an interesting area
as the stress tensor is part of the energy momentum tensor of
the Einstein field equations. The gravitational force here will
in the term involving the body force. Here the stress and strain
will all be expressed in tensor forms for substitution in the Ein-
stein field equations.

In piezoelectricity, for curvilinear space time, gravitational
force will become an additional force involved in the interac-
tion between electromagnetic forces and acoustic forces. Now
there will be three forces involved in the interaction.

In the electron-phonon interaction and phonon-phonon in-
teraction in sound propagation in solids, there will be an ad-
ditional gravitational force interaction in the curvilinear space
time platform. This will be a form of the unification of quan-
tum field theory and general relativity which points towards the
theory of everything.

The above subfields of acoustics have to be considered when
one rewrites acoustics equations using the curvilinear space
time platform. In view that Einstein purposely singled out hy-
drodynamics which is related to acoustics as an area in physics
for the extension of fundamental physics theories to the curvi-
linear space time, it is now time to work on acoustics based on
this theoretical platform. It is to be noted that for all applica-
tions the equations have to be derived again using the Einstein
field equations. If only a force of gravity term is added, this
will amount to just a Newtonian treatment or flat space time.

Woon Siong Gan
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The Effect of Coaxial Ring Masses with Different
Contact Areas, Mass, and Distribution on
Membrane-Type Acoustical Metamaterials’
Transmission Loss
Xiao-Ling Gai, Xian-Hui Li, Bin Zhang, Yan-Qi Liu, Peng Xie and Zhi-Hui Ma
Beijing Key Laboratory of Environment Noise and Vibration, Beijing Municipal, Institute of Labor Protection,
Beijing 100054, China

(Received 4 November 2013; accepted 6 October 2014)

The transmission loss (TL) of the membrane-type acoustical metamaterials with coaxial ring masses are inves-
tigated using the finite element method. The results show that the TL peak and resonance frequencies of the
membrane-type acoustical metamaterials depends on mass, distribution of coaxial ring masses, and the contacting
area of coaxial ring masses with the membrane. It is also shown that the coaxial ring masses only affect the TL at
low frequencies, while the membrane is effective at all frequencies. Additionally, the double-leaf membrane-type
acoustical metamaterials structure has been constructed. The roles of the membrane and ring masses of double-leaf
membrane-type acoustical metamaterials structure on TL are investigated. The influence of the depth of air-cavity
on the TL is then discussed.

1. INTRODUCTION

Low frequency noise has long been regarded as a pernicious
form of environmental pollution because it involves blocking
large-wavelength waves, which requires thick or heavy mate-
rials.1, 2 In general, it should be a low transmission loss at a
low frequency with both thin and lightweight structures.3 To
overcome this difficulty, composite materials with locally res-
onant acoustical metamaterials were developed recently.1, 4–9

Hirsekorn proposed a heuristic model of locally resonant sonic
crystals, which allowed one to predict the resonance frequen-
cies in good agreement with the numerical simulations.5 Li
and Chan showed the existence of acoustical metamaterials,
where the effective density and bulk modulus are both simul-
taneously negative in the true and strict sense of an effec-
tive medium.6 A class of sonic shield materials based on the
principle of locally resonant microstructures are demonstrated
by Ho et al.8 One of the main advantages of locally reso-
nant acoustical metamaterials is the ability to prevent sound
propagation at low frequencies without the addition of signif-
icant mass or modulus bulk.10 Large-scale weighted mem-
branes, which are traditionally used in building acoustics, have
shown attenuation achieved at varying frequencies.11, 12 In
addition, small-scale membrane-type acoustical metamateri-
als have been shown to improve sound insulation at low fre-
quencies, surpassing the acoustic mass law by several orders
of magnitude over a narrow frequency band.1, 13 Mei et al. pre-
sented a thin-film acoustical metamaterial that comprised of an
elastic membrane decorated with asymmetrical rigid platelets
that almost reached unity absorption at frequencies where the
relevant sound wavelength in the air was three orders of mag-
nitude larger than the membrane thickness.14 Using the finite
element analysis and experimental techniques, Christina et al.
analyzed the transmission loss of membrane-type locally res-
onant acoustical metamaterials with the added ring masses.10

The results showed that the addition of a ring mass to the struc-
ture either increased the bandwidth of the transmission loss
peak or introduced multiple peaks. This depended on the num-
ber of rings, the distribution of mass between the center and
ring masses, and the radii of the ring.10 Meanwhile, Christina
et al. fabricated the arrays of membrane-type acoustical meta-
materials and found that the sound transmission at multiple fre-
quencies could be decreased by employing nonuniform mass
distribution over the cells in the array.15 Ding et al. designed
an acoustical metamaterial with multi-band of negative modu-
lus composed of different sized split hollow spheres.16 The re-
sults indicated that this medium could achieve a negative mod-
ulus at a frequency range from 900 to 1500 Hz.16 Although
a lot of research has been done on locally resonant acousti-
cal metamaterials, it appears that no relevant reports have been
given for acoustical metamaterial of coaxial ring masses with
different cross section shapes and double-leaf membrane-type
acoustical metamaterials. This paper focuses on the acoustical
performance studies of membrane-type acoustical metamateri-
als of coaxial ring masses with different cross section shapes
and double-leaf membrane-type acoustical metamaterials.

In Section 2, sample constructions will be introduced. In
Section 3, the transmission loss for membrane-type acoustical
metamaterials of coaxial ring masses with four kinds of differ-
ent cross section shape will be studied. In Section 4, the effect
of coaxial ring’s mass on transmission loss of membrane-type
acoustical metamaterials will be investigated. In Section 5,
the effect of coaxial ring distribution on transmission loss of
membrane-type acoustical metamaterials will be studied. In
Section 6, the main roles of the membrane and coaxial ring s
will be discussed. In Section 7, the acoustical performance of
the double-leaf membrane-type acoustical metamaterials will
be studied. Finally, the conclusions will be given in Section 8.
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Figure 1. Schematic of membrane-type acoustical metamaterials.

Figure 2. Schematic of four kinds of coaxial ring masses with different cross
section shape.

2. SAMPLE CONSTRUCTION

Membrane-type acoustical metamaterials of coaxial ring
masses with different cross section shape were constructed
by using a thin, circular membrane and a two-ring located
mass. The membrane that was used was a polyetherimide
film, 0.076 mm thick, and 24 mm in diameter. The mod-
ulus, density, and Poisson’s ratio for the membrane material
were 6.9 × 109 Pa, 1200 kg/m3, and 0.36, respectively. The
edge of the membrane was bonded to a rigid support structure.
The masses were added to the membranes by attaching two
small copper rings. The modulus, density, and Poisson’s ratio
for the copper material were 110 × 109 Pa, 7800 kg/m3, and
0.35, respectively. The total mass of the different shape rings
were kept to be invariable. The center of the first ring was lo-
cated at r = 4.5 mm and for the second ring, was located at
r = 8.5 mm. Figure 1 shows a schematic for membrane-type
acoustical metamaterials of coaxial ring masses with different
cross section shape. Figure 2 shows four kinds of coaxial ring
masses with different cross section shape.

3. TRANSMISSION LOSS ANALYSIS

Finite element analysis was used to calculate the transmis-
sion loss of membrane-type acoustical metamaterials using

COMSOL software. The 2DS model was used for geometric
modeling. An axisymmetric model was used for the analy-
sis to facilitate calculation intensity. In the simulations, struc-
tural and acoustical modules were used to create a structural-
acoustic interaction program. The acoustical structure bound-
ary excluded the junction surface masses and the membrane
in the simulation to make both the masses and the membrane
into a whole with different material properties. The membrane
was bonded to the support structure, which was a rigid bound-
ary condition is imposed at the edge of the membrane. The
mass and membrane were linear elastic materials. The initial
pressure magnitude normal incident on the structure was set
at 1 Pa. The mass, membrane, and air cavities were modeled
with free-triangular mesh elements. The number of degrees of
freedom was 7732.

The nonlinear analysis was not used for the membrane. The
masses were added to the membranes by attaching two small
rings. Figure 3 shows the four kinds of schematic of the
axisymmetric finite element analysis models. Structural and
acoustical modules were used in the finite element analysis to
create a structural-acoustic interaction program. There were
two air cavities on both sides of the membrane-type acoustical
metamaterials, which were similar to the impedance tube struc-
ture. The membrane, mass ring, and air cavities were modeled
with free-triangular mesh elements.

The following equation defines the transmission loss of the
membrane-type acoustical metamaterials:

TL = 10 log
Wi

Wo
. (1)

Here, Wi and Wo denoted the incoming power at the inlet and
the outgoing power at the outlet, respectively. We calculated
each of these equations as an integral over the whole circular
disk:

Wi =

∫
p20
2 ρ c

dL ; (2)

Wo =

∫
|p2|
2 ρ c

dL . (3)

Figure 4 shows the transmission loss of membrane-type
acoustical metamaterials of coaxial ring masses with four
kinds of different cross section shapes. The transmission loss
peak corresponded to anti-resonance behavior, where minimal
sound was transmitted across the structure, while the trans-
mission loss minima corresponded to the resonance frequen-
cies, where 100% of the sound was transmitted. In com-
paring Figs. 4(a) to 4(d), we found that the different cross
section shape coaxial ring with the same mass affected the
transmission loss peak and resonance frequencies. Figure 4(a)
shows the transmission loss for the square cross section coax-
ial ring masses. The transmission loss profile for this config-
uration exhibited a low-frequency minimum (340 Hz), a high-
frequency minimum (4010 Hz), and a transmission loss peak
(2240 Hz and 78.4 dB). Figures 4(b) and 4(c) show the finite
element analysis results of transmission loss for two rectan-
gular cross section coaxial ring masses with side lengths of
0.5 mm × 2 mm and 2 mm × 0.5 mm. There were two reso-
nance peaks (280 Hz and 3550 Hz) and transmission loss peaks
(1830 Hz, 5515 Hz), when the cross section of the ring was

International Journal of Acoustics and Vibration, Vol. 21, No. 4, 2016 363
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Figure 3. Four kinds of schematic of the axisymmetric finite element analysis models.
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Figure 4. Transmission losses of membrane-type acoustical metamaterials using coaxial ring masses with four kinds of different cross section shape.

Figure 5. Effect of ring’s mass on transmission loss of membrane-type acoustical metamaterials.

International Journal of Acoustics and Vibration, Vol. 21, No. 4, 2016 365
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Figure 6. Effect of coaxial ring distribution on transmission loss of membrane-type acoustical metamaterials.
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0.5 mm × 2 mm, while the two resonance peaks occurred at
480 Hz, 5230 Hz and a single transmission loss peak 89.8 dB
at 3400 Hz when the cross section of ring is 2 mm × 0.5 mm.
Figure 4(d) shows that the transmission loss profile of the tri-
angle cross section ring. The resonance and transmission loss
peaks of Fig. 4(d) occur at same frequency with Fig. 4(c) (ex-
cept the transmission loss peak of Fig. 4(d) higher 9.6 dB than
Fig. 4(c)). This was because the contact stiffness of the triangle
and rectangular coaxial ring masses with membrane was close.

4. THE EFFECT OF THE COAXIAL RING’S
MASS ON TRANSMISSION LOSS OF
MEMBRANE-TYPE ACOUSTICAL
METAMATERIALS

Through Figs. 4(c) and 4(d), we found that the resonance
and transmission loss peaks occurred at same frequency when
the coaxial ring’s mass, position, and contacting area with the
membrane were same. In this section, the transmission loss
of membrane-type acoustical metamaterials that have the same
contacting area with the membrane will be analyzed, however,
it should be noted that the coaxial ring’s mass is different. In
order to study the influence of coaxial ring’s mass on the trans-
mission loss of membrane-type acoustical metamaterials, the
transmission loss of membrane-type acoustical metamaterials
with different mass coaxial ring were analyzed. We used the
example of rectangular cross-section. Figure 5 show that the
height of mass block change from 0.2 mm to 1.0 mm, while
the width of mass block is 2 mm invariable (i.e., the mass of
coaxial ring are changed). Through Fig. 5, we found the low-
frequency resonance frequency increased with the decreasing
mass, while the high-frequency resonance frequency did not
change significantly. Meanwhile, the transmission loss peak
frequency moved to a lower frequency with the decreasing
mass. When the height of rectangular is t = 1.0 mm, the trans-
mission loss reached a maximum value of 99.7 dB at 263 0Hz.

5. THE EFFECT OF COAXIAL RING
DISTRIBUTION ON THE TRANSMISSION
LOSS OF MEMBRANE-TYPE
ACOUSTICAL METAMATERIALS

In this section, we studied the effect of coaxial ring distribu-
tion on transmission loss. We first fixed ring 1 in r = 0 mm
and only let ring 2 change along the radial direction. Fig-
ure 6(a) shows that the transmission loss peak frequency of the
membrane-type acoustical metamaterials moveed to a higher
frequency when the distance of the two rings changed from
d = 2 mm to d = 6 mm. The transmission loss peak mag-
nitude was 117 dB at 760 Hz when d = 4 mm. There were
two transmission loss peaks at the range from 0 to 6000 Hz
when the distances of the two rings increased to d = 8 mm or
d = 10 mm. Figure 6(a) also shows the transmission loss of
the distance for the two rings d = 2, 4, 10 mm, which exhib-
ited two resonance peaks while there was one resonance peak
when d = 6 mm and three resonance peaks when d = 8 mm at
a range from 0 to 6000 Hz. The transmission loss over a sound
level of 20 dB covered a frequency range of roughly 6000 Hz
when ring was fixed in d = 6 mm. When ring 1 was fixed in

r = 2 mm, the distance of two rings change from 2 mm to
8 mm, the transmission loss profile is shown in Fig. 6(b). We
found that the transmission loss over a sound level of 25 dB
was more than a frequency range of 6000 Hz when the dis-
tance of the two rings was d = 6 mm. When ring 1 was fixed
r = 4, 6, 8 mm, the transmission loss profile of ring 2 changed
along the radial direction, as shown in Figs. 6(c), 6(d) and 6(e)
successively. Figures 6(c) and 6(d) show that the resonance
which occurs at the low-frequency and the transmission loss
peak frequency when the distance of the two rings increased.
Figure 6(e) shows the two rings next to each other at the edge
of membrane. The reason that the transmission loss difference
caused by coaxial ring distribution may be because that the dif-
ference coaxial ring distribution change the stiffness of mem-
brane.

6. THE ROLES OF MEMBRANE AND RING
MASSES ON THE TRANSMISSION LOSS
OF MEMBRANE-TYPE ACOUSTICAL
METAMATERIALS

The main roles of membrane and ring masses on the trans-
mission loss of membrane-type acoustical metamaterials are
studied in this section. Without the loss of generality, we used
the example of rectangular cross section of the ring as 2 mm×
0.5 mm as example. Figure 4(c) shows that there are two reso-
nance peaks at 480 Hz, 5230 Hz and a single transmission loss
peak 89.8 dB at 3400 Hz when the cross section of the ring was
2 mm × 0.5 mm. The total displacements of the membrane
and ring masses at the resonance peaks and transmission loss
peak are shown in Fig. 7. Through Fig. 7(a), we found that
the membrane and ring masses all left their balance place at
the low-frequency resonance frequency 480 Hz. Furthermore,
ring 1 and ring 2 vibrated in phase. Figure 7(b) shows that only
the center part of the membrane vibrated nearby in a balanced
position, the two rings were kept immobile in balanced po-
sition at the high-frequency resonance frequency 5230 Hz. At
3400 Hz, the total displacements of membrane and ring masses
are shown in Fig. 7(c). Figure 7(d) shows that ring 1 and ring 2
vibrated out of phase at 1200 Hz. This implied that only the
membrane played a role at the high frequency, whereas the ring
masses affected the low-frequency resonance frequency.

7. DOUBLE-LEAF MEMBRANE-TYPE
ACOUSTICAL METAMATERIALS

The effects of double-leaf membrane-type acoustical meta-
materials are studied in this section. Figure 8 shows the ar-
rangement of membrane-type acoustical metamaterials 1 and
2, which are parallel to an air-cavity with a depth D between
them. When D = 30 mm, the transmission loss of double-leaf
membrane-type acoustical metamaterials is shown in Fig. 9.
By comparing Fig. 9 and Fig. 4(c), we can find that there are
two low-frequency resonance peaks, transmission loss peaks,
and high-frequency resonance peaks overlapping each other in
the double-leaf membrane-type acoustical metamaterials struc-
ture. We can also see that its damping is better than one-leaf
membrane-type acoustical metamaterials structure in all fre-
quency region.
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Figure 7. Effects of membrane and ring masses on transmission loss.

To better understand the behavior of the double-leaf struc-
tures under excitation, the finite element method was used to
predict the resonant mode shapes at discrete frequencies, as
seen in Fig. 10. The total displacements of the membrane and
ring masses at the resonance peaks and transmission loss peak
are shown in Fig. 10. Through Fig. 10(a), we found that the
membrane and ring masses of double-leaf structures all left
their balance place at the low-frequency resonance frequency
500 Hz. Ring 1 and ring 2 of the double-leaf structures vibrated
in phase. Figure 10(a) also shows that the first lay membrane-
type acoustical metamaterials play a major role at 500 Hz. Fig-
ure 10(b) shows that the second lay membrane-type acoustical
metamaterials play a major role at 1200 Hz. And ring 1 and
ring 2 of the second lay membrane-type acoustical metamate-
rials vibrated out of phase. Figure 10(c) shows that the center
part of the double-leaf membranes vibrated nearby in a bal-
anced position, the four rings masses were kept immobile in
a balanced position at 3450 Hz. Figure 10(c) shows that only
the center part of the first-leaf membrane vibrated nearby in a
balanced position at 5230 Hz.

Furthermore, the effect of the depthD of air-cavity is shown
in Fig. 11. According to Fig. 11, the low-frequency resonance
frequencies, the transmission loss peaks frequencies, and the
high-frequency resonance frequencies varied slightly when the
depth D of the air-cavity changed from 20 mm to 80 mm. But

the maximal transmission loss peaks depended on the depthD.
In addition, there were two resonance peaks between the low-
frequency resonance peaks and the high-frequency resonance
peaks when D = 60 mm and D = 80 mm. There was one
resonance peak at a range of 5500 Hz and 6000 Hz when D =
20 mm and D = 80 mm.

8. CONCLUSIONS

The present work has been focused on membrane-type
acoustical metamaterials of coaxial ring masses. By using the
finite element analysis, the transmission loss of membrane-
type acoustical metamaterials with coaxial ring masses for four
kinds of different cross section shape has been studied. The re-
sults show that the different contact areas of the coaxial ring
with the same mass have influence on the transmission loss
peak and the resonance frequencies of membrane-type acous-
tical metamaterials. Furthermore, the effect of the coaxial
ring’s mass on transmission loss of membrane-type acoustical
metamaterials has been analyzed. We found the low-frequency
resonance frequency increase with the mass decreasing while
the high-frequency resonance frequency did not change sig-
nificantly. Meanwhile, the transmission loss peak frequency
was moved to a lower frequency with the mass decreasing. In
addition, it is also showed that the coaxial ring masses only af-
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Figure 8. Double-leaf membrane-type acoustical metamaterials finite element
analysis models.

fect the TL at the lower frequencies while the membrane is af-
fected at all frequencies. Finally, the effects of the double-leaf
membrane-type acoustical metamaterials have been studied.
Two low-frequency resonance peaks, transmission loss peaks,
and high-frequency resonance peaks that overlap each other
have been found in the double-leaf membrane-type acoustical
metamaterials structure. And the maximal transmission loss
peaks depend on the depth D of air-cavity.
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In this study, the relationship between vibration and tool wear is investigated during high-speed dry turning by
using statistical parameters. It is aimed to show how tool wear and the work piece surface roughness changes with
tool vibration signals. For this purpose, a series of experiments were conducted in a CNC lathe. An indexable CBN
tool and a 16MnCr5 tool steel that was hardened to 63 HRC were both used as material twins in the experiments.
The vibration was measured only in the machining direction using an acceleration sensor assembled on a machinery
analyzer since this direction has more dominant signals than the other two directions. In addition, tool wear and
work piece surface roughness are measured at different cutting time intervals where the cutting speed, radial depth
of cut, and feed rate are kept constant. The vibration signals are evaluated using statistical analysis. The statistical
parameters in this study are the Root Mean Square (RMS), Crest Factor, and Kurtosis values. When the flank
wear increases, the Kurtosis value and RMS also increase, but the Crest factor exhibited irregular variations. It is
concluded that these statistical parameters can be used in order to obtain information about tool wear and work
piece surface roughness.

NOMENCLATURE

RMS Root Mean Square

KV Kurtosis Value

CF Crest Factor

FFT Fast Fourier Transform

AE Acoustic Emissions

1. INTRODUCTION

Products can be manufactured by using various methods
such as casting, extruding, and pressing. In the past, machining
has been the most popular of the various manufacturing pro-
cesses. The necessity of keeping in low level of product cost
is dictated by competition among the manufacturers, so this is
required to manufacture products with high quality. One very
important factor that affects the product quality is tool wear.
Tool wear in any machining process affects surface quality and
dimensional accuracy of the product, which is why tool wear
monitoring is an important issue to consider. Tool wear mon-
itoring methods are classified as direct and indirect.1, 2 A Di-
rect method is implemented by using optical devices to mea-
sure the geometry of the wear land. The indirect method is

based on the acquisition of measured values of process vari-
ables (such as the change of size of the work piece, cutting
force, temperature, vibration, spindle motor current, acoustic
emission, and surface roughness) and establishes the relation-
ship between tool wear and the process values of variables.2

Among the process variables, vibration supplies the best infor-
mation about tool condition. Some of the advantages of vibra-
tion measurement include ease of implementation and the fact
that no modifications to the machine tool or the work piece
fixture are required.3 Past studies have been divided into two
main groups: Acoustic Emission RMS and Vibration monitor-
ing methods. Many researchers focused on the Acoustic Emis-
sion RMS method for machining applications for a long time.
However, the studies based on vibration monitoring are rela-
tively less than the others.

Ghani et al.1 presented a study of tool life, surface finish,
and vibration while turning a nodular cast iron using ceramic
tool. They concluded that the surface finish was found to be
almost constant with the progression of the flank wear under
different cutting conditions. They also observed that vibra-
tion during cutting decreased as the speed increased and at a
low depth of cut, the vibration remained almost constant with
the increase of flank wear. Risbood et al.4 conducted sev-
eral experiments to predict surface roughness and dimensional
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deviation by measuring cutting forces and vibrations in turn-
ing process. In their study, surface finish could be predicted
within a reasonable degree of accuracy by taking the acceler-
ation of the radial vibration of tool holder as a feedback. Ra-
makrishna Rao et al.5 observed that tool acceleration ampli-
tude at the first natural frequency of the tool decreased at the
beginning, approached a minimum at the critical wear, and in-
creased again, in turning EN 31 steel using uncoated indexable
carbide inserts. They concluded from their findings that mini-
mum tool acceleration could be used as an indicator of critical
tool wear and the acceleration could be used to monitor wear
on-line. Abouelatta and Madl6 aimed to find a correlation be-
tween surface roughness and cutting vibrations in turning and
to derive mathematical models for predicted roughness param-
eters and machine tool vibrations. They concluded that the
method could be useful in predicting roughness parameters as
a function of cutting parameters and tool vibration.

The vibration signals could be converted to a more mean-
ingful state by using the statistical analysis method. The statis-
tical analysis method is the most suitable one with random sig-
nals when compared with other signal analysis methods. This
was based on the assumption of deterministic signals, which
was not applicable. The statistical analysis method has been
successfully applied in different branches7–11 but there is lit-
tle work related to machining process. El-Wardany et al.12

conducted experiments for on-line drill wear monitoring and
breakage. Their results showed that the KV increased dras-
tically with drill breakage while frequency analysis revealed
sharp peaks indicating drill breakage. Scheffer and Heyns13 in-
vestigated the tool wear in turning by using vibration and strain
measurements. The experiments were made for this purpose.
They helped us to obtain KV and CF features, which displayed
significant trends with increasing tool wear. Kumar et al.14

considered statistical methods such as time series modeling
technique for monitoring. This technique was used to extract
parameters called features, which represented the state of the
cutting process and the cutting tool condition in a turning pro-
cess. They had extracted a maximum amount of information
from force/vibration signals that were acquired during machin-
ing. Other parameters, such as static cutting force and power of
the dynamic signal (force/vibration) were also studied here as
features. Dimla15, 16 described a tool-wear monitoring proce-
dure in a metal turning operation to correlate vibration signals
to tool wear. The results showed that time domain features
were deemed to be more sensitive to cutting condition than
tool wear, whereas frequency based features correlated well
with the tool wear. Other studies presented a review of some
of the methods that were employed in tool condition monitor-
ing. Particular attention was paid to the manner in which sen-
sor signals from the cutting process have been harnessed and
used in the development of tool condition monitoring systems.
Thomas and Beauchamp17 focused on the collection and anal-
ysis of cutting-force, tool-vibration, and tool-modal-parameter
data that were generated by the lathe dry turning mild carbon
steel samples at different speeds, feeds, depths of cut, tool nose

radii, tool lengths, and work piece lengths. They analyzed the
effect of each cutting parameter on tool stiffness, damping, and
yielded an empirical model for predicting the behavior of the
tool stiffness variation. Moufki et al.18 presented an analytical
model of chatter vibration in orthogonal cutting in feed direc-
tion and contributed to the understanding of the self-excited
vibration phenomenon, for which an experimental study was
first carried out. Vibration signals, surface roughness, and chip
morphologies were analyzed for different sets of cutting condi-
tions in order to define the stability limits of the process. They
found that the predicted stability limits compared well with
those obtained from the experimental tests and the literature.

Some investigators considered acoustic emission signals for
tool wear detection. Jemielniak and Otman19 used a statis-
tical signal-processing algorithm to identify the RMS, skew,
and KV of acoustic emission signals for the detection of catas-
trophic tool failure and concluded that the skew and KV may
be better indicators of tool failure than RMS values. They were
found to be highly sensitive to changes in tool conditions and
gave promising results with regard to chipping as well as tool
breakage detection. J. Sun et al.20 used a signal-processing
algorithm in order to identify RMS, skew, and the KV of AE
signals. It was concluded that the skew and KV may be bet-
ter indicators of tool failure than RMS values. Roget et al.21

carried out machining tests from which the sensed AE signals;
the cutting operation were used to predict the state of the cut-
ting tool. Several parameters of the AE were recorded (i.e.,
RMS, mean, and peak values). They concluded that such a
task could only be successfully accomplished under specific
and limited conditions. Further statistical features, such as the
variance, KV, and the skew were extracted from the recorded
parameters. Dornfeld22 claimed that the changes in the skew
and KV of the AE RMS signals could effectively indicate tool
wear. Ravindra et al.23 described an indirect technique for the
monitoring of cutting tool conditions. The detection and anal-
ysis of AE that was generated during the machining of C-60
steel with a multilayer-coated carbide tool was carried out in
order to monitor the tool wear. The possibility of applying AE
methods as an on-line tool wear monitoring technique was in-
vestigated. Kamarthi et al.24 considered that the wavelet trans-
form representation of AE signals was effective in extracting
AE signal features that were sensitive to gradually increasing
flank wear.

The main objective of the present study was to find the re-
lationship between statistical vibration parameters, tool wear,
and surface roughness by changing the cutting time during
high speed turning operation. For this purpose, a series of ex-
periments were performed in a high speed CNC lathe. A CBN
tool with a single cutting edge and a 16MnCr5 tool steel with
63 HRC hardness as the work piece were both used. The vibra-
tions were measured only in the machining direction by using
a sensor that was assembled on a vibration analyzer, since the
signals in this direction were more dominant than the other two
directions after each pass. The machining was interrupted af-
ter every fifth experiment and the amount of the tool flank wear
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Figure 1. The schematic of the CNC lathe Experimental Setup.

Table 1. The properties of the work piece material.

Workpiece material
Type 16MnCr5
Composition (%) 0.49 Si, 0.28 Mn, 0.33 Al, 96.0 Fe,2.39 Ni, 0.5 Cr.
Hardness 63 HRC

Diameter: 40 mm
Dimensions Overall length: 250 mm

Cutting length: 170 mm

and contact length at the chip-tool interface was measured by
a toolmaker’s microscope. The collected vibration data were
processed by using statistical analysis methods. The statistical
parameters, RMS, CF, and KV were thus obtained.

2. THE EXPERIMENTAL PROCEDURE

The cutters were changed for each pass and the tool
vibrations were determined on the tool. Lateral surface
wears were examined by scanning electron microscope at
200×magnification.

2.1. Turning Machine, Cutting Tool, and Cut-
ting Parameters

A series of turning experiments were conducted without any
coolant in a PC-35 JHONNFORD CNC high speed turning
machine. The experimental set up schematic is shown in Fig. 1.
The tests were carried out by using a CBN cutting tool, which
was clamped on a tool holder without any coolant. The work
piece material was a cylindrical block of 16MnCr5 tool steel
hardened to 63 HRC. The cutting speed, radial depth of cut,
and feed rate were kept constant at 300 mm/min, 0.5 mm, and
0.16 mm/rev, respectively. The properties of the work piece
and tooling materials are given in Table 1 and 2, respectively.

2.2. Machining Parameters

The experiments were performed under dry conditions. The
tool life criterion was taken as 0.3 mm flank wear for all

Table 2. The properties of the tooling material.

Tooling Material
Tool holder PCLNR 25 25 M16
Tool type CNGA120408S01025MT
Tool material CBN insert
Tool holder clamping Kenlever
Insert angle (◦) 80
Cutting edge length (mm) 12
Insert thickness (mm) 4
Nose radius (mm) 0,8
Approach angle (◦) 95
Relief angle (◦) 5
Rake angle (◦) -6

Figure 2. The wear types in a cutting tool.28

the tools. The flank wear and surface roughness measure-
ments were taken after each pass of the cutter tools. The
PCBN KB5625 cutting tools were used for turning variables,
as shown in Table 3.

2.3. Measurement of Tool Wear
The action of one or several of these mechanisms results in

a number of tool wear types. Several classifications of these
wear types were proposed with minor differences amongst
them.25–27 The most common wear types include flank wear,
crater wear, and notch wear, which are all shown in Fig. 2.

Flank wear is the most frequently used wear type to deter-
mine when a tool is considered to be worn. This type of wear
is mostly the result of the abrasion mechanism between the
clearance face and the new machined surface. The ideal cut-
ting conditions consider flank wear as the only type that is ”ac-
ceptable” and try to keep it at its lowest progressive rate.25

3. VIBRATION MEASUREMENT

The vibration signals were gathered by a piezoelectric ac-
celerometer and processed with a CSI 2110 vibration analyzer.
The accelerometer (CSI 350) and PCB 603C01, were able to
sense vibration signals from 0.5 Hz up to 10000 Hz. The sen-
sitivity was 100 mV/g, and the measurement range was±50 g.
Its resonance frequency was 25 kHz. The analyzer consisted
of one accelerometer, a memory in which the signals were
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Table 3. The PCBN cutting tools that were used for turning variables.

EXP. Cutting Cutter Cutting Lathe Time ap f Vc n L D2

Tool Media (min) (mm) (mm/rev) (m/rev) (rpm) (mm) (mm)

Exp. 1.

C
N

G
A

12
04

08
S

S0
10

25
M

T

PC
L

N
R

25
25

M
16

D
RY

C
N

C
TO

R
N

A

PC
-3

5
JH

O
N

FO
R

D 8 32

Exp. 2. 12 28

Exp. 3. 16 0.5 0.16 300 2387 170 24

Exp. 4. 20 20

Exp. 5. 24 16

Table 4. The parameters for vibration measurements.

Number of spectral line 800

Number of average 6

Number of gathered data 1024

Window type Hanning

Spectral average mode Normal

Frequency range 60–3000 Hz

stored, electrical circuits that converted time domain signals
to frequency domain signals using the FFT process, and a port
through which vibration signals were transferred into a com-
puter. The used accelerometer was mounted magnetically onto
the surface of the tool holder. The parameters for collecting
vibration signal are given in Table 4. It was observed that the
dominant vibration signals took place between 60-3000 Hz in
the machining test. Thus, this frequency range was chosen as
frequency limits.

In the experiments, since no significant wear and vibration
levels were observed on the tool after the first few passes of the
tool on the work piece along the cutting length of 170 mm, it
was decided that tool wear, tool vibration, and surface rough-
ness of work piece measurements were to be taken after ev-
ery five passes with changing cutting time. Vibration signals
were recorded during cutting operation and tool flank wear and
surface roughness of the work piece were measured after the
turning was stopped. The maximum flank wear of the tool was
measured by using an optical microscope.

4. STATISTICAL ANALYSIS

The collected vibration data from the experiments were pro-
cessed using statistical analysis methods and the statistical pa-
rameters considered were RMS, CF, and KV. The statistical
parameters were calculated from the time domain data. The
KV and CF allowed the analysis of the distribution of the vi-
bration amplitudes to be contained in a time domain signal.

The root mean square value gave an indication of the contin-
uous or steady state amplitude in a time varying signal. RMS
is defined as the square root of the average of the sum of the
squares of an infinite number of samples of the signal, and the
variance is the second-order central moment. The variance and
RMS values were calculated from the equation shown below:

Varience : σ2 =

N∑
i=1

(xi − x)
2

N
; (1)

RMS =

√√√√√ N∑
i=1

xi2

N
; (2)

where xi was the measured vibration data, acceleration mm/s2,
x̄ is the mean of xi values, N was the number of samples in
the range, and σ was the standard deviation considered.

The KV was a higher-order statistical attribute of a time se-
ries and the values corresponded to the normalized fourth cen-
tral moment. This was shown for a Gaussian distribution and
a brief description of each is provided below:

Kurtosis Value =

M4

(StandardDeviation)
4 =

1
N

N∑
i=1

(xi − x)4

(σ)
4 . (3)

The CF corresponded to the ratio between the crest value
(maximum absolute value reached by the function representa-
tive of the signal during the considered period of time) and the
RMS value (efficient value) of the signal:

Crest Factor =

MaximumCrestV alue

RMS value
=

max (|xi|)√
N∑

i=1
xi

2

N

(4)

The application of distribution moments, such as KV and
skewness, have been well established in the analysis of vibra-
tion signals in tool condition monitoring and to extreme values
on both sides of the distribution.

5. RESULTS

In the five experiments, the amount of flank wear on cut-
ting tools was below the 300 µm, which is the threshold used
in ISO 368529 tool life testing with single-point turning tools.
Typical flank wear of the CBN cutting tool obtained after the
first experiment is presented in Fig. 3. Figure 3 shows that the
lateral surface wear occurred in the notch form which leads to
an increase in work piece surface roughness. Increasing the
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Figure 3. The flank wear pattern on the PCBN cutting tool at the first experi-
ment (V Bmax = 72µm).

tool wear deteriorates the work piece surface quality, which
then increases the tool vibrations, thus causing further degra-
dation of the surface quality.

In laboratories, tool wear is generally used as a life criterion
because it is easy to determine quantitatively. The amount of
flank wear is often used as the criterion because flank wear in-
fluences the surface roughness and accuracy of work material.
When an abrasion is the main cause of flank wear, the wear
pattern is relatively uniform and easy to measure. A standard
measure of tool life was the formation of a flank wearland, VB,
with length of 300 mm, although this was more related to a life
limited by failure than by surface finish or accuracy.30

Typical flank wear of CBN cutting tool was obtained in the
end of the experiments (fifth experiment) as shown in Fig. 4.

It was concluded that the notch form wear surface, which
was observed after the fifth experiment, was caused by carbide
and martensite phases within the tool microstructure under the
cubic boron nitrate coating. Wear particles did not cause the
scratches on the cutting tool because their hardness was less
than that of the tool.

The values of flank wear and surface roughness were ob-
tained for different cutting times, as shown in Figs. 5 and 6, re-
spectively. Figure 5 can be divided into three stages: first stage
(from 0 min to 8 min.), second stage (from 8 min to 16 min.),
and third stage (from 16 min to 24 min.). The wear appears to
grow more rapidly at the initial stage, grows at a lower steady
rate up to the third stage, and then grows at a higher rate at the
final stage.

In a turning process with a new cutter, the surface rough-
ness follows these stages during cutting time: in the first stage,
the surface roughness rapidly increases with time. In the sec-
ond stage, it remains stationary. At the last stage, it increases
rapidly again. Figure 6 shows the increase of the surface

Figure 4. The flank wear pattern on the PCBN cutting tool at the fifth experi-
ment (V Bmax = 116µm).

Figure 5. The relationship between the Cutting time and the Flank wear for
Vc = 300 m/min, ap =0, 5 mm, and f = 0, 16 mm/rev.

roughness with a cutting time of about 8 minutes. However,
when the cutting time went beyond 8 minutes, the Ra values
showed some fluctuations. However, the Ra values were taken
as constants because their deviations were relatively small.
The surface roughness decreased after 20 minutes of cutting
time from the cutter nose radius as a result of flank wear.

Figure 7 shows RMS value obtained from vibration ampli-
tude versus the flank wear. Vibration amplitude increases with
increasing the flank wear from 72 µm to 94 µm. The RMS
value seemed to be steady for flank wear values between 94 µm
and 98 µm. Moreover, it sharply increased again with the in-
creasing flank wear from 98 µm to 116 µm. It is expected
that RMS increases along with the increasing the flank wear,
as seen in Fig. 7.

KV obtained from the vibration amplitude against flank
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Figure 6. The relationship between the Cutting time and Surface Roughness
for Vc = 300 m/min, ap =0, 5 mm, and f = 0, 16 mm/rev.

Figure 7. The relationship between the Flank wear and the RMS values for
Vc = 300 m/min, ap =0, 5 mm, and f = 0, 16 mm/rev.

wear is shown in Fig. 8. It can be seen that the KV showed
an increasing tendency with increasing the flank wear. How-
ever, very slight increase was observed within the initial stage
of the wear from 72 µm to 94 µm. The KV increase was more
significant with the flank wear between 94 µm to 98 µm, after
the KV is reached to 3.3 and bigger values.

Another statistical parameter that was used to evaluate tool
wear was CF. The CF value obtained by the vibration ampli-
tude against flank wear is given in Fig. 9. It can be seen that the
CF showed an increasing tendency with increasing flank wear.
However, a very slight increase was observed within the ini-
tial stage of the wear from 72 µm to 94 µm. The CF increase
was more significant with the flank wear between 94 µm to
98 µm. It was expected that the CF value would increase with
the increasing flank wear.

Figure 10 presents changes in the surface roughness value
with respect to the CF. The obtained curve exhibited four dif-
ferent regions. Surface roughness was increased above 3.025
and 3.36 CF’s while moderate decrease was observed from
2.965 to 3.025 and from 3.226 to 3.36 CF values. The rela-

Figure 8. The relationship between the Flank Wear and the Kurtosis value for
Vc = 300 m/min, ap =0, 5 mm, and f = 0, 16 mm/rev.

Figure 9. The relationship between the Flank wear and the Crest factor for
Vc = 300 m/min, ap =0, 5 mm, and f = 0, 16 mm/rev.

tionship between the surface roughness and the CF exhibits
positive correlation except for decreasing parts of the figure.
We anticipated that this part may be constant. Some deviations
could have been due to experimental conditions.

The changes in surface roughness with respect to KV are
seen in Fig. 11. This curve is similar to the curve present in
Fig. 10. The surface roughness decreased between the KV val-
ues of 2.82 and 3.25. The increase of KV was more significant
when the surface roughness was between 3.25 and 3.58.

A similar relation was almost valid for the change in RMS
values with increasing the surface roughness, as shown in
Fig. 12. In the first region, both the surface roughness and
RMS increased, in the second region, the surface roughness
decreased along with the increasing RMS, and in the last re-
gion, the surface roughness increased sharply with the increas-
ing RMS values. As such, surface roughness decreased with
the decreasing RMS value. This shows that decreasing the vi-
bration leads to an increase in the surface quality.
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Figure 10. The relationship between the Surface Roughness (Ra) and the Crest
Factor for Vc = 300 m/min, ap =0, 5 mm, and f = 0, 16 mm/rev.

Figure 11. The relationship between the Surface Roughness (Ra) and the
Kurtosis value for Vc = 300 m/min, ap =0, 5 mm, and f = 0, 16 mm/rev.

6. CONCLUSION

In this study, the flank wear and the surface roughness were
investigated under high speed turning conditions. The relation-
ship between cutting time on the one hand and flank wear and
surface roughness on the other was investigated. Moreover, the
statistical parameters such as the KV, CF, and, RMS were ob-
tained from vibration data and the effect of the flank wear and
surface roughness on these parameters was studied.

The flank wear increased with the increasing cutting time
as expected during the cutting process. The surface rough-
ness presented an irregular variation with increasing the cutting
time but this behavior approximately matches with the general
trend except for some difference. The KV and RMS increased
when the flank wear increased, but the CF followed irregular
variations.

The change in surface roughness with the CF, KV, and RMS
exhibited similar curves. It is concluded that the CF, KV, and
RMS parameters can be used in order to obtain information
about tool wear and work piece surface roughness. However,

Figure 12. The relationship between the Surface Roughness (Ra) and the RMS
value for Vc = 300 m/min, ap =0, 5 mm, and f = 0, 16 mm/rev.

for this purpose, more experiments must be done with varying
cutting parameters, different work parts and tools.

Although real-like information can be obtained by evaluat-
ing vibration parameters such as RMS, KV, and CF, no clear
information about the state of the work piece surface roughness
can be obtained.
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Erdogan Özkaya, Murat Sarıgül and Hakan Boyacı
Department of Mechanical Engineering, Celal Bayar University, Muradiye, 45140 Manisa, Turkey

(Received 9 June 2014; accepted 11 May 2015)

In this study, nonlinear vibrations of a slightly curved beam of arbitrary rise functions is handled in case it rests
on multiple springs. The beam is simply supported on both ends and is restricted in longitudinal directions using
the supports. Thus, the equations of motion have nonlinearities due to elongations during vibrations. The method
of multiple scales (MMS), a perturbation technique, is used to solve the integro-differential equation analytically.
Primary and 3 to 1 internal resonance cases are taken into account during steady-state vibrations. Assuming the rise
functions are sinusoidal in numerical analysis, the natural frequencies are calculated exactly for different spring
numbers, spring coefficients, and spring locations. Frequency-amplitude graphs and frequency-response graphs
are plotted by using amplitude-phase modulation equations.

1. INTRODUCTION

Some beam elements of bridges, rails, and automotive in-
dustries are designed for the purpose of preventing impact by
modern engineers. One of these elements is a curved beam
model resting on an elastic foundation. Matter considered in
these models, which have nonlinear behavior, is the resonance
case of the system. If the system comes into a resonance state,
the amplitudes increase dangerously, which is an unwanted
case. Nonlinear problems of the model must be examined in
order to prevent these cases that may occur at any time during
vibration. For this reason, the linear part of the system must
first be solved analytically and then the effects of nonlinearity
should be added to the solutions. Thus, nonlinear vibrations of
the system can be investigated. Before introducing the back-
ground of curved or pre-buckled beams, some studies related
to our investigation must be mentined. Nayfeh and Mook re-
viewed and presented relevant works to the field up to 1979 in
their book.1 Cha derived governing equations for a linear elas-
tica carrying a number of lumped masses, springs, and viscous
dampers.2 Albarracn et al. studied free vibrations of a uni-
form beam with intermediate constraints and ends that were
elastically restrained against rotation and translation.3 Wang
and Qiao derived a general solution of the modal displacement
of a beam with arbitrary discontinuities.4 Wiedemann studied
an arbitrary system of Euler-Bernoulli beams that were inter-
connected by arbitrary joints and subject to arbitrary bound-
ary conditions.5 Huang and Chen studied structures with mul-
tiple attachments that were subjected to axial forces and os-
cillations.6 Regarding some assumptions in their model, they
examined the remaining model with the pure buckling prob-
lem, the free vibration problem, and the general eigenvalue
problem. Kelly and Srinivas investigated elastically connected
axially-loaded beams, which may be attached to a Winkler
foundation.7 Wang et al. studied the nonlinear interaction of

an inextensional beam on an elastic foundation with a three-to-
one internal resonance.8

In some studies, the beam was assumed to have a rising
function so the curvature effect on vibrations of the beam could
be investigated. Some of these studies were such that Rehfield
derived the equations of motion of a shallow arch with an ar-
bitrary rise function and studied the free vibrations approxi-
mately.9 Singh and Ali studied a moderately thick clamped
beam with a sinusoidal rise function by adding the effects of
transverse shears and rotary inertia.10 Hajianmaleki and Qatu
focused on the last two decades of research (1989-2012) done
on vibration analysis.11 They reviewed various beam theo-
ries such as thin (or classical), thick (or shear deformation),
layerwise beam theories, and different methods for solving
equations of motion, such as the transfer matrix method and
the finite element method. Tien et al. studied the dynamics
of a shallow arch subjected to harmonic excitation.12 In the
presence of both external and 1:1 internal resonance, he ex-
amined the bifurcation behavior of the shallow arch system.
Using two beam elements, one has three degree-of-freedom
and other four. Krishnan and Suresh studied the static and
free vibrations of curved beams.13 Oz et al. examined a sim-
ply supported and slightly curved beam resting on an elas-
tic foundation with cubic non-linearities.14 Considering free-
undamped and forced-damped vibrations, they analyzed the ef-
fects of the elastic foundation, axial stretching, and curvature
on the vibrations of the beams. Using a systematic theoret-
ical procedure, Lin presented a static analysis of extensional
circular-curved Timoshenko beams with general nonhomoge-
neous elastic boundary conditions and found the generalized
Green function of differential equations.15 For a general state
of non-uniform initial stress, Chen and Shen derived the virtual
work expressions of initially stressed curved beams.16 They
investigated the influence of arc segment angles, elastic foun-
dations, and initial stresses on natural frequencies. Nayfeh et
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al. studied how to construct the nonlinear normal modes of a
fixed-fixed buckled beam about its first post-buckling mode.17

Considering the cases of three-to-one and one-to-one inter-
nal resonances to solve the problem, they used the method
of multiple scales. Tarnopolskaya et al. examined the vibra-
tional behavior of beams with arbitrarily varying curvature and
cross-section in the lower region of the spectrum.18 They ex-
amined whether or not the mode transition took place for a
particular type of beam curvature and cross-section. Lestari
and Hanagud found closed-form exact solutions to the prob-
lem of nonlinear vibrations of buckled beams.19 They as-
sumed that their model consisted of axial springs in spite of
it having general support conditions. Lacarbonara et al. de-
veloped the open-loop nonlinear control strategy and applied
it to a hinged hinged shallow arch.20 They assumed the beam
had been subjected to a longitudinal end-displacement with a
frequency that was twice the frequency of the second mode
(principal parametric resonance). Lacarbonara and Rega stud-
ied general conditions for orthogonality of the non-linear nor-
mal modes of one-dimensional systems with arbitrary linear,
quadratic, and cubic non-linearities.21 Considering the cases of
two-to-one, three-to-one, and one-to-one internal resonances
in a class of shallow symmetric structural systems, they ex-
amined undamped and unforced vibrations. Wu and Chiang
presented a simple, straightforward, and systematic technique
to derive the displacement functions for the radial, or normal,
tangential and rotational displacements of an arch element.22

In their study, static equilibrium equations were investigated
further. Adessi et al. studied the regime of high pre-stressed
beams.23 They examined post-buckling configurations of the
beam considering a lumped mass that is rigidly clamped to
the beam at an arbitrary point along its span and assuming
different boundary conditions (simply supported and hinged-
hinged). Lacarbonara et al. investigated the non-linear one-
to-one interactions excited by an external primary-resonance
base acceleration of a hinged-hinged imperfect beam with a
torsional spring at one end and possessing veering between
the frequencies of the lowest two modes.24 Ecsedi and Dluhi
studied a non-homogeneous curved beam formulated in cylin-
drical coordinates and examined the static and dynamic anal-
ysis of the curved beam.25 Lee et al. studied how to de-
rive the equations of motion for a clampedclamped curved
beam subjected to transverse sinusoidal loads. By using the
assumed mode, the Galerkin method, and assuming a single
mode approach, they determined the effect of parametric ex-
citation near the symmetric mode resonance frequency.26 Oz
and Das investigated natural frequencies of a circular curved
beam with a Mode 1 open transverse crack by using FEM.27 Oz
and Pakdemirli studied vibrations of simply supported shallow
curved beams.28 Assuming the curvature of the beam had si-
nusoidal and parabolic functions, they searched whether or not
there were 2:1 internal resonances. By assuming the sinusoidal
rising function for the initial curvature of the beam, Erdogan et
al. studied nonlinear vibrations of curved beams carrying a
concentrated mass and multiple concentrated masses.29, 30 Xi-
uchang et al. proposed a wave approach to investigate the wave

Figure 1. A curved beam resting on multiple springs.

propagation in the structural waveguides with curved beam
components.31

In the recent years, some researchers focused on the con-
tinua resting on partially supported elastic foundation/multiple
springs. These studies were such that Stncioiu et al. studied
the dynamics of a two-axle system travelling along a continu-
ous elastic beam resting on elastic supports modeled as linear
springs.32 During its travel along the vibrating beam, effects
resulting from the presence of intermediate elastic supports
were examined. Motaghian et al. proposed an exact solution
to the free vibration problem of beams having mixed boundary
conditions.33 By using the Fourier series, they solved govern-
ing differential equations of beams that had underlying elas-
tic springs, which occupied a particular length of the beam.
Motaghian et al. proposed an exact solution to the free vibra-
tion problem of plates having mixed boundary conditions.34

By using the Fourier series, they solved governing differential
equations of plates that have underlying elastic springs which
occupy an arbitrary area of the plate. Ghayesh investigated
the free and forced vibrations of a Kelving-Voigt viscoelastic
beam supported by a nonlinear spring.35 Linear and nonlinear
frequencies of the system were analyzed by considering the
nonlinear spring effect. Sari and Pakdemirli studied the dy-
namic behavior of a slightly curved microbeam that had non-
ideal boundary conditions.36 They also presented references
for the choice of resonable resonant conditions, design appli-
cations, and industrial applications of such systems.

In this work, nonlinear vibrations of a curved beam resting
on multiple springs were investigated. The beam was assumed
to have an arbitrarily curvature function and simply supported
at both ends. To seek an analytical solution to the problem,
the method of multiple scales (MMS), a perturbation method,
was used. Primary and 3:1 internal resonance cases were stud-
ied in detail. Assuming the curvature of the beam was a si-
nusoidal function, the numerical solutions were obtained for
steady-state phase of vibrations.

2. FORMULATION OF THE PROBLEM

In Fig. 1, the curved beam-spring system is restricted on
both ends with immovable supports. In such a system, ŵm
and ûm denote transversal and longitudinal displacements re-
spectively. Assuming that the ratio of the beam’s maximum
amplitude to its projected lenght L is equal to 1/10, let us keep
in mind that the beam’s curvature function is in the Ŷ0 arising
function. Let us assume that n number of springs is attached
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under the beam, km is the spring coefficient, and x̂m is the dis-
tance of these springs from the immovable end at the left-hand
side. In order to analyize the equations of motion within this
system, we used its potential (U ) and kinetic (T ) energies as
defined below:

U =

1

2

n∑
m=0

E ·A ·
x̂m+1∫
x̂m

(
û′m+1 + Ŷ ′0 · ŵ′m+1 +

1

2
· ŵ′2m+1

)2

dx̂

+
1

2
·

n∑
m=0

E · I ·
x̂m+1∫
x̂m

ŵ′′2m+1dx̂

+
1

2
·

n∑
m=0

km+1 · ŵ2
m+1

∣∣
xm+1=x̂m+1,t=t̂

; (1)

T =
1

2

n∑
m=0

ρ · A ·
x̂m+1∫
x̂m

˙̂w2
m+1 dx̂,

x̂0 = 0, x̂n+1 = L, m = 0, 1...n. (2)

In Eqs. (1) and (2), E is the young modulus, ρ is the density,
A is the cross sectional area of the beam, and I is the moment
of inertia of the beam cross-section with respect to the neutral
axis. (·) and (’) denote differentiations with respect to the time
t and the spatial variable x respectively.

Inserting these energy terms defined Eqs. (1) and (2) into
the Hamilton Principle formulation as shown below:

δ

t̂2∫
t̂1

(T − U) dt̂ = 0; (3)

and by invoking the necessary calculations, longitudinal dis-
placement term (um) could be eliminated from the equations
of motion in the tranverse direction. Thus, the equations of
motion can be written as follows:

ρ ·A ·¨̂wm+1 + E · I · ŵıvm+1 =

E ·A
L
·

 n∑
r=0

x̂r+1∫
x̂r

{
Ŷ ′0 · ŵ′r+1 +

1

2
· ŵ′2r+1

}
dx̂


·
(
Ŷ ′′0 + ŵ′′m+1

)
. (4)

In Eq. (4), the equation of motion for the system consists
of n + 1 equations in number. The equations of the motion
and boundary conditions were dependent on the size of the
system and the materials used. In order to make them inde-
pendent from the dimensional parameters, the following defi-

nitions must be made:

wp = ŵp/L, Y0 = Ŷ0

/
L, x = x̂/L,

t =

√
E · I

ρ ·A · L2
. t̂, I = r2 ·A,

ηp = x̂p/L, τp =
kp · L3

E · I
; (5)

where r is the radius of gyration of the beam’s cross section,
τm is the stiffness ratio between the spring and the beam, and
ηm is the dimensionless distance of the spring from left hand-
side support. Adding dimensionless damping (−→µ ) and external
forcing (

−→
F ) terms after non-dimensionalization, equations of

motion via boundary and continuity conditions can be rewrit-
ten as follows:

ẅm+1 + wıvm+1 + 2 · −→µ · ẇm+1 = n∑
r=0

ηr+1∫
ηr

{
Y ′0 · w′r+1 +

1

2
· w′2r+1

}
dx


· (Y ′′0 + w′′m+1) +

−→
F m+1 · cos (Ω · t) ; (6)

wp|x=ηp = wp+1|x=ηp ,

w′p|x=ηp = w′p+1|x=ηp ,

w′′p|x=ηp = w′′p+1|x=ηp ,

(w′′′p − w′′′p+1)|x=ηp = τp · wp|x=ηp
w1|x=η0 = w′′1|x=η0 = wn+1|x=ηn+1

= w′′n+1|x=ηn+1
= 0

η0 = 0,

ηn+1 = 1

p = 1, 2...n; (7)

where Ω is the frequency of the external forcing.

3. ANALYTICAL SOLUTIONS

3.1. Multiple Scales Method - A Perturbation
Method

In this section, the method of multiple scales
(MMS)(Nayfeh37, 38) will be applied to the partial differ-
ential equations and corresponding boundary conditions
directly in order to search approximate solutions to the
problem. Eq. (6) is assumed to have an expansion solution as
follows:

wp+1 (x , t ; ε) =

3∑
j=1

εj · w(p+1)j (x , T0 , T1 , T2); (8)

where ε is a small bookkeeping parameter artificially inserted
into the equations, T0 = t is the fast time scale, and T1 = ε · t
and T2 = ε2 · t were the slow time scales in MMS. In order
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to counter the effects of the nonlinear terms via the same order
of damping and forcing, the forcing and damping terms were
ordered as follows:

−→µ = ε2 · µ, ~Fp+1 = ε3 · Fp+1. (9)

Let us assume the curvature function of the beam as Y0 ≈
O(1), which means that its order corresponds to first order of
the general system. Under this assumption, inserting Eqs. (8)
and (9) into Eq. (6) and separating the terms of each order, one
finds the following equations: Order ε(j = 1):

D2
0 ·w(m+1)1+wıv(m+1)1 =


n∑
r=0

ηr+1∫
ηr

Y ′0 · w′(r+1)1dx

 ·Y ′′0 .
(10)

Order ε2(j = 2):

D2
0 · w(m+1)2 + wıv(m+1)2 =

− 2 ·D0 · D1 · w(m+1)1

+


n∑
r=0

ηr+1∫
ηr

Y ′0 · w′(r+1)2 dx

 · Y ′′0
+

1

2
·


n∑
r=0

ηr+1∫
ηr

w′2(r+1)1 dx

 · Y ′′0
+


n∑
r=0

ηr+1∫
ηr

Y ′0 · w′(r+1)1 dx

 · w′′(m+1)1. (11)

Order ε3(j = 3):

D2
0 · w(m+1)3 + wıv(m+1)3 =

− 2 · µ ·D0 · w(m+1)1 − 2 · D0 ·D1 · w(m+1)2

−
(
D2

1 + 2 · D0 ·D2

)
· w(m+1)1 + Fm+1 · cos (Ω . t)

+


n∑
r=0

ηr+1∫
ηr

Y ′0 · w′(r+1)3 dx

 · Y ′′0
+


n∑
r=0

ηr+1∫
ηr

w′(r+1)1 · w′(r+1)2 dx

 · Y ′′0
+


n∑
r=0

ηr+1∫
ηr

Y ′0 · w′(r+1)2 dx

 · w′′(r+1)1

+
1

2
·


n∑
r=0

ηr+1∫
ηr

w′2(r+1)1 dx

 · w′′(p+1)1

+


n∑
r=0

ηr+1∫
ηr

Y ′0 · w′(r+1)1dx

 · w′′(p+1)2; (12)

where Dn ≡ ∂/∂Tn is the derivative with respect to time and
given in Appendix (A.1). The conditions that were necessary

for solving Eqs. (10) to (12), are given as below:

wpj |x=ηp = w(p+1)j

∣∣
x=ηp

,

w′pj |x=ηp = w′(p+1)j

∣∣
x=ηp

,

w′′pj |x=ηp = w′′(p+1)j

∣∣
x=ηp

,(
w′′′pj − w′′′(p+1)j

)∣∣
x=ηp

= τp · wpj |x=ηp
w1j |x=η0 = w′′1j |x=η0 = w(n+1)j

∣∣
x=ηn+1

=

w′′(n+1)j

∣∣
x=ηn+1

= 0

j = 1, 2, 3. (13)

Eq. (10) from order ε1 corresponds to the linear problem of the
system and other orders in Eqs. (11) and (12) to the nonlinear
problem. These cases were investigated seperately when these
equations were being solved. Firstly, solutions of the primary
resonance case were searched. Secondly, 3:1 resonance case
has been investigated by assuming there is three-to-one ratio
between any two natural frequencies.

3.2. Primary Resonance
Let us assume that order ε in Eq. (10) accepts the following

solution:

w(m+1)1 (x , T0 , T1 , T2) =[
A (T1 , T2) · ei . ω . T0 + cc

]
· Ym+1 (x) . (14)

In Eq. (14), cc is the complex conjugate of the preceding
terms, ω is the natural frequency, and Ym+1 is the function
describing the mode shape. By inserting Eq. (14) into Eqs. (10)
and (13) and by assuming that j = 1, one obtains the following
differential equations and corresponding conditions:

Y ıvm+1 − ω2 . Ym+1 =


n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′r+1 · dx

 · Y ′′0
Y1|x=η0 = Y ′′1|x=η0 = Yn+1|x=ηn+1

= Y ′′n+1|x=ηn+1
= 0

Yp|x=ηp = Yp+1|x=ηp ,

Y ′p|x=ηp = Y ′p+1|x=ηp ,

Y ′′p|x=ηp = Y ′′p+1|x=ηp ,

(Y ′′′p − Y ′′′p+1 − τp · Yp)|x=ηp = 0. (15)

To be able to find the solution at the order ε2 of the perturbation
series, equality of D1 · A(T1, T2) = 0 must be provided. This
results in assumption of A = A(T2) and means that there is
no dependence on T1 at this order. By inserting Eq. (14) into
Eq. (11), the following solution is suitable at this order:

w(m+1)2 (x, T2) =[
A2 · e2 . i . ω . T0 + cc

]
·ϕ(m+1)1 (x)+2 ·A·Ā·ϕ(m+1)2 (x) .

(16)

Substituting Eq. (16) into both Eq. (11) and (13) while keeping
in mind that j = 2, yields the following equations and condi-
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tions:

ϕıv(m+1)1 − 4 · ω2 · ϕ(m+1)1 =
n∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)1 dx

 · Y ′′0
+

1

2
·


n∑
r=0

ηr+1∫
ηr

Y ′2r+1 dx

 · Y ′′0
+


n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′r+1 dx

 · Y ′′m+1; (17)

ϕıv(m+1)2 =


n∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)2 dx

 · Y ′′0
+

1

2
·


n∑
r=0

ηr+1∫
ηr

Y ′2r+1 dx

 · Y ′′0
+


n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′r+1 dx

 · Y ′′m+1; (18)

ϕph|x=ηp = ϕ(p+1)h

∣∣
x=ηp

,

ϕ′ph
∣∣
x=ηp

= ϕ′(p+1)h

∣∣∣
x=ηp

,

ϕ′′ph
∣∣
x=ηp

= ϕ′′(p+1)h

∣∣∣
x=ηp

,(
ϕ′′′ph − ϕ′′′(p+1)h − τp · ϕph

)∣∣∣
x=ηp

= 0

ϕ1h|x=η0 = ϕ′′1h|x=η0
= ϕ(n+1)h

∣∣
x=ηn+1

= ϕ′′(n+1)h

∣∣∣
x=ηn+1

= 0

h = 1, 2. (19)

At the last order (ε3) of the perturbation series, having substi-
tuted Eqs. (14) to (16) into Eq. (12), the resulting equation will
accept the solution of the following separated form as secular
and nonsecular terms:

w(m+1)3 (x , T0 , T2) =

φm+1 (x , T2) · ei . ω . T0 +Wm+1 (x , T2) + cc; (20)

where Wm+1(x, T2) corresponds to the solution for the non-
secular terms, and cc corresponds to the complex conjugate of
the preceding terms. Let us take the excitation frequency as
below:

Ω = ω + ε2 · σ; (21)

where σ is the detuning parameter denoting closeness of the
forcing frequency to the natural frequency. By inserting
Eqs. (20) and (21) into Eqs. (12) and (13), taking in mind
j = 3, and eliminating the secular terms, one obtains the dif-
ferential equations and conditions in Eqs. (22) and (23) (see
top of the next page).

In order to have a solution for Eqs. (22) and (23), a solvabil-
ity condition must be satisfied for this nonhomogenous equa-
tion (see details in Refs. Nayfeh37, 38). Applying the solvability
condition for Eqs. (22) and (23), one obtains following equa-
tions:

2 · i · ω .
(
Ȧ+ µ · A

)
+A2 · Ā · Γ =

1

2
· f · ei·σ·T2 . (24)

In Appendix (A.2), one can see normalization and simplifi-
cation done for Eq (24).

By substituting the polar forms, we get:

A (T2) =
1

2
· a · ei·θ, Ā (T2) =

1

2
·a · e−i·θ, θ = θ (T2) ;

(25)
into Eq. (24), and separating real and imaginary parts, one ob-
tains following equations:

µ · a+ ȧ =
1

2 · . ω
·f ·sinγ, −a · θ̇+λ ·a3 =

1

2 · ω
·f ·cos γ.

(26)
These equations can be defined as amplitude-phase modulation
equations and consist of the real amplitude a and phase θ. The
simplifications that were done can be seen in Appendix (A.3).
Here, we have defined λ as nonlinearity effect of the system.

In undamped free vibrations, the terms f , µ, and σ were
taken as zero. a = a0 is assumed because ȧ = 0 is taken for
the steady-state solutions. This indicates that the amplitude of
vibration is constant. Therefore, the nonlinear frequency was
defined as:

ωnl = ω + θ̇ = ω + λ · a20. (27)

In damped-forced vibrations for the steady-state region, ȧ
and γ̇ can be taken as zero and denote no change in amplitude
and phase with time. Thus, eliminating γ from Eq. (26), one
can obtain the detuning parameter (σ) as below:

σ = λ · a20 ±

√(
f

2 · a0 · ω

)2

− µ2. (28)

3.3. Three to One Internal Resonance
In this section, the 3:1 internal resonance case between the

kth and sth mode of the system will be discussed. For the so-
lution, a two-mode expansion is considered because of the in-
teraction between the two modes. In Eq. (9), the first order of
the perturbation series is assumed to have a solution as below:

w(m+1)1 (x , T0 , T1 , T2) =[
Ak (T1 , T2) · ei ·ωk ·T0 + cc

]
· Y(m+1)k (x)

+
[
As (T1 , T2) · ei·ωs·T0 + cc

]
· Y(m+1)s (x) . (29)

Inserting this solution into Eqs. (10) and (13), one obtains
the following equations and conditions belonging to the kth
and sth modes as simplified in letter g:

Y ıv(m+1)g − ω
2
g · Y(m+1)g =

n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)g · dx

 · Y ′′0; (30)
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φıvm+1 − ω2 · φm+1 −


n∑
r=0

ηr+1∫
ηr

Y ′0 · φ′r+1 dx

 · Y ′′0 = −2 · i · ω ·
(
Ȧ+ µ · A

)
· Ym+1 +

1

2
· Fm+1 · ei.σ.T2

+A2 Ā ·

[
n∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′r+1 dx ·
[
ϕ′′(m+1)1 + 2 · ϕ′′(m+1)2

]

+


n∑
r=0

ηr+1∫
ηr

Y ′r+1 · ϕ′(r+1)1 dx+ 2 ·
n∑
r=0

ηr+1∫
ηr

Y ′r+1 · ϕ′(r+1)2dx

 · Y ′′0
+

3

2
·
n∑
r=0

ηr+1∫
ηr

Y ′2r+1 dx+

n∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)1 dx+ 2 ·
n∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)2 dx

 · Y ′′m+1

]
; (22)

φp|x=ηp = φp+1|x=ηp , φ′p
∣∣
x=ηp

= φ′p+1

∣∣
x=ηp

, φ′′p
∣∣
x=ηp

= φ′′p+1

∣∣
x=ηp

,
(
φ′′′p − φ′′′p+1 − τp · φp

)∣∣
x=ηp

= 0,

φ1|x=η0 = φ1
′′∣∣
x=η0

= φn+1|x=ηn+1
= φn+1

′′∣∣
x=ηn+1

= 0. (23)

Ypg|x=ηp = Y(p+1)g

∣∣
x=ηp

,

Y ′pg|x=ηp = Y ′(p+1)g

∣∣
x=ηp

,

Y ′′pg|x=ηp = Y ′′(p+1)g

∣∣
x=ηp

,(
Y ′′′pg − Y ′′′(p+1)g − τp · Ypg

)∣∣∣
x=ηp

= 0,

Y1g|x=η0 = Y ′′1g|x=η0 = Y(n+1)g

∣∣
x=ηn+1

= Y ′′(n+1)g

∣∣
x=ηn+1

= 0,

g = k, s. (31)

In order to obtain the solutions at the order ε2 of perturba-
tion series, it should be assumed that Ak = Ak(T2), As =

Am(T2). This necessity requires no dependence on T1 in this
order. Inserting Eqs. (30) and (31) into Eq. (11), the equation
at order ε2 has the following solution:

w(m+1)2 (x , T2) =[
A2
k · e2· i·ωk·T0 + cc

]
· ϕ(m+1)1 (x)

+
[
A2
s · e2·i·ωs·T0 + cc

]
· ϕ(m+1)2 (x)

+
[
Ak ·As · ei·(ωk+ωs) ·T0 + cc

]
· ϕ(m+1)3 (x)

+
[
As ·Ak · ei·(ωs−ωk)·T0 + cc

]
· ϕ(m+1)4 (x)

+ 2 ·As ·As · ϕ(m+1)5 (x)

+ 2 ·Ak ·Ak · ϕ(m+1)6 (x) . (32)

Inserting Eq. (32) into Eqs. (11) and (13), and separating the
kth and sth modes, one can obtain the following differential
equations:

ϕıv(m+1)1 − κ1
4 · ϕ(m+1)1

−


s∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)1 dx

 · Y ′′0
=

1

2
·


s∑
r=0

ηr+1∫
ηr

Y ′2(r+1)k dx

 ,

· Y0′′


s∑
r=0

ηr+1∫
ηr

Y0
′ · Y(r+1)k

′ dx

 · Y(m+1)k

′′
;

ϕıv(m+1)2 − κ2
4 · ϕ(m+1)2

−


s∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)2 dx

 · Y ′′0
=

1

2
·


s∑
r=0

ηr+1∫
ηr

Y ′2(r+1)s dx

 · Y ′′0
+


s∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)s dx

 · Y ′′(m+1)s,

ϕıv(m+1)3 − κ3
4 · ϕ(m+1)3

−


s∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)3 dx

 · Y ′′0
=


s∑
r=0

ηr+1∫
ηr

Y ′(r+1)k · Y ′(r+1)s dx

 · Y ′′0
+


s∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)k dx

 · Y ′′(m+1)s
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+


s∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)s dx

 · Y ′′(m+1)k,

ϕıv(m+1)4 − κ4
4 · ϕ(m+1)4

−


s∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)4 dx

 · Y ′′0
=


s∑
r=0

ηr+1∫
ηr

Y ′(r+1)k · Y ′(r+1)s · dx

 · Y ′′0
+


s∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)k dx

 · Y ′′(m+1)s

+


s∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)s dx

 · Y ′′(m+1)k,

ϕıv(m+1)5 −


s∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)5 dx

 · Y ′′0
=

1

2
·


s∑
r=0

ηr+1∫
ηr

Y ′2(r+1)k dx

 · Y ′′0
+


s∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)k dx

 · Y ′′(m+1)k,

ϕıv(m+1)6 −


s∑
r=0

ηr+1∫
ηr

Y ′0 · ϕ′(r+1)6 dx

 · Y ′′0
=

1

2
·


s∑
r=0

ηr+1∫
ηr

Y ′2(r+1)s dx

 · Y ′′0
+


s∑
r=0

ηr+1∫
ηr

Y ′0 · Y ′(r+1)s · dx

 · Y ′′(m+1)s. (33)

The following conditions were also obtained:

ϕpv|x=ηp = ϕ(p+1)v

∣∣
x=ηp

,

ϕ′pv
∣∣
x=ηp

= ϕ′(p+1)v

∣∣∣
x=ηp

,

ϕ′′pv
∣∣
x=ηp

= ϕ′′(p+1)v

∣∣∣
x=ηp

,(
ϕ′′′p1 − ϕ′′′(p+1)1 − τp · ϕp1

)∣∣∣
x=ηp

= 0

ϕ1v|x=η0
= ϕ′′1v|x=η0 = ϕ(s+1)v

∣∣
x=ηs+1

= ϕ′′(s+1)v

∣∣∣
x=ηs+1

= 0

v = 1..6. (34)

The solutions at order ε3 were similar to those of the first
order and can be written as:

w(m+1)3 (x, T0, T2)

= φ(m+1)k (x, T2) · ei·ωk ·T0

+ φ(m+1)s (x, T2) · ei ·ωs ·T0

+Wm+1 (x, T0, T2) + cc. (35)

Thus, let us assume that the forcing frequency is close to the
natural frequency of the kth mode, and there is an approximate
ratio as three-to-one between the kth and sth modes as:

Ω = ωk + ε2 · σ, ωs = 3 · ωk + ε2 · q. (36)

In this case, by substituting Eqs. (35) and (36) into Eqs. (12)
and (13) and eliminating non-secular terms, one obtains the
following equations and conditions:

φıv(m+1)k − ω
2
k · φ(m+1)k

−


n∑
r=0

ηr+1∫
ηr

Y ′0 · φ′(r+1)k dx

 · Y ′′0
= −2 · i · ωk ·

(
Ȧk + µ ·Ak

)
· Y(m+1)k +

1

2
· ei·σ·T2 ·Fm+1

+A2
k ·Ak · Γ(m+1)1

(k) +As ·As ·Ak · Γ(m+1)2
(k)

+Ak
2 ·As · ei·q·T2 · Γ(m+1)3

(k); (37)

φıv(m+1)s − ω
2
s · φ(m+1)s

−


n∑
r=0

ηr+1∫
ηr

Y ′0 · φ′(r+1)s dx

 · Y ′′0
= −2 · i · ωs ·

(
Ȧs + µ ·As

)
· Y(m+1)s

+As
2 ·As · Γ(m+1)1

(s) +Ak ·Ak ·As · Γ(m+1)2
(s)

+Ak
3 · e−i·q·T2 · Γ(m+1)3

(s); (38)

φpg|x=ηp = φ(p+1)g

∣∣
x=ηp

,

φ′pg
∣∣
x=ηp

= φ′(p+1)g

∣∣∣
x=ηp

,

φ′′pg
∣∣
x=ηp

= φ′′(p+1)g

∣∣∣
x=ηp

,(
φ′′′pg − φ′′′(p+1)g − τp · φpg

)∣∣∣
x=ηp

= 0,

φ1g|x=η0 = φ′′1g
∣∣
x=η0

= φ(n+1)g

∣∣
x=ηn+1

= φ′′(n+1)g

∣∣∣
x=ηn+1

= 0;

g = k, s. (39)

Γ’s in the above equations are defined in Appendix (??).
If the solvability condition (see Nayfeh for further de-

tails37, 38) is applied in order to solve Eqs. (37), (38) and (39)
the following equations were obtained:
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2 · i·ωk ·
(
Ȧk + µ ·Ak

)
−λ1(k)·Ak2 ·Ak−λ2(k)·As ·As·Ak

− λ3(k) ·Ak
2 ·As · ei·q·T2 =

1

2
· f.ei·σ·T2 ,

2 ·i ·ωs ·
(
Ȧs + µ ·As

)
−λ1(s) ·As2 ·As−λ2(s) ·Ak ·Ak ·As

− λ3(s) · Ak3 · e−i ·q·T2 = 0. (40)

In Appendix (A.5), one can see normalizations and simpli-
fications done for Eq. (40). In order to rewrite the equations
in real amplitude form, the following complex transformations
were used:

Ak =
1

2
· ak · ei ·θk , As =

1

2
· as · ei ·θs . (41)

Using Eq. (41), the following equations were obtained:

i · ωk · (ȧk + µ · ak)− ωk · ak · θ̇k −
λ1

(k)

8
· ak3

− λ2
(k)

8
· as2 · ak −

λ3
(k)

8
· ak2 · as · ei·β =

1

2
· f.ei · γ ;

i · ωs · (ȧs + µ · as)− ωs · as · θ̇s −
λ1

(s)

8
· as3

− λ2
(s)

8
· ak2 · as −

λ3
(s)

8
· ak3 · e−i · β = 0. (42)

Simplifications for γ and β done here can be seen in Ap-
pendix (A.6). By separating the real and imaginary parts of
Eq. (42), one obtains the following four equations:

ωk · (ȧk + µ · ak)− λ3
(k)

8
· ak2 · as · sinβ =

1

2
· f · sin γ,

ωs · (ȧs + µ · as) +
λ3

(s)

8
· ak3 · sinβ = 0,

− ωk · ak · (σ − γ̇)− λ1
(k)

8
· ak3 −

λ2
(k)

8
· as2 · ak

− λ3
(k)

8
· ak2 · as · cosβ =

1

2
· f · cos γ,

− ωs · as ·
(
β̇ + 3 · (σ − γ̇)− q

)
− λ1

(s)

8
· as3

− λ2
(s)

8
· ak2 · as −

λ3
(s)

8
· ak3 · cosβ = 0. (43)

Let us put the derivatives with respect to time to one side for
determining the dynamic behavior of the system:

G1 ⇒ ȧk =

{
1

2
· f · sin γ +

λ3
(k)

8
· ak2 · as · sinβ

− ωk · µ · ak

}
· 1

ωk
,

G2 ⇒ ȧs =

{
−λ3

(s)

8
· ak3 · sinβ − ωs · µ · as

}
· 1

ωs
,

G3 ⇒ γ̇ =

{
1

2
· f · cos γ +

λ1
(k)

8
· ak3 +

λ2
(k)

8
· as2 · ak

+
λ3

(k)

8
· ak2 · as · cosβ + ωk · ak · σ

}
· 1

ωk.ak
,

G4 ⇒ β̇ =

{
−λ1

(s)

8
·as3−

λ2
(s)

8
·ak2 ·as−

λ3
(s)

8
·ak3 ·cosβ

− ωs · as · (3 · (σ − γ̇)− q)

}
· 1

ωs.as
. (44)

In the steady state case of the system, it is assumed that there
is no dependence on time. Therefore, taking ȧk = ȧs = γ̇ =

β̇ = 0 in Eq. (36), the steady-state solutions can be found.
The Jacobian matrix is constructed to determine the stability
of fixed points:

∂G1

∂ak
∂G1

∂as
∂G1

∂γ
∂G1

∂β
∂G2

∂ak
∂G2

∂as
∂G2

∂γ
∂G2

∂β
∂G3

∂ak
∂G3

∂as
∂G3

∂γ
∂G3

∂β
∂G4

∂ak
∂G4

∂as
∂G4

∂γ
∂G4

∂β

 ak = ak0
as = as0
γ = γ0
β = β0

; (45)

where terms with 0 indices define fixed points of the steady
state. By evaluating the eigenvalues of the Jacobian matrix,
stability is determined. If all eigenvalues of the Jacobian ma-
trix have negative real parts, these fixed points were stable oth-
erwise unstable.

4. NUMERICAL RESULTS

Let us assume the rise function of the curved beam has si-
nusoidal variation in the numeric analysis. Taking the dimen-
sionless form of the curvature as Y0 = sin(π · x), primary and
three-to-one internal resonances were investigated in seperated
sections as given below.

4.1. Case of Primary Resonance

Natural frequencies can be found by solving the linear prob-
lem and conditions in Eq. (15). The first five natural frequen-
cies of the curved beam-spring system were given for two and
three springs in Tabs. 1 and 2 respectively. The springs (τp),
whose dimensionless sizes were selected as 10 and 100, were
assumed to be placed at arbitrary points (ηp) of the beam, mak-
ing symmetric and asymmetric cases according to spring loca-
tions in these tables.

In order to find the approximate solutions to the mathemat-
ical model, the nonlinear problems were taken into consider-
ation. For this purpose, Eq. (15), which corresponds to the
linear part of the problem, is solved first. Then, nonlinear-
ity coefficients (λ) were obtained by using Eqs. (17) and (18).
Nonlinearities (λ) of the first mode were given in the cases of
two and three springs in Tabs. 1 and 2 respectively. As seen
on these tables, nonlinearities have positive and negative signs
according to locations and magnitudes of the springs. If so, we
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Table 1. The first five natural frequencies and nonlinearity coefficients (/lambda) of the first mode for the beam resting on two springs.

η1 η2 t1 t2 ω1 ω2 ω3 ω4 ω5 λ(ω1)

10 10 12.682 39.796 88.911 157.993 246.821 - 0.7409
0.1 0.3 10 100 16.162 41.961 89.013 158.190 247.188 0.0819

100 10 13.266 40.560 89.570 158.208 247.187 - 0.5316
10 10 12.960 39.566 89.013 157.971 246.821 - 0.6339

0.1 0.5 10 100 18.498 39.566 90.039 157.971 247.188 0.2872
100 10 13.563 40.326 89.668 158.467 247.188 - 0.4377
10 10 12.688 39.795 88.911 157.993 246.821 - 0.7382

0.1 0.7 10 100 16.204 41.946 89.011 158.191 247.187 0.0868
100 10 13.318 40.545 89.567 158.509 247.187 - 0.5123
10 10 13.379 39.709 88.950 155.936 246.821 - 0.4925

0.3 0.5 10 100 18.796 39.709 89.797 157.936 247.188 0.3045
100 10 16.734 41.874 89.049 158.134 247.188 0.1503
10 10 13.125 39.934 88.848 157.957 246.821 - 0.5757

0.3 0.7 10 100 16.614 42.051 88.948 158.156 247.187 0.1354
100 100 20.116 43.788 89.047 158.356 247.553 0.3629

Figure 2. Nonlinear frequency-amplitude curves for beam resting on two
springs.

were able to do hardening or softening behaviors of the sys-
tem thanks to selecting suitable locations and magnitudes of
the springs.

Undumped-free vibration behavior of the system is best seen
in nonlinear frequency-amplitude curves. Nonlinear frequen-
cies have a parabolic relationship with the maximum ampli-
tude of the vibration as given in Eq. (27). These relations were

drawn using curves for the first mode of vibrations in Figs. 2
to 3. The effects of magnitudes and locations of the springs to
vibrations were determined through these curves.

In Fig. 2, the nonlinear frequency-amplitude curves were
drawn for the beam resting on two springs. It was assumed
that each spring had the same magnitude in Fig. 2a. By plac-
ing each of the springs in different locations, the effects of
spring locations on nonlinear frequency-amplitude curves were
drawn. In Fig. 2b, the springs were assumed to have different
magnitudes. The effects of springs that had a higher stiffness
than the others on nonlinear frequency were searched.

In Fig. 3, the nonlinear frequency-amplitude curves were
drawn for the beam resting on three springs. Using spring
stiffness at the same magnitude, different spring locations were
used for each curve in Fig. 3a. Thus, the symmetric and asym-
metric cases’ effects on nonlinear frequency were also studied.
Springs with different magnitudes were considered in Fig. 3b.
The effects of springs on nonlinear frequencies were compared
using high spring stiffness in magnitude. As seen from these
figures, increases in number and in magnitude of the springs re-
sult in higher linear and nonlinear frequencies for the system.
Selecting equal springs in magnitude in Fig. 4a and changes
via locations of springs were searched in forcing frequency-
response curves. Selecting different springs in magnitude, be-
haviors of the big one were searched in Fig. 4b.

Considering the case where there is damping and external
excitation, nonlinear vibration behavior of the system could
be understood via forcing frequency-response curves. When
f = 1 and µ = 0.1, some curves in Figs. 4 and 5 were drawn
by means of Eq. (28). In these figures, only first modes of the
tranverse vibrations were dealed. The case of two springs is
taken into account in Fig. 4.

Considering the case of the three springs, curves in Fig. 5
were plotted. By placing the springs in different locations,
symmetrical and asymmetrical cases were obtained. The ef-
fects of these cases on the curves were put forward. The max-
imum amplitudes of the vibrations decreased with increasing
magnitudes and the number of springs.
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Table 2. First five natural frequencies and nonlinearity coefficients (λ) of the first mode for the beam resting on three springs.

η1 η2 η3 t1 t2 t3 ω1 ω2 ω3 ω4 ω5 λ(ω1)

10 10 10 13.448 39.797 89.023 157.993 246.862 - 0.4713
10 10 100 18.849 39.797 90.049 157.993 247.228 0.3074

0.1 0.3 0.5 10 100 10 16.771 41.964 89.124 158.190 247.228 0.1547
100 100 10 17.073 42.750 89.797 158.695 247.592 0.1914
10 100 100 21.351 41.999 90.134 158.190 247.592 0.5216
100 10 10 14.005 40.561 89.681 158.508 247.228 - 0.3169
10 10 10 13.866 39.934 88.960 157.957 246.862 - 0.3511
10 100 10 19.155 39.934 89.986 157.957 247.228 0.3234

0.3 0.5 0.7 10 10 100 17.209 42.054 89.059 158.156 247.228 0.1965
100 100 10 21.715 42.080 90.070 158.156 247.593 0.4718
100 10 100 20.623 43.788 89.156 158.356 247.593 0.3796
100 100 100 24.612 43.788 90.152 158.356 247.956 0.4450
10 10 10 13.152 39.880 89.041 158.050 246.781 -0.5663
10 100 10 18.027 40.731 89.396 158.571 246.781 0.2871

0.1 0.4 0.8 10 10 100 15.085 41.870 89.981 158.250 246.781 - 0.0862
100 10 10 13.742 40.643 89.693 158.566 247.147 - 0.3860
100 100 10 18.379 41.564 90.023 159.086 247.147 0.2871
100 10 100 15.708 42.590 90.618 158.762 247.147 0.0154

4.2. Case of 3:1 internal resonances

When browsing the table values for natural frequency of the
system, one finds three-to-one ratio between natural frequen-
cies of two different modes. Three-to-one internal resonance
occurs between first and second modes of the curved beam for
the case with two springs (τ1 = 10, τ2 = 10, η1 = 0.1, η2 =

0.5) and three springs (τ1 = 10, τ2 = 10, τ3 = 10, η1 =

0.1, η2 = 0.3, η3 = 0.5). The frequencies of the first and sec-
ond modes were found to be ω1 = 12.9603, ω1 = 39.5656

for two springs, and ω1 = 13.4475 and ω2 = 39.7965 for
three springs. Thus, resonance will happen and some en-
ergy of the first mode (externally forcing mode) will be tras-
ferred to the second mode (internally forcing mode) during
vibrations at these frequencies. Considering that the curved
beam was resting on two springs or three springs, the forc-
ing frequency-response curves were plotted for the externally
forcing (first) mode in Fig. 6a and internally forcing (second)
mode in Fig. 6b. Assuming µ = 0.05 and f = 1 in Eq. (43),
the frequencies and differences between them were consid-
ered, ω1 = 12.9603, ω2 = 39.5656, and q = 0.6847 for the
case of two springs and omega1 = 13.4475, ω2 = 39.7965,
and q = −0.5460 for the case of three springs. For these
values, one could evaluate fixed points by seperating stable
and unstable solutions using Eqs. (44) and (45) and draw
frequency-response curves. Seeing the curves in Fig. 6a, it
can be concluded that that these systems have softening be-
havior. By means of detailed investigations in case of three
springs, a more softening behavior and smaller maximum am-
plitude could be obtained when comparing case of two springs.
Fig. 6b was plotted for internally forcing mode. As seen in de-
tailed shot, maximum amplitude of the beam with two springs
was pretty little according to case of three springs.

Considering curved beam resting on two springs or three
springs, the forcing-response curves were plotted for the ex-
ternally forcing mode in Fig. 7a and internally forcing mode
in Fig. 7b. Taking into account the detuning parameter, σ =

−0.3788 for the case of two springs and σ = −0.2625 for the
case of three springs, changes to f were investigated in these

figures. Other control parameters were the same in Fig. 6. As
seen from the multi-variable region in Fig. 7, the case of two
springs has more forcing (f ) gaps when comparing with case
of three springs. These f gaps is found as [0.9990/, 2.9785]

for the case of two springs and [0.9995, /2.1105] for the case
of three springs. Thus, internally forcing mode (second mode)
was activated at f ≥ 0.9990 for two springs and at f ≥ 0.9995

for three springs.

5. CONCLUSIONS

In this study, nonlinear vibrations of a curved beam resting
on multiple springs are investigated. The curved beam is based
on the Euler-Bernoulli beam theory and is assumed to have
an arbitrary rise function. Primary and 3:1 internal resonance
cases are studied in nonlinear vibrations of the beam. Approx-
imate analytical solutions to the problem are sought by using
the method of multiple scales (MMS), which is a perturbation
method. In these solution procedures, the linear problem of the
system, which is first order, is solved. After that, the nonlinear
problem is solved by adding the effects of nonlinearity, which
comes from other orders, to the linear solution. Assuming a
steady-state phase, a detailed analysis on free-undamped and
forced-damped vibrations is carried out. Effects of magnitude,
location, and the number of the springs on nonlinear vibrations
is presented.

In case of primary resonance, nonlinearity effects of the
curved beam-spring system has both positive and negative
signs. Adjusting the number, location, and magnitudes of the
springs attached under the beam enables us to make the system
have softening behavior. Increasing the magnitude and number
of the springs decreases the maximum amplitudes.

In case of three-to-one internal resonance, beams resting on
two and three springs are considered. Three-to-one internal
resonance between the first and second modes occur for both
cases of spring replacements. From the carried investigations,
energy transfer from the externally forcing mode (first mode)
to the internally forcing mode (second mode) is much more in
curved beams resting on three springs instead of two springs.
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Figure 3. Nonlinear frequency-amplitude curves for beam resting on three
springs.
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APPENDIX

d

dt
= D0 + ε · D1 + ε2 ·D2 + ...,

d2

dt2
= D2

0 + 2 · ε ·D0 ·D1 + ε2 · (D2
1 + 2 ·D0 · D2) + ..., (A.1)

Γp+1 =

n∑
r=0

ηr+1∫
ηr

〈
Y ′r+1 · ϕ′(r+1)1 + 2·Y ′r+1 · ϕ′(r+1)2
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+
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2
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r=0

ηr+1∫
ηr

Fr+1 · Y(r+1)k dx,

λc
(k) =

n∑
r=0

ηr+1∫
ηr

Y(r+1)k · Γ(r+1)c
(k) dx, λc

(s) =

n∑
r=0

ηr+1∫
ηr

Y(r+1)s · Γ(r+1)c
(s) dx, c = 1, 2, 3. (A.5)

γ = σ · T2 − θk, β = θs − 3 · θk + q · T2 (A.6)
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An acoustical topology optimization of a constrained layer damping (CLD) plate coupled with a rigid acoustical
cavity is presented to minimize the sound radiation power. A mathematical model is developed to simulate the
sound radiation based on the theories of the finite element and boundary element methods together. The model is
integrated with the acoustical topology optimization approach, which utilizes the genetic algorithm with an elitist
strategy. The obtained results demonstrate the effectiveness of the proposed approach in attenuating the sound
radiation power and the sound pressure inside the acoustical cavity simultaneously by proper layout of the CLD
materials. Furthermore, experimental verification is carried out by manufacturing topology optimized CLD/plate
and monitoring the sound pressure in the acoustical cavity. The experimental results are a good match with the pre-
dictions of the mathematical model. The study shows that the proposed acoustical topology optimization approach
can be an effective tool in the design of a wide variety of critical structures, which is lightweight and operates
quietly, such as the panels in the vehicle body and aircraft cabin.

NOMENCLATURE

a, b Half of the element length
b The coefficient matrices to calculate sound

pressure at point α
bjmn Element in the coefficient matrices b
B The coefficient matrices to calculate the nodal

sound pressure on the boundary surface
bj Element in the coefficient matrices B
C(α) Constants in Helmholtz acoustical boundary

integral equation
E

(e)
j , E(e)

βv The potential energy for the element
f The fitness function
F Externally applied mechanical force
G(α, ξ) Green’s function
hp, hv , hc The thickness of base layer, damping layer

and constrained layer
h The coefficient matrices to calculate sound

pressure at point α
H The coefficient matrices to calculate the nodal

sound pressure on the boundary surface
K(e), K Element stiffness matrix and global stiffness

matrix
M(e), M Element mass matrix and global mass matrix
N Shape function matrix
Ni Shape function
p(α), pQ Sound pressure at point α, Q
γjxy The shear strain for each layer
δ(e) The nodal displacement vector
εjx, εjy The strain at the x-direction and y-direction
θx, θy Rotations about the x-axis and the y-axis
p(j) Sound pressure at node j

pm The nodal sound pressure vector of element
m

P Nodal sound pressure vector on the boundary
surface

T ej The potential energy for the element
up, uc, uv The displacement at the x-direction for base

layer, damping layer and constrained layer
vp, vc, vv The displacement at the y-direction for base

layer, damping layer and constrained layer
vQ The vibration velocity at any point Q
v∗m The complex conjugate of the nodal normal

vibration velocity vector of element m
V The nodal normal vibration velocity vector
w The transverse displacement of the node
W The sound radiation power
xi Design variables
X The design variable set
X The displacement vector
α The field point
βx, βy The shear deformation at the x-direction and

y-direction of the damping layer
ξ The point on the acoustical field boundary
σjx, σjy The stress at the x-direction and y-direction
τjxy The shear stress for each layer

1. INTRODUCTION

CLD treatment has been regarded as an effective way to sup-
press structural vibration and acoustical radiation since it was
proposed by Kerwin.1 It has found its ways in aeronautical,
vehicle, civil, and mechanical engineering applications. Mean-
while, the optimizations for the layout of CLD materials have
been widely reported in recent years because it has been recog-
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nized that using such an approach can significantly improve the
static and dynamic characteristics of the structures with CLD
treatments.

Literature on the optimization for the layout of CLD mate-
rials are quite extensive and the research activities in this field
have focused on a variety of applications. Zheng et al. studied
the optimal location and length of rectangular CLD sheets us-
ing the genetic algorithm based on the penalty function method
and the optimization aimed to minimize the volume displace-
ment of the cylindrical shell.2 Magnus Alvelid studied the op-
timal number and location of CLD sheets on flat structure sur-
face and used an improved gradient method; the objective was
to minimize the vibration velocity on the structural surface.3

Zheng et al. studied topology optimization for the layout of
CLD in plates and shells to minimize structural modal damp-
ing ratios by using the ESO method,4 optimality criteria (OC),5

and the method of moving asymptotes (MMA).6 It was found
that the ESO and OC methods resulted in a fast optimization
for the layout of CLD on the plate by using a small compute
effort. On the other hand, the MMA method obtained more
accurate and optimal results than the previous two methods.
However, a higher computational effort must be paid. Ansari
et al. adopted a novel level set method to search the best shapes
and locations of CLD patches on a cantilever plate.7 The main
goal was to maximize the modal loss factor of the system and it
was found that the proposed method would increase the modal
loss factor of the system through shape change from a square
to a circle. Kim et al. compared modal loss factors obtained by
topology optimization to the conventional strain energy distri-
bution (SED method) and the mode shape (MSO approach).8 It
was found that topology optimization based on the rational ap-
proximation for material properties (RAMP) model and opti-
mality criteria (OC) method could provide about up to a 61.14
percent higher modal loss factor than SED and MSO meth-
ods. The numerical model and topology optimization approach
were also experimentally validated.

Nevertheless, most of the literature on the layout optimiza-
tion for CLD treatment has mainly focused on optimization of
structural dynamic properties, such as maximizing the modal
loss factor9, 10 and the structural damping11 or minimizing the
displacement amplitude.12 Only a few studies have considered
the application of the topology optimization for CLD treat-
ment to acoustical problems. For example, W. Akl et al. at-
tempted to minimize fluid-structure acoustical radiation power
in a closed acoustical cavity coupled with a plate by the use
of moving asymptotes (MMA).13 However, in their study, the
objective was not acoustical parameters and the plate was not
treated with CLD materials. Liu et al. derived the acousti-
cal sensitivity formula and minimized the sound pressure and
sound radiation power by optimizing the layer thickness with
a sequential linear programming algorithm.14 In these stud-
ies, acoustical sensitivity was calculated with an optimization
process. In fact, the acoustical sensitivity calculation was dif-
ficult in the optimization due to the structural and acoustical
coupling.

Hence, an acoustical topology optimization approach for the
layout of CLD treatments using the genetic algorithm (GA)
was developed to minimize sound radiation power induced vi-
brating of the plate coupled with a closed acoustical cavity. It

Figure 1. Closed acoustical cavity system.

is worth mentioning that the calculation of acoustical sensitiv-
ity in the optimization was avoided. On the other hand, the
specific mode frequency was tracked at each optimization it-
eration. It was based on the fact that during the optimization
iteration, change on locations of CLD patches caused a shift in
structural natural frequency. Therefore, it was seen that sound
radiation power and sound pressure attenuation in the cavity
could be attributed only to the acoustical optimization.

This paper is organized in six sections. A brief introduction
has been presented in Section 1. A finite element model of
CLD/plate and acoustical boundary element analysis for closed
acoustical cavity coupled with a flexible plate are developed in
Section 2. The formulation of acoustical topology optimiza-
tion problem is developed and optimization strategy based on
GA is presented in Section 3. Numerical example and results
are demonstrated in Section 4 and experimental verification is
carried out in Section 5. A brief summary is given in Section 6.

2. ACOUSTICAL RADIATION ANALYSIS
FOR THE CLOSED ACOUSTICAL CAVITY

2.1. Overview
A closed acoustical cavity with a flexible plate is shown in

Fig. 1. A rectangular flexible plate was coupled with an acous-
tical cavity, which had five rigid walls. The plate was subjected
to external excitation and a finite element model was developed
to predict vibration velocity on the flexible plate surface. Then,
vibration velocity was considered as a boundary condition of
the cavity and the boundary element method (BEM) was used
to predict sound radiation from the plate in the cavity. More-
over, a constrained layer damping (CLD) treatment was pasted
out on the flexible plate to reduce internal sound radiation.

2.2. Finite Element Model of CLD/Plate
The finite element of CLD/plate is illustrated in Fig. 2. It is a

4-node quad element with 7 degrees of freedom per node (uc,
vc, up, vp, w, θx, and θy), representing displacements in the
x-direction and y-direction of the constrained and base plate
layers, the transverse displacement of the node, and rotations
about x-axis and y-axis, respectively. hp, hv , and hc are the
thickness of the base layer, the damping layer, and the con-
strained layer, respectively; up and vp are displacements in the
x-direction and the y-direction of the base layer; uc and vc are
displacements in the x-direction and the y-direction of the con-
strained layer; w is the transverse displacement of the node; θx
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Figure 2. The finite element for the CLD treatment plate.

Figure 3. The movement relationship.

and θy are rotations about the x-axis and the y-axis; and a and
b are half of the element length.

In the finite element model, it was assumed that transverse
displacements w at any point on the same cross section of
CLD/plate were equal. The constrained layer and the base
plate layer were assumed to be elastic, dissipate no energy,
and their shear strains were negligible. In addition, the damp-
ing material was assumed to be linear visco-elastic and all the
layers were considered to be bonded together perfectly.

The movement relationship of each layer of the finite ele-
ment is shown in Fig. 3. The shear deformation and displace-
ments in the x-direction and y-direction of the damping layer
can be derived as follows:

βx =
uc − up
hv

+
d

hv

∂w

∂x
; (1)

βy =
uc − up
hv

+
d

hv

∂w

∂y
; (2)

uv =
1

2

(
uc + up +

hc − hp
2

∂w

∂x

)
; (3)

vv =
1

2

(
vc + vp +

hc − hp
2

∂w

∂y

)
; (4)

where d = (hc + hp)/2 + hv is the distance from the plate’s
neutral surface to the constrained layer’s neutral surface. The
subscript v denotes the damping layer.

The nodal displacement vector, composed of seven degrees
of freedom per node as mentioned above, is given by:

δ(e) = {uci vci upi vpi w θxi θyi}T , i = 1, 2, 3, 4. (5)

Therefore, the displacements at any location inside the element
can be determined from:

{uc vc up vp w θx θy}T = Nδ(e); (6)

where N = {Nuc Nvc Nup Nvp Nw Nw,x Nw,y}T is
the shape function matrix. Nuc, Nvc, Nup, Nvp, Nw, Nw,x,
Nw,y are shape functions corresponding to uc, vc, up, vp, w,
θx, and θy , respectively.

In addition, shape functions corresponding to the displace-
ment and shear deformation of the damping layer can be
yielded as:

Nuv =
1

2

(
Nuc +Nup +

hc − hp
2

Nw,x

)
; (7)

Nvv =
1

2

(
Nvc +Nvp +

hc − hp
2

Nw,y

)
; (8)

Nβxv =
1

hv

[
Nuc −Nup +

(
hc + hp

2
+ hv

)
Nw,x

]
; (9)

Nβyv =
1

hv

[
Nuc −Nup +

(
hc + hp

2
+ hv

)
Nw,y

]
. (10)

Furthermore, strain-displacement relations and stress-strain
relations for each layer are derived as:

εjx =
∂uj
∂x

+ z
∂2w

∂x2
; (11)

εjy =
∂vj
∂y

+ z
∂2w

∂y2
; (12)

γjxy =
∂uj
∂y

+
∂vj
∂x

+ 2z
∂2w

∂x∂y
; (13)

σjx =
Ej

1− µ2
j

(εjx + µjεjy); (14)

σjy =
Ej

1− µ2
j

(εjy + µjεjx); (15)

τjxy =
Ej

2(1− µj)
γjxy; (16)

where j = p, c, v denotes the base plate layer, the constrained
layer, and the damping layer, respectively.

Furthermore, the dynamic equation of CLD/plate can be de-
rived on the basis of energy approach. The kinetic energies and
strain potential energies of the three layers can be expressed as
follows:

T ej =
1

2
ρj

∫∫∫
V

[(
∂uj
∂t

)2

+

(
∂uj
∂t

)2

+

(
∂uj
∂t

)2
]
dV

=
1

2
δ(e)Tρjhj

a∫
−a

b∫
−b

(
NT
ujNuj+NT

vjNvj+NT
wNw

)
dxdyδ(e)

=
1

2
δ(e)TM

(e)
j δ(e), j = p, c, v; (17)
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E
(e)
j =

1

2

∫∫∫
V

ε∗jσjdV

=
1

2

∫∫∫
V

(σjxεjx + σjyεjy + σjzεjz) dV

=
1

2
δ(e)T

(
hj

a∫
−a

b∫
−b

BT
j DjBj dxdy +

h3
j

12

a∫
−a

b∫
−b

BT
j DjBj dxdy

)
δ(e)

=
1

2
δ(e)TKe

jδ
(e), j = p, c, v. (18)

The potential energy of the damping layer due to shear de-
formation can be written as:

E
(e)
βv =

1

2

∫∫∫
V

(
Gβ2

x +Gβ2
y

)
dV

=
1

2
δ(e)T

Ghv a∫
−a

b∫
−b

(
NT
βxvNβxv+NT

βyvNβyv

)
dxdy

δ(e)

=
1

2
δ(e)TK

(e)
βv δ

(e). (19)

Finally, the mass matrices and stiffness matrices of the element
can be generated as:

M(e) = M(e)
p +M(e)

c +M(e)
v ; (20)

K(e) = K(e)
p +K(e)

c +K(e)
v +K

(e)
βv . (21)

The global mass and stiffness matrices of the CLD plate are
thus obtained:

M =

n∑
e=1

M(e); (22)

K =

n∑
e=1

K(e). (23)

Finally, the dynamic equation of CLD/plate is given as:

MẌ+KX = F. (24)

The vibration velocity on the surface of the CLD plate can
be obtained by Eq. (24), and it was considered as a boundary
condition of the cavity in the sound radiation analysis.

2.3. Acoustical Boundary Element Analysis
The Helmholtz acoustical boundary integral equation for in-

terior acoustical problem is given as follows15:

C(α)p(α) =
1

2π

∫
S

∂p(ξ)

∂n
G(α, ξ)dS − 1

2π

∫
S

p(ξ)
∂G(α, ξ)

∂n
dS;

(25)
where G(α, ξ) is Green’s function, C is a constant that de-
pends on the location of point α, ξ is a point on acoustical
field boundary, α is the field point, p is the sound pressure, and
∂/∂n is the derivative related to a normal vector defined on the

Figure 4. The boundary element.

boundary surface S. The explicit expression for the Green’s
function is:

G(α, ξ) =
e−ikr

r
; (26)

where r = |α − ξ| is the distance between two points α and
ξ, and k is the wave number, which is the ratio of angular fre-
quency ω to sound speed c. The coefficient C of Eq. (25) is
expressed as:

C(α) =


2 when α is inside the field
1 when α is on the boundary
0 when α is outside the field

. (27)

To solve Eq. (25) numerically, the boundary surface S was
divided into a number of boundary elements. The boundary
element is shown schematically in Fig. 4. The number of el-
ements and nodes are denoted by N and L, respectively. For
each position of Q, the boundary integral in Eq. (25) can be
replaced by a sum of integrals over the elements.

The coordinates (xQ, yQ, zQ), sound pressure pQ, and vi-
bration velocity vQ at any point Q on an element are all as-
sumed to be related to the nodal values by Eq. (28) to Eq. (30):

xQ =

4∑
i=1

Nixi, yQ =

4∑
i=1

Niyi, zQ =

4∑
i=1

Nizi; (28)

pQ = Np =

4∑
i=1

Nipi; (29)

vQ = Nv =

4∑
i=1

Nivi; (30)

in which Ni is the shape function of the node i in an element:

Ni =
1

4

(
1 +

x

xi

)(
1 +

y

yi

)
, i = 1, 2, 3, 4. (31)

When α is on the boundary surface S, the sound pressure at
point α can be calculated as follows:

p(α) =
1

2π

∫
S

∂p(ξ)

∂n
G(α, ξ)dS− 1

2π

∫
S

p(ξ)
∂G(α, ξ)

∂n
dS. (32)

For simplicity, S1, S2, S3, S4, S5, and S6 denote the
boundary surfaces ABCD, EFGH, BCGF, AEHD, ABFE, and
DCGH, as shown in Fig. 1. Therefore, S is equal to the sum of
Si(i = 1, 2, . . . 6), that is, S = S1 + S2 + S3 + S4 + S5 + S6.
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For a closed acoustical cavity in Fig. 1, acoustical boundary
condition is as follows:

∂p

∂n
=

{
0 on the rigid surface
−iωρv on the flexible surface

; (33)

where ρ is air density, v is normal vibration velocity and i2 =
−1. Substituting Eq. (33) into Eq. (32) results in:

p(α) =
1

2π

∫
S1

(−iρωv(ξ))G(α, ξ)dS − 1

2π

∫
S1

p(ξ)
∂G(α, ξ)

∂n
dS

− 1

2π

∫
S2

p(ξ)
∂G(α, ξ)

∂n
dS − 1

2π

∫
S3

p(ξ)
∂G(α, ξ)

∂n
dS

− 1

2π

∫
S4

p(ξ)
∂G(α, ξ)

∂n
dS − 1

2π

∫
S5

p(ξ)
∂G(α, ξ)

∂n
dS

− 1

2π

∫
S6

p(ξ)
∂G(α, ξ)

∂n
dS. (34)

Meanwhile, the derivative of Green’s function G can be given
as:

∂G(α, ξ)

∂n
= − ikr + 1

r2
e−ikr

∂r

∂n
= G′

∂r

∂n
; (35)

where,

∂r

∂n
=



−|yα − yξ| the point ξ is on the surface S1

|yα − yξ| the point ξ is on the surface S2

|xα − xξ| the point ξ is on the surface S3

−|xα − xξ| the point ξ is on the surface S4

−|zα − zξ| the point ξ is on the surface S5

|zα − zξ| the point ξ is on the surface S6

;

(36)

in which xα, yα, zα, xξ, yξ, zξ are the coordinates of point α
and ξ. Hence,

p(α) =
1

2π

∫
S1

(−iρωv(ξ))G(α, ξ)dS +
1

2π

∫
S1

p(ξ)G′|yα−yξ|dS

− 1

2π

∫
S2

p(ξ)G′|yα−yξ|dS −
1

2π

∫
S3

p(ξ)G′|xα−xξ|dS

+
1

2π

∫
S4

p(ξ)G′|xα−xξ|dS +
1

2π

∫
S5

p(ξ)G′|zα−zξ|dS

− 1

2π

∫
S6

p(ξ)G′|zα−zξ|dS. (37)

By replacing Eq. (37) with a sum of integrals over the el-
ements and assuming that point α is node j of one boundary

element, then Eq. (37) can be expressed as:

p(j) =

N∑
m1=1

4∑
n=1

1

2π

∫
∆S1

(−iρω)G(j, ξ)Nnd∆Svm1n

+

N∑
m1=1

4∑
n=1

1

2π

∫
∆S1

NnG
′|yj − yξ|d∆Spm1n

−
N∑

m2=1

4∑
n=1

1

2π

∫
∆S2

NnG
′|yj − yξ|d∆Spm2n

−
N∑

m3=1

4∑
n=1

1

2π

∫
∆S3

NnG
′|xj − xξ|d∆Spm3n

+

N∑
m4=1

4∑
n=1

1

2π

∫
∆S4

NnG
′|xj − xξ|d∆Spm4n

+

N∑
m5=1

4∑
n=1

1

2π

∫
∆S5

NnG
′|zj − zξ|d∆Spm5n

−
N∑

m6=1

4∑
n=1

1

2π

∫
∆S6

NnG
′|zj − zξ|d∆Spm6n; (38)

where vmn denotes normal vibration velocity at node n
of element m, pmn denotes sound pressure at node n of
element m.

In Eq. (38), the distance between node j and point ξ on el-
ement m is simplified to the distance between node j and the
centre of element m, so that G(j, ξ) and G′(j, ξ) are fixed val-
ues on element m and the distance between node j and point ξ
will never be zero. In addition,

∫
∆S

Nnd∆S = ab.
For simplicity, the following parameters are introduced:

bjmn =
1

2π

∫
∆S1

(−iρω)G(j, ξ)Nnd∆S =
−iρω
2π

G(j,m)ab;

(39)

hjmn =



1
2π

∫
∆S1

G′Nn|yj−yξ|d∆S = 1
2πG

′|yj−yξ|ab

the point ξ in on the surface S1

− 1
2π

∫
∆S2

G′Nn|yj−yξ|d∆S = − 1
2πG

′|yj−yξ|ab

the point ξ in on the surface S2

− 1
2π

∫
∆S3

G′Nn|xj−xξ|d∆S = − 1
2πG

′|xj−xξ|ab

the point ξ in on the surface S3

1
2π

∫
∆S4

G′Nn|xj−xξ|d∆S = 1
2πG

′|xj−xξ|ab

the point ξ in on the surface S4

1
2π

∫
∆S5

G′Nn|zj−zξ|d∆S = 1
2πG

′|zj−zξ|ab

the point ξ in on the surface S5

− 1
2π

∫
∆S6

G′Nn|zj−zξ|d∆S = 1
2πG

′|zj−zξ|ab

the point ξ in on the surface S6

.

(40)

398 International Journal of Acoustics and Vibration, Vol. 21, No. 4, 2016



Z. Ling, et al.: TOPOLOGY OPTIMIZATION OF A CONSTRAINED LAYER DAMPING PLATE COUPLED WITH AN ACOUSTICAL CAVITY

Here, the formula of sound pressure at node j can be simplified
to:

p(j) =

N∑
m1=1

4∑
n=1

bjm1nvm1n +

N∑
m1=1

4∑
n=1

hS1
jm1n

pm1n

−
N∑

m2=1

4∑
n=1

hS2
jm2n

pm2n −
N∑

m3=1

4∑
n=1

hS3
jm3n

pm3n

+

N∑
m4=1

4∑
n=1

hS4
jm4n

pm4n +

N∑
m5=1

4∑
n=1

hS5
jm5n

pm5n

−
N∑

m6=1

4∑
n=1

hS6
jm6n

pm6n

= bjV + hjP. (41)

Similarly, sound pressure at all other nodes on the boundary
surface can be calculated by Eq. (41), then a set of equations is
obtained as:

P = BV +HP. (42)

The nodal sound pressure on the boundary surface are given
as:

P = (I−H)−1BV; (43)

where P is the nodal sound pressure vector on the boundary
surface S, V is the nodal normal vibration velocity vector on
the boundary surface S1 (surface ABCD), and H and B are the
coefficient matrices.

The structural sound radiation power can be calculated from
sound pressure and vibration velocity on the surface:

W =
1

2

∫
S

Re [v∗(Q)p(Q)] dS ; (44)

where Q is a point on surface of the structure, v∗(Q) is a com-
plex conjugate of normal vibration velocity at point Q on the
surface, p(Q) is the sound pressure at point Q, and Re means
the real part.

For the closed acoustical cavity, sound radiation power of
the flexible plate can be replaced by the sum of sound radiation
power radiated from N boundary elements:

W =
1

2

∫
S1

Re [v∗(P )p(P )] dS(P )

=

N∑
m=1

1

2

∫
∆S

Re [v∗m(P )pm(P )] d∆S(P )

= Re

N∑
m=1

1

2

∫
∆S

[
v∗mNTNpm

]
d∆S(P )

= Re

N∑
m=1

v∗m
1

2

∫
∆S

NTNd∆S(P )pm

= Re

N∑
m=1

v∗mDpm; (45a)

D =
1

2

∫
∆S

NTNd∆S =
1

18
ab


4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4

 ; (45b)

Figure 5. The coding schematic diagram.

where pm is the nodal sound pressure vector of elementm, v∗m
is the complex conjugate of nodal normal vibration velocity
vector of element m. However, it was noted that pm and v∗m
were just only nodal values on surface S1 (flexible plate).

On the other hand, when point α is inside the acoustical
field, the Helmholtz acoustical boundary integral equation can
be written as:

2p(α) =
1

2π

∫
S

∂p(ξ)

∂n
G(α, ξ)dS − 1

2π

∫
S

p(ξ)
∂G(α, ξ)

∂n
dS.

(46)
So sound pressure at point α can be calculated as follows:

p(α) = bV + hP; (47)

where V is the nodal normal vibration velocity vector on
boundary surface S1 (surface ABCD). P is the nodal sound
pressure vector on the whole boundary surface S, which can
be obtained by Eq. (43). b and h are the coefficient matrices.

3. ACOUSTICAL TOPOLOGY
OPTIMIZATION FOR CONSTRAINED
LAYER DAMPING

3.1. Acoustical Topology Optimization
Model

The acoustical topology optimization model for CLD treat-
ment plate can be described as follows:

Find X = {x1 x2 . . . xn}
Min W
s.t. xmin ≤ xi ≤ xmax

Vf = V0

; (48)

where X is design variable vector, xi represents locations of
CLD material on the plate, and n is the number of design
variables. W denotes sound radiation power and the objec-
tive function can be explained literally as to minimize sound
radiation power. xmin, xmax denote the limits of design vari-
ables. Vf is the constraint of material consumption and V0 is
the actual consumption of CLD material in the optimization.

3.2. Optimization Strategy
In this paper, a genetic algorithm with an elitist strategy was

used to solve the acoustical topology optimization problem.
The concrete steps for the algorithm are given as follows:
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Figure 6. The program flowchart for GA.

1. Coding
Firstly, one design variable vector X need to be encoded
to form an individual by some coding method. In this
paper, the integer coding method is used to encode the
design variable vector X due to the locations of the CLD
material. For example, if the plate is divided into 36 ele-
ments, as shown in Fig. 5, there are 36 positions for CLD
materials. It was assumed that one individual who was en-
coded in genetic population, is [2 10 25 31]. That means
there are CLD materials on the element 2, 10, 25, and 31,
respectively.

2. Population initialization
The population is initialized using random numbers. If
population size in genetic algorithm is Npop, then the ini-
tialization size is set to 2Npop.

3. Fitness sorting
The individuals are sorted according to the fitness values.
The fitness function is expressed as:

f =W. (49)

Here, W is the sound radiation power from the flexible
plate.

4. Select the first generation population
Select the first Npop individuals from the sorted individu-
als as the first generation population.

5. Select the parents
The parents were selected by using a binary tournament
selection and the size of mating pool was set to beNpop/2.

6. Generate a random number rp between 0 and 1
If rp > 0.9, two individuals were selected from the mat-
ing pool to take the crossover operation, otherwise one
individual was selected from the mating pool to take mu-
tation operation. That means the crossover probability is
90% and the mutation probability is 10%.

7. Crossover
The Laplace Crossover operator is employed and is given
as below:

x1 = x1 + β|x1 − x2|;
x2 = x2 + β|x1 − x2|; (50a)

β =

{
a− b log(u) r ≤ 0.5

a+ b log(u) r > 0.5
; (50b)

where x1 and x2 were parents which were selected from
the mating pool randomly, x1 and x2 are the children, a
and b are Laplace Crossover factors, u and r are two ran-
dom numbers between 0 and 1. It is worth mentioning
that the two children generated by crossover need to be
truncated to be an integer.

8. Mutation
The Power Mutation operator was employed and is given
as below:

x =

{
x− smf (x− xl) t < r

x+ smf (xu − x) t ≥ r
; (51a)

t =
x− xl

xu − x
; (51b)

where x is the parent and x is the child, xl and xu are the
limits of the design variables, mf is the Power Mutation-
factor, and s and r are two random numbers between
[0, 1]. The child generated by mutation needs to be trun-
cated in order to be an integer.

9. Elitist Strategy
The offspring population was combined with the current
generation population and all individuals were sorted ac-
cording to fitness. Then, selection was performed to pro-
duce individuals for the next generation. Since all the
previous and current best individuals were added in the
population, elitism was ensured.

10. Determination condition
If the generations had achieved the maximum number of
generations, the evolution was terminated. Then, the last
generation population was saved and decoded.

The program flowchart for GA is shown in Fig. 6.
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Table 1. Parameters for the closed acoustic cavity.

Cavity dimensions 30 cm×30 cm×30 cm
Fluid domain Air at 25◦ C and 1 atm

Base layer (Aluminium) 0.8 mm
Flexible plate thickness Damping layer 0.05 mm

Constrained layer 0.13 mm

Table 2. Parameters for the CLD treatment plate.

Young’s modulus (Pa) Density (kg·m−3) Poisson’s ratio
Base layer (Aluminium) 7.0e10 2800 0.3

Damping layer 12e7 1200 0.495
Constrained layer 7.0e10 2700 0.3

Figure 7. The boundary element model for the closed acoustical cavity.

4. NUMERICAL RESULTS

4.1. Model Setup
A finite element model for CLD/ plate and a boundary el-

ement model for the closed acoustical cavity with a flexible
plate, as shown in Fig. 7, was developed. The characteristics
of the coupled fluid-structure domains are given in Table 1 and
material parameters of CLD/plate are given in Table 2. Ac-6
cording to viscoelastic material’s Nomogram (SOUNDFOIL
5D401, US), the loss factor can be considered as a constant
from 10 Hz to 1000 Hz. On the other hand, the effect of tem-
perature on the characteristics of viscoelastic material is very
small from 20oC to 135oC. Therefore, the shear modulus of
the viscoelastic material is described by using complex con-
stant modulus model, G = G∞(1 + iη), η = 0.85.

The optimization objective was to minimize the first order
of sound radiation power and 2/9, 3/9, 4/9, 5/9, 6/9, 7/9, and
8/9 of material consumption are considered as the constraints,
respectively.

An excitation force was applied to the center of flexible plate
and it was a unit harmonic force. However, it is worth mention-
ing that the excitation force was locked to the mode frequency
so that the layout of the CLD materials were optimized in such
a way as to minimize sound radiation power at that specific
modal frequency. More specifically, the first modal frequency
was considered as the first odd mode with high acoustical cou-
pling. It was based on the fact that the first odd mode shape
of the flexible plate could not be changed when the layout of
CLD patches was changed. Hence, the first mode frequency
of CLD/plate was calculated again due to the change of CLD

Figure 8. The optimal layout of the constrained layer damping materials
(a) Vf = 2/9, (b) Vf = 3/9, (c) Vf = 4/9, (d) Vf = 5/9, (e) Vf = 6/9,
(f) Vf = 7/9, and (g) Vf = 8/9.

treatments layout and the excitation frequency is locked each
at optimization iteration.

In addition, the population size Npop of genetic algorithm
was set to be 100, and the mating pool size was set to 50.
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Figure 9. The evolution history of the sound radiation power under different material consumption (a) Vf = 2/9, (b) Vf = 3/9, (c) Vf = 4/9, (d) Vf = 5/9,
(e) Vf = 6/9, (f) Vf = 7/9, and (g) Vf = 8/9.
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Figure 10. The frequency responses of sound radiation power.

Figure 11. The sound radiation power at the first odd mode.

4.2. Optimal Layout of Constrained Layer
Damping Materials

The optimal layouts of CLD materials under various mate-
rial consumptions are shown in Fig. 8. The effect of the op-
timization process on radiation sound power measured at the
first odd mode frequency was monitored. Fig. 9 illustrates so-
lution convergence histories under various material consump-
tions. Meanwhile, the sound radiation power was aimed at the
best individual of each generation population in optimization
process.

The frequency response for sound radiation power and
sound pressure are investigated. The sound pressure was mon-
itored at the center of the closed acoustical cavity. The fre-
quency responses for optimized CLD/plate under various ma-
terial consumptions are shown in Fig. 10 and Fig. 12. The fre-
quency responses for the aluminum plate without CLD treat-
ment and the plate with fully CLD treatment are also demon-
strated in Fig. 10 and Fig. 12. In addition, Fig. 11 and Fig. 13
illustrate sound radiation power and sound pressure at the first
odd mode under various CLD material consumptions.

It is clear that once the optimal layout of CLD treatment

Figure 12. The frequency responses of sound pressure.

Figure 13. The sound pressure at the first odd mode.

was pasted on the flexible plate in the closed acoustical cav-
ity, radiation sound power and sound pressure inside the cav-
ity reduced significantly. A different optimal layout of CLD
treatment could be obtained when the different CLD material
consumptions and modal frequencies were considered. This
implies that GA, with and elitist strategy method and topology
optimization program, was correct and effective. Specifically,
when 66.6% CLD material was applied to the flexible plate in
optimal layouts, sound radiation power was attenuated 8.8 dB
compared to the aluminum plate and 1 dB compared to the
fully CLD treatment plate.

5. EXPERIMENTAL VERIFICATION

To verify the obtained results experimentally, a set of three
different flexible plates were prepared. The first plate was the
aluminum plate which has surface dimensions of 30 cm ×
30 cm and thickness of 0.8 mm. The second plate was the alu-
minum plate with full coverage of CLD materials. The third
plate was the CLD/plate corresponding to the topology opti-
mization result in 5/9 CLD material consumption. The three
flexible plates are shown in Fig. 14.
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A 30 cm× 30 cm× 30 cm closed acoustical cavity was pre-
pared. The cavity had only one surface coupled to the flexible
plate as shown in Fig. 15. Each of the three different plates
were mounted and the sound pressure level at the center of the
cavity was measured. The plate was mechanically excited at
the center with a force hammer and sound pressure level was
measured by LMS test system.

Frequency responses for sound pressure inside the acous-
tical cavity are shown in Fig. 16. The displayed results em-
phasize effectiveness of topology optimization in attenuating
sound pressure level inside the acoustical cavity. Furthermore,
the obtained results agree closely with the theoretical predic-
tions displayed in Fig. 12.

6. CONCLUSIONS

A finite element model is developed to simulate the vibration
of the CLD treatment plate. An acoustical boundary element
model for a rigid acoustical cavity coupled with a flexible plate
is further developed to predict the sound radiation inside the
cavity. An acoustical topology optimization approach based
on genetic algorithm is proposed to search the optimal layout
of CLD material in the flexible plate. The objective of the op-
timization is to determine the layout of the CLD material in
order to minimize the sound radiation power. The acoustical
topology optimization approach is integrated with the finite el-
ement model and the boundary element model.

In the optimization, the excitation acting on the plate is
locked at the first odd mode to ensure the effectiveness of
the optimization in reducing the sound radiation power or the
sound pressure at the modal frequency. The analytical model
showed considerable attenuation for the first odd mode, as well
as the other modes. Especially for the plate with 66.6% CLD
materials, its sound radiation power or the sound pressure is
lower than the plate with 100% CLD materials.

Experimental verification is carried out by manufacturing a
topology optimized CLD treatment plate that approximate the
optimization result obtained from the analytical model. The
plate is coupled to an acoustical cavity. The sound pressure in-
side the acoustical cavity is measured and compared with the
aluminum plate and CLD treatment plate cases. Considerable
attenuation in the sound pressure inside the acoustical cavity
is obtained and a good match with the analytical model is ob-
served.

This study has shown that the proposed acoustical topology
optimization approach can be an effective tool in the design of
a wide variety of critical structures, which must be lightweight
and operate quietly such as the panels in the vehicle body, air-
craft cabin and so on.
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Figure 14. The three flexible plates: (a) aluminum plate, (b) fully CLD treat-
ment plate, and (c) optimized CLD treatment plate.
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Figure 15. Experimental setup.

Figure 16. Experimental sound pressure.
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Direct Drive Valves (DDVs) can be used as acoustic actuators in duct systems when requirements on mechanical
or thermal robustness are high, e.g., for the active control of aerodynamic or combustion instabilities. This paper
presents a model of a DDV that is used as an active element in an acoustic network model. In acoustic network
modelling tools, acoustic sources are often implemented as simple velocity or mass flow boundary conditions. In
practice, however, DDVs are not necessarily situated at the boundary of the system and the throughflow depends
on the fluctuating pressure drop over the valve. This paper presents an acoustically compact model, based on mass
conservation and a time-varying hydraulic resistance. The resistance depends on the fluctuating valve opening.
The results are compared to the experiment in terms of acoustic wave transfer function.

NOMENCLATURE

A Area
[
m2
]

Cd Discharge coefficient [−]
D Transmission coefficient of an acoustic delay [−]
L Length [m]
M Mach number [−]
Q Gas flow rate in norm litre per minute [NLPM]
R Reflection coefficient [−]
Rsys Combined reflection coefficient of an acoustic

system [−]
Re Reynolds number [−]
S Source coefficient [(m/s) /%]
Ssys Combined source coefficient of an acoustic

system [(m/s) /%]
T Transmission coefficient [−]
V Volume

[
m3
]

c Speed of sound [m/s]

f̃ Downstream characteristic wave amplitude [m/s]
g̃ Upstream characteristic wave amplitude [m/s]
p Pressure [Pa]
p0 Total (stagnation) pressure [Pa]
r Radius [m]
t Time [s]
u Velocity [m/s]
x, y, z Coordinates [m]
xsp Valve (spool) opening [%]
ζ Hydraulic loss coefficient [−]
ρ Density

[
kg/m3

]
◦̄ Time-averaged quantity
◦′ Perturbation on time-averaged quantity
◦̇ Rate of change / flow[◦/s]

1. INTRODUCTION

DDVs are generally used as hydraulic (oil flow) actuators.
For this application, they need to be stiff and precise, but their

range of operation is restricted to low frequencies. Recently,
they have been used as acoustic (gas flow) actuators, such as
for the active suppression of combustion instabilities or dy-
namic compressor stall.1–3

Combustion instabilities arise when there is a positive feed-
back between a fluctuating heat release and the combustor
acoustics. These instabilities can quickly grow to great am-
plitudes, and in worst case, lead to severe hardware damage.
Dampers, such as Helmholtz resonators, are often used to
damp combustion instabilities, but for low frequencies (e.g.
< 500 Hz) the size of these dampers can get impractically
large.

Active control by modulation of the fuel flow, is a commer-
cial solution for these low-frequent instabilities.2 Compared to
passive measures, active control on combustion and flow dy-
namics has the advantage of being more flexible. Different fre-
quencies can be damped without hardware modification, and
several modes of instability can be dealt with simultaneously.
For a thorough overview on active and passive control on com-
bustion instabilities, the reader is referred to Zinn4 and Culic.5

In these applications, valves, such as DDVs, have the advan-
tage over loudspeakers that valves are very robust to thermal
and mechanical influences. The volume flow modulated by a
loudspeaker is limited by its geometry, while the modulated
volume for a valve is limited by the throughflow. For the ap-
plications mentioned above, this is usually to the advantage of
the valve.

The implementation of control systems as described before
is not trivial; better tools are needed to predict the control au-
thority a priori.6 Network models are a popular tool to analyse
1-D acoustics and could be a valuable aid for setting up new
systems. However, until now, there has been no description of
a valve being used for this type of model.

No truly acoustical description of how such a valve would
need to be modelled was found in the literature. Annaswamy
and Ghoniem,7 for instance, simply stated that the through-
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flow is assumed to be proportional to the valve opening, where
the constant of proportionality depends, amongst others, on the
(average) pressure drop over the valve. In reality, the through-
flow depends on fluctuation of the pressure drop too. Wang
et al.8 includes a description of the dynamic behaviour of the
electro-mechanical subsystem of the valve, but does not dis-
cuss the resulting throughflow.

Reflection, transmission, and generation of acoustic waves
by a constriction at high Mach numbers has been analyzed in
the context of rocket exhaust nozzles. Contrary to the current
work, it is usually assumed that the geometry of rocket noz-
zles is smooth and well known, and of course constant in time.
Tsien,9 for instance, discussed a nozzle where the velocity u
is a linear function of position x. Candel,10 Marble and Can-
del,11 and Bohn12 generally assume smooth, conveniently de-
fined geometries, where the only losses are caused by shocks.
For valves on the other hand, losses are dominated by flow sep-
aration at edges. Mani,13 amongst others discussed, upstream
reflection of free jets, but assumed that there was more knowl-
edge of the flow field than is practically available for the flow
through a commercial valve.

A model of a DDV is formulated and implemented in a lin-
ear network model of acoustic wave propagation and scatter-
ing. The DDV is described in Section 2, and the model will
be formulated in Section 3. This model is implemented as an
active element in taX, which is an acoustic network model, de-
veloped at the Technische Universitt Mnchen and implemented
in MATLAB.14 The results are compared to experimental data
in Section 4.

2. DESCRIPTION OF THE PHYSICAL DDV

The valve used in this research is DDV model D633E7320
by MOOG Inc. Valve models of this type are usually used
for hydraulic applications. The manufacturer mentions metal
forming and presses, automotive testing, and the timber in-
dustry.15 The control electronics of the valve under investiga-
tion were modified for use in active instability control of com-
bustion instabilities, thus increasing its frequency range up to
around 500 Hz.

2.1. Fluid-Mechanical Description

Figure 1 gives a first impression of the outer appearance. A
vessel (on top, largely outside of the picture) is connected to
the inlet of the valve and functions as a decoupler, to acous-
tically decouple the valve from the upstream duct system. It
implements, to a good approximation, an acoustically open
boundary condition on the upstream side of the valve.

The valve itself, which is a cylinder type valve, is shown
below the vessel. Only the bushing can be seen as a dark block
on the photo, which is flanked by the linear motor on the left
and the housing for electronics on the right.

The close-up below shows the principle gas flow and the
spool in opened position. Moving the spool to the left would
close the valve. The gas leaves the valve upward and then out
through the exit duct, which points away from the observer.

Outlet

Outlet
Inlet

Inlet

Close
Open

120 mm

Figure 1. Overview of MOOG valve D633E7320, with a decoupler on top.
The close-up below shows the principle gas flow and the spool (blue) in opened
position inside the bushing (green). Moving to the left, the spool would close
the valve.

2.2. Electro-Mechanical Description

The spool position follows the input voltage as a second or-
der dynamic system. Figure 2 gives a graphical impression.
Unfortunately, there are a few non-linearities involved, which
make it impractical to model the electro-mechanical system
of the valve, as was done by Wang et al.8 in the linear net-
work model taX. Most notably, hysteresis due to Coulomb fric-
tion causes significant, non-linear deviation from the ideal be-
haviour. The movement of the spool was restricted by hard
ends (see Figs. 2 and 3). These introduce a clipping of the
spool position for higher amplitudes. Since the spool position
xsp was monitored by a linear variable differential transformer
(LVDT), a simpler model can be formulated using xsp as in-
put. Therefore, without loss of usability, the model will be
restricted to the part indicated in the lower part of Fig. 2, i.e.
concerning fluid mechanics only.

In typical industrial usage as an actuator controlling com-
bustion instability of dynamic compressor stall, the mean spool
position is half open (xsp = 50 %). The spool oscillates har-
monically around this position. The average flow is usually
set by another valve in a slow feedback loop. This way, the
DDV can remain half-open while the throughflow is varied.
Hermann and Orthmann2 used the valve to modulate the fuel
supply of the pilot flame of an industrial combustor. This con-
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ηsp kspfn ≈420 Hz
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Current valve model

{

Figure 2. The dynamic system of the valve includes the most significant non-
linearities: friction (hysteresis) and hard ends limiting the movement of the
spool.
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Figure 3. Hysteresis of (slowly varying) spool position as a function of input
voltage. xsp = 0 % and xsp = 100 % are determined by the hard ends.
At the xsp = 0 % there is still some flow possible through the valve (see
Section 3.2.1).

stituted only a relatively small fraction of the total amount of
fuel burnt in the gas turbine. The amplitude of the actuation of
the valve dependes on the instability at hand.

3. LINEAR, COMPACT, QUASI STEADY, AND
1-D MODEL

In the duct systems where DDVs are typically applied,
acoustical effects can be considered quasi 1-D. Since the cross-
over frequency of the DDV lies around 500 Hz, its application
and the scope of the model considered here are limited to fre-
quencies below this value. The wave lengths associated with
these frequencies are of the order of (deci)metres, while the di-
mensions of the valve are limited to millimetres or centimetres.
Therefore, the valve model will be formulated as acoustically
compact.

The network modelling package taX deals with flow pertur-
bation around a mean flow state. Quantities are written as a
sum of a mean value and a perturbation. Mean values are in-
dicated by an over-bar (◦̄), and perturbations by a prime (◦′).
The pressure becomes p = p̄ + p′ and the velocity becomes

u = ū+ u′, etc.
The frequency domain solver of taX uses models which are

linear in perturbation. Therefore, the valve model as an ele-
ment in taX must be linearised.

3.1. The Mass Equation
In the current valve, the volume of fluid inside the valve

does not change under movement of the spool. Since the
valve was acoustically compact as well, no mass was accu-
mulated in the valve, and the mass flow on in- and outlet
was the same ([ṁ]

in
out = [Aρu]

in
out = 0). Using the ideal

gas law and Poisson’s relation for calorically perfect gasses
ρ = ρ̄+ ρ′ = ρ̄+ p′

/
c2 , linearising and subtracting the mean

equation gives:16

[A (ρ̄ u′ + ū ρ′)]
out
in = 0 +O (ρ′ u′) ;[

A

(
ρ̄ u′ + ū

p′

c2

)]out

in
= 0 ;[

ρ̄ A

(
u′ +M

p′

ρ̄ c

)]out

in
= 0. (1)

3.2. The Momentum Equation

The volume flow rate ¯̇V in a steady state was described by
the discharge coefficient of the valve C̄d, where the outlet was
taken as a reference point:

ūout =
¯̇Vout

Aout
= C̄d

√
2

ρ̄out
(p̄0,in − p̄0,out). (2)

3.2.1. Measured steady discharge coefficient

The pressure drop was measured∗ as a function of through-
flow, for consecutive spool positions xsp = 10, 20, . . . , 100 %.
The results, non-dimensionalised as the discharge coefficient
Cd and the Reynolds numberRe, are plotted in Fig. 4. The dis-
charge coefficient is weakly dependent on the flow rate. Under
turbulent flow conditions, it is common for valves and orifices
to show a power-law relation between flow rate and pressure
drop.17, 18 Therefore, it seems appropriate to express the varia-
tion of Cd as a power function of Reynolds number Re.

According to the manufacturer’s specifications,15 at a con-
stant pressure drop, the steady state mass flow rate through
the valve depends linearly on the spool position xsp. Constant
pressure drops (where Re is proportional to Cd) are found
along lines through the origin of the axes, e.g., the diagonal
dashed line in Fig. 4. If the curves Cd (Re) for constant xsp are
individually curve-fitted by power-law functions, these cross
the diagonal line at the points plotted in Fig. 5. This plot shows,
that Cd depends linearly on the spool position xsp, when the
pressure drop is kept constant. Combining this linearity with
the power-law behaviour gives the trend lines in Fig. 4.

3.2.2. Unsteady momentum equation

To use the valve model in an acoustic network model, two
effects need to be considered. Firstly, the spool position should
∗The loss in static pressure (not total pressure) was measured. The differ-

ence is insignificant for these speeds and pressure drops.
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Figure 4. Trends of the discharge coefficient Cd as a function of valve open-
ing xsp and throughflow, based on measurement data from.19 According to
the specification by the manufacturer, at constant outlet pressure (the dashed
diagonal line), Cd should depend linearly on xsp.
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Figure 5. Trends of the discharge coefficient Cd as function of the valve
opening xsp corresponding to the dashed diagonal line in Fig. 4. According
to the manufacturer’s specification, this should be a linear function. This is
indeed the case, although there is an offset.

be allowed to oscillate around a mean value, so the valve can
act as an acoustic source and when the valve is nearly closed,
the flow accelerates through the contraction between the bush-
ing and spool, which could be modelled as a lumped acoustical
inertance after Hirschberg and Rienstra.20 Rewriting Eq. (2),
with ∆p0 as a dependent variable and adding the inertia term
leads to a formulation for the dynamic behaviour of the valve:

∆p0 = pin − pout +
1

2
ρout

(
u2in − u2out

)
=

C−2d
ρ

2
u2 + ρLκ

du

dt
; (3)

where Cd is now a quasi-steady function of time. Inertia is
modelled by the term on the far right. The equivalent lengthLκ
represents the length of a duct with the same amount of kinetic
energy (for a certain throughflow) as the true geometry, but
with constant cross section. Assuming homogeneous density
throughout the constriction, u(x) = ṁ/(ρref A(x)). Lκ can

2 
π
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Figure 6. A simplified geometry was used for an approximation of the fluid at
the constriction of the valve. The inlet and outlet ducts (subscript in and out)
do not need to have an equal cross-sectional area.

now be expressed as:

Lκ =

∫
1
2 ρref u(x)2A(x) dx[

1
2 ρ u

2A
]

ref

=

∫
Aref

A (x)
dx . (4)

Though the form of Eq. (4) is relatively simple, it requires an
expression for the cross-sectional area as a function of stream-
wise coordinate x. Considering the geometry of the ducts in
Fig. 1, this expression is not obvious. To find an approximation
of Lκ, a simplified geometry was defined, as shown in Fig. 6.

This simplified geometry represents a “rolled out” version of
the annular constriction between the spool and the surrounding
bushing. It models the basic characteristics of the flow through
the aperture of the valve; the flow converges at a 90◦ angle
while the ridges were offset by a distance of xsp. Also, opening
and closing the valve did not change the volume of the fluid.

The contraction was modelled with zero volume, since the
flow volume was modelled as part of the in-and outlet ducts.
The additional inertia caused by the restriction, is therefore the
inertia above the inertia represented by the in- and outlet ducts.
Figure 7 expresses this concept graphically.

Closing the physical valve did not change the fluid volume.
To keep the volume inside the simplified geometry constant
as well, the contraction became longer when the valve was
closed, and shorter when the valve was opened. This is shown
in Fig. 8. The expression for the equivalent length Lκ, can be
evaluated as:

Lκ = Lκ,tot − Lκ,in − Lκ,out =

Aref

(∫ IV

I

1

A (x)
dx− xIII − xI

2Ain
− xIV − xII

2Aout

)
=

Aref

4π rsp
ln
Ain Aout

A2
min

. (5)
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Figure 7. The volume of the fluid inside the in- and outlet duct of the valve
was modelled by the elements representing those ducts. The additional in-
ertia (compared to the undisturbed inertia of the inlet and outlet ducts) due
to the constriction was added in terms of an equivalent length Lκ. The upper
pane shows how the volume of the simplified valve geometry was redistributed
amongst the inlet and outlet ducts. The lower pane shows the distribution of
inertia of the flow.

Figure 8. The influence of the degree of valve opening on A (x) and Lκ.

In operation, the valve should not be fully closed, since then
the flow could not be modulated any more. For the current
DDV, Lκ was estimated in the order of millimetres for all prac-
tical applications. In reality Lκ would be somewhat larger due
to the flow separation and jet formation, but still much smaller
than the other relevant lengths in the system. Therefore, Lκ
can safely be neglected. For geometries where this inertia is
relevant, it can be added as a separate element in the network
model.

3.2.3. Linearised fluctuating hydraulic resistance

The formulations used in taX require components to be lin-
earised and expressed in terms of the characteristic wave am-
plitudes f̃ = 1

2 (p′/ (ρ c) + u′) and g̃ = 1
2 (p′/ (ρ c)− u′).

Firstly, the dynamic variables were expressed in the form of
a steady mean value plus a fluctuation. This fluctuation was
assumed to be small compared to the average, which meant
that the terms of the order of fluctuations squared could be ne-
glected.

By linearising p = p̄ + p′, ρ = ρ̄ + p′/c2, Cd = C̄d + C ′d,
and u = ū + u′, as well as leaving out the Lκ term, Eq. (3)
becomes:

p′in + ρ̄in ūin u
′
in =

p′out − C̄−2d ρ̄out ū
2
out
C ′d
C̄d

+
(
1 + C̄−2d

)
ρ̄out ūout u

′
out +O

(
M2, pertubations2

)
. (6)

The steady solution can be subtracted from Eq. (6). Dividing
the reminder by ρ̄out cout, and substituting C̄d

−2 by ζ and ū
bycM gives:

p′out

ρ̄out cout
− p′in
ρ̄out cout︸ ︷︷ ︸

pressure difference

+ (1 + ζ) Mout u
′
out −

ρ̄in cin

ρ̄out cout
M in u

′
in︸ ︷︷ ︸

steady resistance, acceleration

=

ζ M2
out cout

C ′d
C̄d︸ ︷︷ ︸

source term

.

(7)

The momentum and mass equations are rewritten as a matrix
equation in terms of the characteristic wave amplitudes. The
resulting matrix can then be used to characterise the valve ele-
ment in the network model taX.

4. COMPARING THE MODEL TO
EXPERIMENT

4.1. Experimental Set-Up and System Model

The acoustical behaviour of the valve was characterised
by six transfer functions relating two outputs: upstream and
downstream outgoing waves, to three inputs: upstream and
downstream incoming waves, and actuation of the valve (see
the block labelled “Valve element” in Fig. 9). Ideally, the
model formulated before would be validated against an inde-
pendent measurement of all these transfer functions. Unfortu-
nately, this is not possible with the current valve, since there is
no sensor access to the duct connecting the decoupler volume
to the inlet of the valve, and this duct is impractically short
to accommodate such access. The best that can be done is a
determination of the reflection- and source coefficients of the
system consisting of the valve combined with the inlet duct and
decoupler volume. Figure 9 shows an overview of this system.
The inlet duct was characterised by two transmission coeffi-
cients,Df̃ andDg̃ , which were assumed to be pure delays. The
reflection coefficient of the volume, RV , was assumed to be
(1−M)/(1 +M) , based on acoustical energy conservation.
The total reflection and source coefficients of this acoustical
subsystem will be referred to asRsys and Ssys, respectively.

The model coefficients Tf̃ , Tg̃ , Rin, Rout, Sin, and Sout were
derived from the expressions derived from Eqs.(1) and (7).
These coefficients were evaluated numerically, since the alge-
braic expressions would be unwieldily long. The full system
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Figure 9. Overview of the acoustic transfer functions and the three measurable
signals (x′sp, f̃out and g̃out).

shown in Fig. 9 was described by the following matrix equa-
tion:

 · (Dg̃ RV Df̃ ) · · ·
Rin · · Tg̃ Sin

Tf̃ · · Rout Sout



f̃in

g̃in

f̃out

g̃out

x′sp

 =

 f̃in

g̃in

f̃out

 ;

(8)

where f̃out can be expressed as a function of g̃out and x′sp:(
Tf̃ Dg̃ RV Df̃ Tg̃

1−Rin Dg̃ RV Df̃

+Rout

)
︸ ︷︷ ︸

Rsys

g̃out

+

(
Tf̃ Dg̃ RV Df̃ Sin

1−Rin Dg̃ RV Df̃

+ Sout

)
︸ ︷︷ ︸

Ssys

x′sp = f̃out. (9)

4.2. Measurement and Signal Analysis

The characteristic wave amplitudes were determined by the
well known two-microphone method.21 In order to separate
the source term and the reflection coefficient, two independent
acoustical sources were needed.22 For this measurement, an
additional loudspeaker was used. Figure 10 shows the experi-
mental setup.

Introducing the superscript (ls) to identify quantities corre-
lated to loudspeaker excitation, and (vl) to indicate quantities
correlated to valve excitation, the two-state ansatz was written
as the following matrix equation:

f̃ (vl)
out

f̃
(ls)
out

 =

Rsys Ssys · ·

· · Rsys Ssys



g̃
(vl)
out

x′
(vl)
sp

g̃
(ls)
out

�
��x′
(ls)
sp

 . (10)

The valve opening xsp is constant when the loudspeaker is used
for actuation, so x′(ls)

sp = 0. Solving Eq. (10) gives the expres-

Inlet

Outlet
Loudspeaker

Valve
Micro- phones

Figure 10. The experimental setup for the measurement of the reflection co-
efficient of Rsys and the source strength Ssys of the valve.

sions forRsys and Ssys (similar to § 2.2 in Bothien et al.23):

Rsys =
f̃
(ls)
out

g̃
(ls)
out

; (11)

Ssys =
f̃
(vl)
out − g̃

(vl)
out Rsys

x′sp
. (12)

4.3. Cases
Measurements were done with varying air mass flows, as

well as with different values of the valve opening, which are
listed in Table 1. For all cases, the transfer function relating the
pressure fluctuation to the valve opening variation was deter-
mined in Pascal per percent opening fluctuation (Pa/%). Sub-
sequently, the two-microphone method21 was used to find the
transfer function relating the characteristic wave amplitudes to
the valve opening variation, from which the system coefficients
were determined, as discussed before.

4.4. Low-Frequency Limit
In the quasi steady limit, and with Lκ much smaller than

relevant geometric lengths, Eqs. (1) and (3) are frequency-
independent. Since these equations don’t contain any com-
plex numbers, the acoustical coefficients describing the valve
are real-valued functions of the steady conditions. Figure 11
shows how these quantities vary as a function of valve through-
flow when the valve is opened to 50% on average. Figure 12
shows the variation as a function of valve opening, at 40 SLPM
throughflow. The predicted low frequency limits of Rsys and
Ssys (the quantities which can be measured experimentally for
not too low frequencies) are given for comparison.

The influence of an increase in throughflow is similar to
that of a decrease in opening. In both cases, the flow velocity
through the constriction thus increases, increasing the acousti-
cal stiffness of the valve.

When Ain = Aout (not shown) all of the quantities vary be-
tween 0 and 1, except for Sin, which is negative. As far as the
passive coefficients are concerned, this intuitively corresponds
between the valve acting like a zero-length tube, a complete
acoustical blockage, or something in between. The absolute
values of the source coefficients accidentally were between 0
and 1 due to the choice of units. The source term’s absolute
value on the outlet side was slightly larger.

Currently, rin = 3 mm and rout = 5 mm, so Ain < Aout.
In this case, when the valve opening is large, or when there
is little throughflow, the behaviour approaches that of an area
discontinuity. For example Tg̃ can exceed unity and approache
2 as Ain/Aout goes to zero [24, § 5.3]. Rin can be less than
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Flow rate Opening C̄d ∆p Mout Re

Case SLPM g/s (Pa)

Q020-X050 20 0.33 50% 0.106 1091 0.0132 3236

Q040-X025 25% 0.077 8207

Q040-X050 40 0.67 50% 0.117 3609 0.0263 6471

Q040-X075 75% 0.154 2073

Q080-X050 80 1.33 50% 0.128 11940 0.0526 12943

Q160-X050 160 2.67 50% 0.141 39500 0.1053 25885

Table 1. The overview of the investigated operating conditions.

Figure 11. Modelled transfer functions, according to Eqs. (1) and (7), as functions of the throughflow Q̄ in SLPM (standard litre per minute). Mean valve
opening x̄vl was 50 %. The markers indicate operating points listed in Table 1.

Figure 12. Modelled transfer functions, according to Eqs. (1) and (7), plotted against the mean valve opening x̄sp in percentage. Throughflow Q̄ was 40 SLPM.
The markers indicate operating points listed in Table 1.
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Figure 13. Reflection (left/below) and source term (right/above) of the system plotted in the complex plane, for frequency in the range f ∈ [100, 500] Hz. The
arrows indicate the direction of frequency dependence. Rsys is dimensionless and Ssys is measured in (m/s)/%.

zero, when the combined impedance – of the valve plus the
outlet duct – is less than the impedance of the inlet duct. The
source term was greater on the side with the larger diameter.

4.5. Frequency Dependence

Figure 4.4 gives an overview of the measured reflection co-
efficient and source term compared to the prediction. The
lower limit of the frequency range for this measurement was
caused by the loudspeaker, which did not excite efficiently
enough below 100 Hz. The high frequency limit of the mea-
surement was determined by the valve, which could only be
operated up to around 500 Hz.

The predicted reflection coefficient, as function of fre-
quency, began at the positive real axis and curved up to the
right. Intuitively, this could be understood as a direct reflection
form of the valve, plus a delayed open end; i.e., the reflection of
the decoupler. The measured reflection coefficient shows sim-
ilar trends depending on the operating condition; the reflection
increases as the valve is closed, or as throughflow is increased.
The low-frequency limit, which can be evaluated better from
the bode plots in Figs. 4.5 and 4.5, lie on the real axis. For
the cases Q020-X050 and Q040-X075, the reflection coeffi-
cient at low frequencies was predicted to be positive, while the
measurements showed a negative value. The phase was gen-
erally lower then predicted, and fell further as the frequency
increased. The reason for this behaviour remains unknown.

The low-frequency limit of the source term is situated on the
positive real axis; the flow increases when the valve is opened.
Reflected waves from the decoupler have the same sign with
a small delay and cause the curve to go down to the left as
the frequency increased. The magnitude of the source term in-
creases when the valve was closed, or when throughflow was
increased. The predicted source term shows a better agreement
with the experiment than the reflection coefficient. The main
discrepancies were that the measured source terms showed a
greater dependence on valve opening, and, in some cases, an-
other behaviour for increasing frequency.

5. IMPLEMENTATION IN A SIMPLIFIED FUEL
SYSTEM

5.1. Set-up

To demonstrate the usability of the valve model in an acous-
tic network model, the setup in Fig. 10 was modified. After the
removal of the tee-piece and the loudspeaker, what remains can
be thought of as a simplified fuel system. The representation of
this system in the network modelling programme taX is shown
in Fig. 16. An open inlet represents the decoupler. The valve
element (labelled “DDV”) was accompanied by short ducts
representing the inlet and outlet inside the bushing and decou-
pler. Additional inertia at the valve outlet was set to zero, as
argued in Section 3.2.2, and was included for illustrative pur-
poses. Ducts A, B, and C together form the simplified fuel
supply system. The two microphones measured the pressure
fluctuation caused by the valve as before.

5.2. Results

The predicted and measured transfer functions are shown
in Figs. 17 and 18. Since the valve was predicted to behave
similar to a closed end, and the exit was open, the resonances
corresponded to the 1/4 and 3/4 wave modes of the duct. For
Q020-X050 and Q040-X075, where the valve, contradictory to
the model, behaved more like an open end, the measured peaks
in the transfer function were much more damped.

In general, the model captures the order of magnitude of the
sound generated by the valve well. It should be noted that the
valve can hardly be operated above 500 Hz, so the deviation
form prediction at higher frequencies was not dramatic for ap-
plication.

6. COMPARISON TO THE LOUDSPEAKER

As argued in Section 4.1, not all coefficients describing the
valve model could be measured independently. Nonetheless,
the current data was sufficient enough to make a compari-
son between a valve and a loudspeaker as acoustic actuators.
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Figure 14. The model prediction of the valve’s transfer function (dashed),
compared to measurement (dots) for various values of average valve opening.
Ssys is in (m/s)/% and Rsys is dimensionless.

Figure 15. The model prediction of the valve’s transfer function (dashed),
compared to the measurement (dots) for various average mass flow rates in
standard litre per minute (40 SLPM is shown in Fig. 4.5). Ssys is in (m/s)/%
and Rsys is dimensionless.
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Figure 16. Representation of the simplified fuel system in taX: the elements in the upper half of the taX model together represent the valve and decoupler. A
simple duct with two microphones in the lower half complete this simplified fuel supply system.

In acoustical network modelling, loudspeakers are often as-
sumed to behave like fluctuating volume sources, since they
are “much stiffer” than the medium involved and do not react
to pressure fluctuations.7, 14 Although more advanced models
exist,25–27 in the first approximation for many relevant situa-
tions, a loudspeaker mounted at the end of a duct could be
assumed to behave like a hard end and a constant source term
in a superposition.

The behaviour of the valve introduces much more damping.
Figure 4.4 shows reflection coefficients that vary between unity
and zero. The measured reflection coefficient of the valve with
the decoupler was negative for some operating conditions.

While the influence of the flow conditions on a loudspeaker
are usually neglected, the valve behaved differently depending
on the conditions. Both reflection and sound creation increased
with throughflow or reduction of the opening.

Finally, from a practical perspective, the volume modulated
per cycle by a loudspeaker was limited by its geometry. For
a valve, on the other, hand the modulated volume was lim-
ited by its throughflow. Since throughflow per cycle is greater
for lower frequencies, a valve was a more effective actuator at
lower frequencies.

When an upstream duct is modelled, another relevant dif-
ference between both actuators is that the loudspeaker behaves
like a volume source, i.e., an acoustic monopole. The loud-
speaker, on the other hand, modulates the pressure drop, and
hence acts as an acoustic dipole.

7. DISCUSSION AND CONCLUSIONS

The model presented in this paper describes the basic char-
acteristics of a DDV. Embedded in an acoustic network, it can
give a good first prediction of the effectiveness of the imple-
mentation, i.e., the control authority of the valve.

There remains a significant discrepancy in the prediction of
the phase of the reflection coefficient Rsys, as shown in Figs.
4.4, 4.5 and 4.5. This discrepancy was at its largest for the
low-frequency limit of the cases Q020-X050 and Q040-X075,

where the absolute value of the reflection coefficient was rela-
tively small. For other cases and frequencies, the phase differ-
ence was less, but often around π/2.

Equation (9) givesRsys as the sum ofRout and another term,
that involved the reflection at the decoupler, amongst others.
Since both terms were nearly opposite in phase according to
the model, small errors in either one of the terms, could lead
to large phase errors in Rsys. It cannot be determined from
the current measurements which of the quantities in Eq. (9)
caused the discrepancy because the valve assembly discussed
in this paper did not allow for measurements of the acoustics
upstream of the valve.

The assumption that the decoupler behaved as an open end
did not cause the discrepancy. Network simulations with a
Helmholtz resonator instead of an open ended did not yield
a better agreement.

Furthermore, an acoustical influence of the corners and
cross-sectional variation of the ducts inside the bushing of the
valve was hard to predict and even harder to separate from
other effects. For further improvement of the model, it would
be advisable to test the model on a valve with a cleaner and
more accessible duct geometry.

This discussion does not differentiate between M and Re
effects, since only one fluid (air) was used. The model could
be improved, by redoing the C̄d measurements with another
gas, which is especially true for applications in fuel gas supply
systems.

The (linear) model assumes the modulation of the discharge
coefficient C ′d, which appears in the source term, to be small
compared to the mean value C̄d. When C ′d is increased to im-
prove control authority over hard-to-control combustion insta-
bilities, this assumption, needed for the linearisation, no longer
holds.

The current model can be used in the initial stage of imple-
menting a system for rapid flow control, and as such, the model
can help speeding up this phase of development.
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Figure 17. Model prediction of the valve’s transfer function (dashed), com-
pared to the measurement (dots) for the various values of the average valve
opening.

Figure 18. The model prediction of the valve’s transfer function (dashed),
compared to the measurement (dots) for the various average mass flow rates in
standard litre per minute (40 SLPM is shown in Fig. 17).
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In this study, the free vibration analysis of rotating and non-rotating fiber metal laminate (FML) beams, hybrid com-
posite beams (HCB), and functionally graded beams (FGB) are investigated. FML beams are high-performance
hybrid structures based on alternating stacked arrangements of fiber-reinforced plastic (FRP) plies and metal alloy
layers. Hybrid composite beams are materials that are made by adding two different fibers. Functionally graded
beams are new materials that are designed to achieve a functional performance with gradually variable properties
in one or more directions. The effects of different metal alloys, composite fibers, and different aspect ratios and
angular velocities on the free vibration analysis of FML beams are studied. The effects of different angular veloc-
ities and different aspect ratios of rotating and non-rotating hybrid composite beams are also investigated. Finally,
the effects of different angular velocities and different material distributions, namely the power law, exponential
distribution, and Mori Tanaka’s scheme on the free vibration analysis of FGB, are also invesigated.

1. INTRODUCTION

Fiber metal laminates, hybrid composites, and functionally
gradient beams are often used in engineering applications. Ro-
tating FML, HCB, and FGB are especially used in helicopter
and wind turbine blades. FML are hybrid structures consist-
ing of different metal sheets and FRP composite layers such as
glass, aramid, and carbon fibers. One of the most important
objectives of their production is to combine the good impact
resistance of the metals with the light weight characteristic of
FRP. A combination of two or more various types of fibers in
a single plastic gives a hybrid composite and it is mainly used
in the aerospace industry. Sometimes, a ceramic layer or steel
material may be bonded to the surface of other metallic struc-
tures and act as a thermal barrier in a high temperature environ-
ment. The sudden change in the material properties across the
bonded region produces a stress jump and may further give rise
to delamination or cracking of the interface. One way to over-
come this shortcoming is to employ an FGB beam in which the
material properties vary continuously and thereby possess no-
ticeable advantages over homogeneous and layered materials
in maintaining the integrity of the structure.

In order to design these types of structures, their dynamic
analysis needs to be investigated. The dynamic analysis char-

acteristics of rotating FML, HCB, and FGB beams differ from
those of non-rotating structures. The centrifugal inertial force
due to the rotational motion causes the increment of the bend-
ing stiffness of the structure, which naturally results in the vari-
ation of natural frequencies. Sinmazcelik et al.1 explained
and reviewed the different types bonding and different testing
methods on different FML. Huang et al., proposed a discrete
method for the analysis of flap-wise bending vibration of rect-
angular plates using Dirac’s delta function.2 The effects of
the positions of point supports, the variable thickness, the as-
pect ratio, and the boundary conditions on the frequencies were
studied. Hashemi et al. studied the effect of different parame-
ters, including the aspect ratio, thickness ratio, hub radius ratio,
and rotation speed on the natural frequencies of rotating thick
plates by using the Mindlin-Reissner plate theory along with
second order strain-displacement assumptions that were ap-
plied for plate modeling.3 The Kane dynamic method was em-
ployed for the derivation of nonlinear governing equations of
motion, which included the Coriolis effects and the couplings
between in-plane and out of plane deformations. The free vi-
bration of rotating tapered cantilever Bernoulli-Euler beams
with linearly varying rectangular cross-section was studied by
Ozdemir and Kaya by using differential a transform method.4

For rotating Euler beams at high angular velocities, Huang et
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al. calculated the natural frequency of the free vibration and
the coupled lag wise bending and axial vibration was investi-
gated.5 The free vibration analysis of rotating tapered beams
was investigated by Banerjee et al. by developing a dynamic
stiffness matrix and a detailed set of numerical results were
presented.6 In the experiments conducted by Alijani et al.
on the non-linear response of sandwich plates made from car-
bon/epoxy laminate using a laser Doppler vibrometer to obtain
modal parameters.7 Rath and Sahu presented an experimental
and numerical investigation on the free vibration behavior of
laminated composite plates subjected to varying temperatures
and moisture, and observed that there was a reduction in the
natural frequency with the increase in temperature and mois-
ture concentration in laminated composites.8 The linear and
nonlinear free vibrations of rotating composite Timoshenko
beams was studied by Arvin and Bakhtiari-Nejad by basing the
formulation on the nonlinear Von-Karman strain-displacement
relationships.9 A linear and non-linear natural frequency of
free flexural vibration of symmetric laminated cross-ply rect-
angular composite plates with fixed, simply supported bound-
ary conditions was calculated by using first order deformation
theory along with the Galerkin method and the method of mul-
tiple scales by Razavi and Shooshtari.10 Khalili et al. stud-
ied the effects of the stacking sequence, fiber orientation, ax-
ial load, internal pressure, and geometrical parameters on the
transient response of FML shells and found that for a specific
range of aspect ratios.11 The free vibration analysis of FGB
with simply supported edges was performed by Aydogu and
Taskin with the assumption that the Young’s modulus of the as-
sumed beams varied in the thickness direction according to the
power law and exponential law.12 Sina et al. developed a new
beam theory for the free vibration analysis of shear deformable
FGB beam and the results showed that the new theory was a
little different in natural frequency from the traditional first or-
der shear deformation beams theory and the mode shapes of
the two methods are coincidental.13 Atmane et al. investi-
gated free vibration analysis of variable cross section of a func-
tionally graded beams and concluded that the non-uniformity
in the cross-section and the homogeneity in material proper-
ties influenced the natural frequencies.14 Fakhari and Ohadi
studied the free vibration analysis of functionally graded thick
and annular plates with linear and nonlinear thickness varia-
tion along the radial direction by using the polynomial-Ritz
method.15 The material properties of the functionally graded
plates were assumed to be graded in the thickness direction ac-
cording to the power law distribution in terms of the volume
fractions of the constituents. Ziane et al. investigated the free
vibration analysis of an FGB box beam with different bound-
ary conditions on the basis of first-order shear deformation the-
ory.24 Meiche et al. studied buckling and vibration analysis of
functionally graded materials beam using the new hyperbolic
shear deformation theory.25 Hebali et al. studied the static
and free vibration analysis of functionally graded plates us-
ing new quasi three-dimensional hyperbolic shear deformation
theories.26 Benachour et al. studied free vibration analysis of
plates made of functionally graded materials with an arbitrary
gradient using refined plate theory.27 Meziane et al. presented
an efficient and simple refined shear deformation theory for the
vibration and buckling of exponentially graded material sand-
wich plate resting on elastic foundations under various bound-
ary conditions.28 Zidi et al. studied the bending response

Figure 1. Schematic and finite element modeling of FML.

Table 1. Properties of isotropic materials.

Materials Aluminum Magnesium Titanium
E (GPa) 70 45 116

ν 0.28 0.29 0.32
ρ (kg/m3) 2700 1738 4506

of FGB beam resting on elastic foundation and subjected to
hygro-thermo-mechanical loading.29 Larbi et al. developed a
shear deformation beam theory based on neutral surface po-
sition for bending and free vibration analysis of functionally
graded beams.30

The objective of this paper is to investigate the free vibra-
tion analysis of fiber metal laminates, hybrid composites, and
functionally graded beams in rotating and non-rotating condi-
tions by using finite element analysis. In this paper, we stud-
ied the effect of different metal alloys, namely aluminum, tita-
nium, and magnesium, composite fibers (i.e. glass, carbon, and
aramid), and different angular velocities, and the aspect ratio
(L/H) on free vibration analysis of rotating and non-rotating
FML. The dynamic analysis of rotating and non-rotating hy-
brid composite beams was studied with different angular ve-
locities and the aspect ratio (L/H). The modal characteristic
of rotating and non-rotating FGB beams was also studied with
different homogenization methods for the computation of the
material properties and different angular velocities. The cur-
rent study is relevant to aero-structures.

2. MATERIAL PROPERTIES AND FINITE EL-
EMENT MODELING

2.1. Modeling of Fiber Metal Laminates

FMLs consist of alternating layer of metals and composite
fibers. The modeling was done by using commercial software
ANSYS 14.5. The length, height, and width of the FML beams
were 0.9 m, 0.3 m, and 0.4 m respectively. The equal thickness
of metals and fiber layers were taken for this study. The mate-
rials used for this modeling is shown in Tables1 and 2. The el-
ement chosen for this analysis was SHELL181 because it was
suitable for analyzing thin to moderately-thick shell structures.
It is a 4-node element with 6 degrees of freedom at each node,
namely translations in the x, y, and z directions and rotations
about the x, y, and z axes. The finite element modeling of fiber
metal laminates is shown in Fig. 1.
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Figure 2. Schematic and finite element modeling of HCB.

Figure 3. Schematic and finite element modeling of FGB beam.

2.2. Modeling of Hybrid Composite Beam
The hybrid composite beam consisted of two different com-

posite fibers. The modeling of the HCB had been done using
finite element analysis software ANSYS 14.5. The length and
height of the hybrid composite beams were 0.9 m, 0.3 m, and
0.4 m respectively. Fiber layers of equal thickness were con-
sidered for this study. The material used for this modeling and
analysis is shown in Table 2. The element chosen for this dy-
namic analysis was SHELL 181 because it was suitable for
analyzing thin to moderately-thick shell structures. It is a 4-
noded element with 6 degrees of freedom at each node namely
translations in the x, y, and z directions and rotations about the
x, y, and z axes. The finite element modeling of HCB is shown
in Fig. 2.

2.3. Modeling of Functionally Graded Beam
The material properties of FGB beams were assumed to vary

continuously through the thickness. The materials used for this
beam were aluminum and steel. The bottom and top surfaces

of the FGB beam were aluminum and steel-rich respectively.
Three homogenization methods were deployable for the com-
putation of material properties, such as Young’s modulus (E),
Poisson’s ratio (υ), and density (ρ) namely: (1) the power law
distribution, (2) the exponential distribution, and (3) the Mori-
Tanaka scheme.

2.3.1. Exponential Law constitutive Equations

According to exponential law distribution, the material
properties of FGB beams are characterized by Belabed et.
al.:18

E(z) = Ete
(−δ(1−2Z/h)); (1)

υ(z) = υte
(−δ(1−2Z/h)); (2)

ρ(z) = ρte
(−δ(1−2Z/h)). (3)

2.3.2. Mori-Tanaka Scheme constitutive Equations

In this study, the FGB beam made of aluminum, steel,
and the effective material properties of the FGB beam (i.e.,
Young’s modulus, Poisson’s ratio, and mass density), varied
continuously in the thickness direction (z axis direction). Ac-
cording to the Mori-Tanaka homogenization scheme, the ma-
terial properties were calculated based on Benveniste19, Mori
and Tanaka:20

E(z) = ES + (EA − ES)·

·
(

VA
1 + (1− VA)(EA/ES − 1)(1 + υ)/(3− 3υ)

)
; (4)

ρ(z) = ρS + (ρA − EρS)·

·
(

VA
1 + (1− VA)(Eρ/Eρ − 1)(1 + υ)/(3− 3υ)

)
. (5)

Where VA = (0.5+z/h)K is the volume fraction of aluminum.
According to Yang et al., the effect of variation Poisson’s ra-
tio (ϑ) on the response of FGB beams was very small: this
material property assumed to be constant for convenience.21

Where K was the non-negative variable parameter which dic-
tated the material variation profile through the thickness of the
beam (K = 1).

2.3.3. Power Law Constitutive Equations

The effective material properties of the FGB beams were
assumed to be varying continuously along their thickness di-
rections and were obtained by using the power law. The
power law distribution of a panel considered from the mid-
plane reference plane could be written according to Belabed et
al. (2014):

Vf =

(
y

h
+

1

2

)n
. (6)

Where n is the power-law gradient, 0≤ n ≤ ∞. The function-
ally graded material with two constituents and their properties,
such as Young’s modulus (E), Poisson’s ratio(υ) and the mass
density(ρ) were obtained using the following equations:

E = (Ea − Es)
(
y

h
+

1

2

)n
+ Es; (7)
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Table 2. Properties of orthotropic materials. Lei et al.,17 Malik and Arif.16

Materials Ex Ey Ez υxy υyz υxz Gxy Gyz Gxz ρ
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (kg/m3)

Carbon/Epoxy 60.8 58.2 58.2 0.07 0.4 0.07 4.5 5 4.55 1600
Glass/Epoxy 26 26 8 0.1 0.25 0.25 3.8 2.8 2.8 1800

Aramid/Epoxy 67 4.7 4.7 0.34 0.34 0.45 2 1.58 2 1440

Table 3. Convergence study on finite elements for FML, HCB and FGB
beams.

Total number Fundamental Natural Frequency (Hz)
of elements FML HCB FGB

100 226.48 215.84 386.61
400 226.28 215.52 386.11
900 226.24 215.50 386.00
1600 226.23 215.48 385.97
2500 226.22 215.47 385.95
3600 226.22 215.47 385.95

ρ = (ρa − ρs)
(
y

h
+

1

2

)n
+ ρs; (8)

υ = (υa − υs)
(
y

h
+

1

2

)n
+ υs. (9)

The power law distribution was used for the continuous gra-
dation of material properties in the thickness direction. The ef-
fective material properties were calculated based on Eqs. (7),
(8), and (9), when y = −h/2, E = Es, ρ = ρs and simi-
larly, when y = +h/2, E = Ea, ρ = ρa (i.e. the material
properties varied continuously from steel at the bottom surface
to aluminum at the top surface). The element chosen for this
analysis was also SHELL281, which is a layered version of the
8-node structural shell model. The finite element modeling of
FGB and schematic diagram is shown in the Fig. 3.

3. NUMERICAL RESULTS AND
DISCUSSIONS

A numerical analysis was carried out to analyze the free vi-
bration analysis of fiber metal laminates, hybrid composite,
and functionally graded beams. Moderately thin beams were
considered for the study, namely the length, height, and width
of the beams, which were 0.9 m, 0.3 m, and 0.4 m respectively.
The beam was divided into a number of layers in the thick-
ness direction and each layer was assumed to be isotropic. The
influence of the aspect ratio, different fibers and metal alloys
were studied against the natural frequency for both rotating
and non-rotating in fiber metal laminates. In hybrid composite
beams the effect of aspect ratio and different fibers are studied
against natural frequency studied for both rotating and non-
rotating beams. The effect of angular velocity was studied in
a functionally graded materials beam against the natural fre-
quency in different material distribution methods. Boundary
conditions for the beams were fixed-free.

3.1. Convergence study

Table 3 shows a convergence study of fiber metal lami-
nates, hybrid composites, and functionally graded beams with
clamped free boundary conditions, L/h = 3, and power law
material properties (power law gradient n = 1) were taken for
functionally graded beams. All the results given here after cor-
responded to beams with 2500 finite elements.

a) Fiber Metal Laminates

b) Functionally Graded beams

Figure 4. Finite element analysis validations with experimental results.

3.2. Comparison with Experimental Studies

This section compares the results of this study with the re-
sults available in literatures. A modal analysis of a non- ro-
tating fixed plate of GLARE 3 hybrid laminate lay-up with a
cross ply (0, 90) orientation of three metal layers of thickness
0.3 mm and alternate fibers layers of thickness 0.25 mm was
performed and the results were compared with the experimen-
tal values available in the literature Harras et al.22 Similarly
the first five natural frequencies of a simply supported FGB
(length L = 0.5 m and depth h = 0.125 m) consisting of a
steel rich bottom layer and an aluminum rich top layer, with
power law gradient (n) of 1 was obtained using modal anal-
ysis. The obtained numerical results were compared with the
results obtained by Li.23 Fig. 4, shows a plot of natural fre-
quency against mode number comparing it.

International Journal of Acoustics and Vibration, Vol. 21, No. 4, 2016 421



H. Ravishankar, et al.: FREE VIBRATION BEHAVIOUR OF FIBER METAL LAMINATES, HYBRID COMPOSITES, AND FUNCTIONALLY GRADED. . .

a) f = 226 Hz Aluminum + Glass epoxy

b) f = 221 Hz Titanium + Glass epoxy

c) f = 217 Hz Magnesium + Glass epoxy

Figure 5. Variation of fundamental natural frequency of glass epoxy with
different metal alloys.

3.3. Flapwise bending vibration analysis of
non-rotating FML

Figure 5 shows the first natural frequency of FML with an
aspect ratio (L/H) of 3 and an FML of 2/4 (two metal layers
+ four fibers) that had an orientation angle of 0/30/45/90 with
fixed-free boundary conditions. It was observed that there was
no significant difference in the mode shape for the different
metal alloys, but the natural frequency was highest for GLARE
(glass-reinforced aluminum laminate), followed by that with
titanium and finally magnesium based FML. Figure 6 shows
the variation of fundamental natural frequency of Al, Ti and
Mn based FML against aspect ratios.

3.3.1. Flapwise bending vibration analysis of rotating
FML

Figure 7 depicts the first natural frequency of FML 2/4,
with an aspect ratio (L/H) of 3, having an orientation an-
gle of 0/30/45/90 with an angular velocity of 500 rad/sec. It
was observed that there was no significant difference in the
mode shape for the different metals. The natural frequency was
higher for GLARE when compare to other two kind of FMLs.
On comparing the natural frequency of the non-rotating coun-
terparts, it was observed that the frequencies had increased.
This could be attributed to the increase in the stiffness of the
beams (motion along flap wise direction was reduced) due to
the effect of centrifugal force upon rotation. Figures 8, 9, and
10, show that the fundamental natural frequency of rotating
FML 2/4 against an aspect ratio with different metal alloys and
an orientation angle of 0/30/45/90. The fundamental natural
frequency decreased when there was an increase in the aspect
ratio due to the softening effect resulting from the decrease in
cross sectional area and also as the rotational speed increased,

Figure 6. Variation of fundamental natural frequency of Al, Ti and Mn based
FML against aspect ratios.

the centrifugal force increased and as a result, the natural fre-
quency also increased. as such, GLARE had the highest fun-
damental frequency among other kind of FMLs.

3.4. Free vibration analysis of non-rotating
and rotating HCB

Figures 11, 12, and 13, show the fundamental natural fre-
quency of a HCB with an aspect ratio (L/H) of 3 having an
orientation angle of 0/30/45/90 for conditions of non-rotating,
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a) f = 240 Hz Aluminum + Glass epoxy

b) f = 235 Hz Titanium + Glass epoxy

c) f = 232 Hz Magnesium + Glass epoxy

Figure 7. Variation of fundamental natural frequency of glass epoxy based
FML with angular velocity of 500 rad/sec.

rotating at 500 rad/s, and rotating at 1000 rad/sec respectively.
It was observed that there was nothing significant in the mode
shape for the different hybrid composite beam. The natural
frequency was higher for the glass-carbon hybrid beam when
compare to other two kind of HCBs. Because glass-carbon hy-
brid beams have a lot of strength compared to carbon-aramid
and glass-aramid hybrid beams. On comparing the natural fre-
quency of non-rotating hybrid beams, the frequencies of ro-
tating hybrid beams had a high frequency. This could be at-
tributed to the increase in the stiffness of the beams due to the
effect of centrifugal force upon rotations. Figure 14, shows
that the fundamental natural frequency of rotating HCB against
different aspect ratios, angular velocity, and orientation an-
gle 0/30/45/90. The fundamental natural frequency decreases
when increases in the aspect ratio and also the rotational speed
increases the centrifugal force increases and as a result the nat-
ural frequency also increases.

3.5. Free vibration analysis of non-rotating
and rotating FGM

3.5.1. Power law distribution

Figures 15 and 16, show that the first three mode shapes of
non-rotating FGM beam for fixed-free with power law gradient
as 1 and rotating FGB beam with an angular velocity of 500
rad/sec with power law gradient as 1 respectively. As discussed
before, the centrifugal force affected the natural frequencies
and hence frequencies of rotating beams are higher than that
of non-rotating beams.

Figure 17 shows the first five natural frequencies of non-
rotating and rotating FGB: it was observed that the frequen-
cies of linearly interpolated properties (n = 1) was higher than

Figure 8. Variation of fundamental natural frequency of aluminum based
FML-2/4 with different angular velocity.0, 500, and 1000 rad/sec.

the quadratically interpolated properties (n = 2). The aver-
age Young’s modulus for linear interpolation was 140 GPa and
120.9 GPa for the quadratic interpolation. This reinforced the
inference for laminates with higher stiffness, the natural fre-
quencies increased. It was also observed that the rotating FGB
beam had a higher natural frequency than the non-rotating one
due to centrifugal force action along the longitudinal direction.
For the higher rotational speed, there was not much change in
the fundamental natural frequency.
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Figure 9. Variation of fundamental natural frequency of titanium based FML-
2/4 with different angular velocity. 0, 500, and 1000 rad/sec.

3.5.2. Exponential law distribution and Mori Tanaka’s
Scheme

Figure 18 shows the comparison of first five natural frequen-
cies of non-rotating and rotating FGB beams using exponen-
tial law and Mori Tanaka’s Scheme with a fixed-free boundary
condition. As discussed before, the centrifugal force affected
the natural frequencies. Hence, the frequencies of rotating
beams were higher than that of non-rotating beams in func-
tionally graded beams in each Exponential and Mori Tanaka’s

Figure 10. Variation of fundamental natural frequency of magnesium based
FML-2/4 with different angular velocity 0, 500, and 1000 rad/sec.

scheme. From the Fig. 18, it was observed that there were
no changes in the fundamental natural frequency in different
homogenization methods for the computation of the material
properties.

4. CONCLUSIONS

The free vibration analysis of both rotating and non-rotating
of fiber metal laminates, hybrid composite, and functionally
graded material beams was studied. GLARE shows the highest
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a) Glass- Carbon (215 Hz)

b) Carbon-Aramid (182 Hz)

c) Glass- Aramid (145 Hz)

Figure 11. Variation of fundamental natural frequency of HCB with angular
velocity 0 rad/sec.

frequency among other kind of glass/epoxy based fiber metal
laminates during free vibration analysis of non-rotating condi-
tions. Carbon/epoxy based fiber metal laminates have a higher
frequency compared to any other fiber based fiber metal lam-
inates for any aspect ratio. It is observed also that the fun-
damental frequency increases as the aspect ratio decreases in
fiber metal laminates. It has also been observed that glass-
carbon hybrid beams have a higher frequency compared to
other kinds of hybrid composite beams. It has been observed
that the natural frequency decreases as the power law gradient
increases in functionally graded beams. It has also been ob-
served that the natural frequency increases when the angular
velocity increases.
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One of an engineer’s concern when designing bridges and structures under a moving load is the uniformity of stress
distribution. The dynamic behavior of a vehicle on a flexible support is also of great importance. In this paper, an
analysis of a variable cross-section beam subjected to a moving load (such as a concentrated mass), a simple quarter
car (SQC) planar model, and a two-axle dynamic system with four degrees of freedom (4DOF) is carried out. The
finite element method with cubic interpolation functions is used to model the structure based on the Euler-Bernoulli
beam and a direct integration method is implemented to solve time dependent equations implicitly. The effects of
variation of a cross-section and moving load parameters on the deflection, natural frequencies, and longitudinal
stresses of the beam are investigated. The interaction between vehicle body vibration and the support structure is
also considered. The obtained results indicate that using a beam of parabolically varying thickness with a constant
weight can decrease the maximum deflection and stresses along the beam while increasing the natural frequencies
of the beam. The effect of moving mass inertia at a high velocity of a moving vehicle is also investigated and the
findings indicate that the effect of inertia is significant at high velocities.

1. INTRODUCTION

The analysis of structures carrying moving loads is of con-
siderable practical importance. Bridges on which vehicles or
trains travel, trolleys of cranes that move on their girders, and
many modern machining operations, such as high-speed preci-
sion drilling, can be modeled as a moving load problem.

Since the middle of the last century, when railway construc-
tion began, the problem of oscillation of bridges under trav-
eling loads has interested engineers. Contributions towards
a solution of this problem were initially made by Stoke1 and
Robert Willis.2 Timoshenko3 found an analytical solution for
the case of a concentrated force moving with a constant veloc-
ity along a beam, neglecting the damping effect.

A comprehensive treatment of the subject of vibrations of
structures due to moving loads that contain a large number of
related cases is that of Fryba.4 In a dynamic analysis of struc-
tures subjected to moving loads involving a large moving mass,
neglecting inertia may cause a considerable error. When the
mass of either the moving load or the structure cannot be ig-
nored, the dynamic analysis of moving load problems becomes
more involved. The first attempt to include the mass of both
the beam and the moving load was given by Jefcott.5 Calculat-
ing the response of beams affected by moving mass involves
solving sufficiently complex partial differential equations that
the analytical methods are not almost applicable. Therefore,
the numerical methods have been used frequently to solve var-
ious boundary conditions and complicated cases such as vari-
able speed moving load, multiple span beam, damping within
the beam, sprung mass, et cetera. Akin and Mofid6 developed
an analytical-numerical method to determine the behavior of
beams carrying a moving mass. Esmailzadeh and Ghorashi7

analyzed the Timoshenko beam traversed by a uniform par-
tially distributed moving mass. Esmailzadeh and Jalili8, 9 in-
vestigated the dynamic interaction of moving vehicles on uni-

form suspension bridges. They modeled the vehicle as a half-
car planar model with six degrees of freedom.

The finite element method was applied to overcome some
of the limitations in analytical analysis. The finite element
method was first used by Cook and Fleming.10, 11 Filho12 sur-
veyed the application of the finite element method as a simply
supported beam subjected to a constant-velocity two degrees of
freedom system with various mass ratios. Lin and Trethewey13

analyzed the dynamics of an elastic beam that was subjected to
dynamic loads induced by the arbitrary movement of a spring-
mass-damper system, which was based on a finite element for-
mulation and solved it with a Runge-Kutta integration scheme.
The analysis of a beam with a non-uniform cross-section was
completed by Gutierrez and Laura.14, 15 It dealt with the ap-
proximate determination of the vibration of a beam traversed
by a time varying concentrated force. Zheng et al.16 studied
the vibration behavior of a multi-span continuous bridge mod-
elled as a multi-span non-uniform continuous Euler-Bernoulli
beam under a set of moving loads using different assumed
mode shapes. Wu and Dai17 and Henchi and Fafard18 used
the same Euler-Bernoulli beam and the finite element transfer-
matrix approach.

Ahmadian et al.19 also considered the analysis of a variable
cross-section beam subjected to a moving concentrated force
and mass by using the finite element method. Dyniewicz20

dealt with the vibrations of structures subjected to a moving
inertial load using the velocity approach to the space-time fi-
nite element method. Zhai and Song21 were concerned with the
transient vibration analysis of the railway-ground system under
fast moving loads formulating a 3D finite element method in
a connected coordinate system moving with the load together
with viscous-elastic transmitting boundary conditions in order
to limit the finite element mesh. Azizi et al.22 employed the
spectral element method in a frequency domain to analyze con-
tinuous beams and bridges subjected to a moving load. Samani
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Figure 1. A simply supported non-uniform cross-section beam subjected to a
moving point mass.

and Pellicano23 focused on the analysis of the effectiveness of
dynamic vibration absorbers applied to beams excited by mov-
ing loads. They also assessed the performances of dynamic
vibration absorbers in suppressing the vibrations of a simply
supported beam subjected to an infinite sequence of regularly
spaced concentrated moving loads.24

Most of these studies for the moving load problem were lim-
ited to the beam of a uniform cross-section and the beam of a
non-uniform cross-section that neglected the inertia effect of
the moving load. The solution of a general moving load prob-
lem remains of considerable interest and engineering applica-
bility. In order to perform a detailed design and optimization
analysis, a general solution technique must be developed for
many complicated cases. As an extension to these works, the
present paper deals with the problem of a non-uniform cross-
section beam with different boundary conditions subjected to
moving loads, such as a moving concentrated mass, a simple
quarter-car (SQC) planar model, and a two-axle dynamic sys-
tem with four DOF by developing the derivation of character-
istic equations and including effect of structural damping and
moving load inertia on the beam. Additionally, the dynamic
deflection of the beam, the critical speed of the moving vehi-
cle, and the distribution of maximum longitudinal stress along
the beam was considered. The contact between load and sup-
port beam during movement was checked by considering the
value of the interaction force between them. For the initial
condition, the beam was considered to be at rest.

2. PROBLEM FORMULATION

For the purpose of this investigation, we began from a sim-
ple system and progressed to more complex ones. Three dif-
ferent cases will be presented: the concentrated moving mass
problem will first be reviewed, the simple quarter-car model
will then be investigated by the proposed method, and lastly
the dynamics of vehicle-structure interaction of beam traversed
by a two-axle moving vehicle will be formulated.

2.1. Non-Uniform Beam Traversed by a
Concentrated Moving Mass

A non-uniform cross-section beam subjected to a moving
concentrated mass is shown in Fig. 1.

When the finite element method was used to solve this class
of problems, the structures were modeled as an assemblage
of beam elements and the governing equations, neglecting the
rotary inertia and shearing force effects, were written as:

[M ]{d̈}+ [C]{ḋ}+ [K]{d} = {F (t)} = {N t}f0. (1)

In the above equation, [M ], [C], [K], {d}, and {F (t)} are
the structural mass, damping and stiffness matrices, vector of
structural nodal displacements, and load vector respectively.

Cubic Hermitian polynomials25 were used as the interpolation
functions for the finite element formulation. In Eq. (1), {N t}
was a vector with zero entries, except those corresponding to
the nodal displacement of the element in which the load was
positioned. These non-zero entries were the shape functions
evaluated at the point where the load was acting.

The force f0, including the gravitational and inertial forces
of mass acting on the loaded element, were given as:

f0 = Mpg −Mpÿ(x, t). (2)

If there was no loss of contact between the mass and the upper
surface of the beam, the respective expressions for the vertical
displacement of the mass moving along a vibrating curvilinear
path, can be written as:

y(x, t) = w(x, t) + r(x); (3)

where w(x, t) was the upward transversal dynamic deflection
of the beam structure and r(x) was the surface roughness of the
beam, which referred to the road waviness and was represented
as the vertically upward departure from the mean horizontal
profile.

The function w(x, t) was interpolated from the nodal dis-
placements as w = [N ]{d}, where [N ] was the matrix of in-
terpolation functions. Assuming the upper surface of the beam
was flat, then:

y(x, t) = w(x, t);

ẏ(x, t) = ẇ(x, t);

ÿ(x, t) = ẅ(x, t); (4)

and the time derivatives of w(x, t) were given by:

ẇ(x, t) =
∂w

∂x
ẋ+

∂w

∂t
; (5)

ẅ(x, t) =
∂2w

∂t2
+ 2

∂2w

∂x∂t
ẋ+

∂2w

∂x2
ẋ2 +

∂w

∂x
ẍ. (6)

The first term on the right-hand of Eq. (6) was the support
beam acceleration at the point of contact with the moving load
and the second term denoted the well-known Coriolis acceler-
ation since the load was moving along a vibrating curvilinear
path (i.e., the support beam). The third term on Eq. (6) was the
centripetal acceleration of the moving load and the fourth term
indicated the acceleration component in the vertical direction
when the moving load speed was not assumed as constant.

Using the nodal displacements interpolations and noting that
[N ] contains only a spatial variable and {d} is time dependent
yielded:19

∂2w

∂x2
= [N ]xx{d};

∂2w

∂x∂t
= [N ]x{ḋ};

∂w

∂x
= [N ]x{d};

∂2w

∂t2
= [N ]{d̈}; (7)

where the subscript x denoted the differentiation with respect
to x. Assuming that the mass moving with a velocity of ẋ
and an acceleration of ẍ, and substituting Eqs. (2) to (7) into
Eq. (1), yielded:

[M+M∗]{d̈}+[C+C∗]{ḋ}+[K+K∗]{d} = mg{N t}; (8)
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Figure 2. Time history of force in the nodes 3, 4, and 5.

where

[M∗] = m{N t}[N ];

[C∗] = 2mẋ{N t}[N ]x;

[K∗] = mẋ2{N t}[N ]xx +mẍ{N t}[N ]. (9)

The external force vector mg{N t} took the following form:

mg{N t} = {0 0 0 0 f
(s)
1 (t) f

(s)
2 (t) f

(s)
3 (t) f

(s)
4 (t) 0 0 0 0}.

(10)
For a beam element with four degrees of freedom, the number
of non-zero entries within the n× 1 vector was four. Based on
the load position along the beam, this 4×1 sub-vector was time
dependent. On the other hand, as the load moved to another
element, this sub-vector shifted to a position corresponding to
the degrees of freedom of that element.

To illustrate the principles involved, consider a constant
force travel with a constant velocity of 1 m/s2 from one end
to the other of a simply supported beam of 1 m length that was
modeled by 10 beam elements. Figure 2 shows the force-time
graph for three nodes of the beam in the time period when their
values are non-zero.

The matrices [M∗], [C∗], and [K∗] have zero entries, except
those corresponding to the element on which mass was acting
upon. Thus, a non-zero 4 × 4 sub-matrix that was time de-
pendent translated to the position corresponding to the degrees
of freedom of the element, where the mass was acting that in-
dicated the inertia effects of the moving load. The governing
equations of problem were a system of second-order time de-
pendent coefficients ordinary differential equations that were
generally solved by using direct step-by-step integration meth-
ods.

2.2. Non-Uniform Beam Traversed by a
Simple Quarter-Car Model

A wide span bridge that was modeled as a simply supported
non-uniform beam was traversed by a moving vehicle in the
form of a simple quarter-car (SQC) planar model, as shown
in Fig. 3. The dynamic analysis of this problem was consid-
erably more involved than for the one with a moving concen-
trated mass. The moving SQC model was considered as a dy-
namic system with two degrees of freedom (2-DOF) in which
M1 and M2 were the unsprung mass and sprung mass of the
moving vehicle respectively. The vertical displacements of the

Figure 3. Moving simple quarter-car (SQC) model.

unsprung and sprung masses with reference to their respec-
tive vertical equilibrium positions were y1(t) and y2(t) respec-
tively. The horizontal position of the center of the mass of the
moving vehicle was measured from the left end of the beam.

The governing equations of the moving system and the beam
can be obtained by using the finite element formulation as:

M2ÿ2 + C2(ẏ2 − ẏ1) +K2(y2 − y1) = 0; (11)
M1ÿ2 + (C1 + C2)ẏ1 − C1ẇ − C2ẏ2 +

(K1 +K2)y1 −K1w −K2y2 = 0; (12)

[M ]{d̈}+ [C]{ḋ}+ [K]{d} = {F (t)} = {N t}FT ; (13)

where Eqs. (12) and (13) govern the vertical motion of M1

and M2 and FT was the vertical interaction force acting be-
tween the moving vehicle and beam. This interaction force
could therefore be written from the free-body diagrams of the
moving vehicle as:8

FT = C1(ẇ − ẏ1) +K1(w − y1)

= M1g +M1ÿ1 + C2(ẏ1 − ẏ2) +K2(y1 − y2); (14)

where g was the acceleration due to gravity. It should be noted
that the first expression in Eq. (14) was obtained by using force
balance at the tire contact point with the road, while the second
expression was rendered by using force balance at M1. The
interaction force FT could also be described as:

FT = (M1 +M2)g −M1ÿ1 −M2ÿ2. (15)

The present derivation was based on the fact that the transmit-
ted force could be described by using the external excitation
force and the inertia of the dynamic system rather than spring
and forces.

From Eqs. (5), (6), and (14), it could be seen that the in-
teraction force FT between the moving vehicle and the beam
depended on the velocity and acceleration of the vehicle and
the flexibility of the beam structure. The interaction force did
indeed vary with time, which could be taken as an indicator of
separation. When this force became zero, it denoted the on-
set of separation, and it should remain zero until the moving
vehicle made contact with the beam surface.

Using Eqs. (4) and (5) and substituting them into Eqs. (11)
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Figure 4. Moving planar 4 DOF half-car model.

to (14), the governing equations of this case were obtained as:[M ] {N t}M1 {N t}M2

[0] M1 0
[0] 0 M2

{d̈}ÿ1

ÿ2

+

 [C] 0 0
−C1[N ] C1+C2 −C2

[0] −C2 C2

{ḋ}ẏ1

ẏ2

+

 [K] 0 0
−C1ẋ[N ]x+K1[N ] K1+K2 −K2

[0] −K2 K2

{d}y1

y2

 =

{N t}(M1+M2)g
0
0

 . (16)

2.3. Non-Uniform Beam Traversed by a
Two-Axle Moving Dynamic System

The moving vehicle, assumed as a two-axle dynamic sys-
tem with four DOF, is illustrated in Fig. 4. The vehicle model
consists of a sprung mass (body) and two unsprung masses
(axles). The body was considered to have the vertical mo-
tion (bounce) and the angular motion (pitch), with every axle
having its own vertical motion. It was assumed that the vehi-
cle advanced along the beam with the specified velocity ẋ(t)
where x(t) was the position of the center of gravity (c.g.) of
the vehicle, as shown in Fig. 4. Moreover, at t = 0, the front
axle of the vehicle initially entered the beam from the left-end
support. In this case, such as for previous moving loads, the
contact between vehicle tire and beam were checked via inter-
action force.

In order to generate the governing equations of motion for
the moving dynamic system and the beam interaction model,
the energy method could be applied.9 The equation of vertical
motion for the sprung mass was:

msÿs + c1(ẏs + b1θ̇ − ẏt1) + c2(ẏs − b2θ̇ − ẏt2) +

k1(ys + b1θ − yt1) + k2(ys − b2θ − yt2) = 0. (17)

The equation of the angular motion (pitch) of the sprung mass
had the following form:

Jθ̈ + c1b1(ẏs + b1θ̇ − ẏt1)− c2b2(ẏs − b2θ̇ − ẏt2) +

k1b1(ys + b1θ − yt1)− k2b2(ys − b2θ − yt2) = 0. (18)

The equation of the vertical motion (bounce) for the front axle
was:

mt1ÿt1 + c1(ẏt1 − ẏs − b1θ̇) + ct1(ẏt1 − ẇ1) +

k1(yt1 − ys − b1θ) + kt1(yt1 − w1) = 0. (19)

The vertical motion (bounce) of the rear axle was governed by:

mt2ÿt2 + c2(ẏt2 − ẏs + b2θ̇) + ct2(ẏt2 − ẇ2) +

k2(yt2 − ys + b2θ) + kt2(yt2 − w2) = 0. (20)

For the finite element formulation in this case, since there were
two contact points acting on the beam element, the dynamic in-
teraction forces between the beam and the moving system were
calculated with the shape functions evaluated at the locations
corresponding to the respective axle positions. Considering the
approach used for the previous case for each moving axle, the
governing finite element equations of the beam were subjected
to a moving two-axle vehicle obtained as:

[M ]{d̈}+ [C]{ḋ}+ [K]{d} = {F (t)}
= {N t}1FT1 + {N t}2FT2;

(21)

where

FT1 =

[
b2

b1+b2

(
msg −msÿs −

J

b2
θ̈

)
+mt1g −mt1ÿt1

]
;

(22)

FT2 =

[
b1

b1+b2

(
msg −msÿs −

J

b1
θ̈

)
+mt2g −mt2ÿt2

]
;

(23)

and {N t}1 and {N t}2 denoted the shape functions evaluated
at points x1 and x2, which corresponded to the positions of the
front and rear axles of the moving vehicle respectively. There-
fore, the governing equations of the moving system and beam
could be derived as Eq. (24) (see next page), where

fy1 =
b2

b1+b2
ms; fθ1 =

J

b1+b2
;

fy2 =
b1

b1+b2
ms; fθ2 =

−J
b1+b2

. (25)

The governing equations developed here were applicable to
a wide range of general moving load problems. It could be
used for beams with various boundary conditions. Damping in
both the moving vehicle and the support beam could be treated
using the present technique. The compliances of the suspen-
sion system and the tires were modeled by a combination of
linear springs and viscous dampers connected in parallel ar-
rangements. Furthermore, the Rayleigh damping of the form
[C] = α[M ] + β[K], was used for the beam to examine its
effect on the structural response. Knowing the modal damping
ratios for the first two modes, the coefficients α and β could be
determined as:26

α =
2ω1ω2(ζ1ω2 − ζ2ω1)

(ω2
2 − ω2

1)
; β =

2(ζ2ω2 − ζ1ω1)

(ω2
2 − ω2

1)
. (26)

2.4. Longitudinal Stress
The nodal deflections and slopes may be used to obtain the

elements resultant. In this case, the internal moments Mb and
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[M ]

2∑
i=1

{N t}ifyi
2∑
i=1

{N t}ifθi {N t}1mt1 {N t}2mt2

[0] ms 0 0 0
0 0 J 0 0
[0] 0 0 mt1 0
[0] 0 0 0 mt2




{d̈}
ÿs
θ̈
ÿt1
ÿt2

+



[C] 0 0 0 0

[0]

2∑
i=1

ci

2∑
i=1

(−1)i+1cibi −c1 −c2

[0]

2∑
i=1

(−1)i+1cibi

2∑
i=1

cib
2
i −c1b1 c2b2

{N}1ct1 −c1 −c1b1 c1 + ct1 0
{N}2ct2 −c2 c2b2 0 c2 + ct2




{ḋ}
ẏs
θ̇
ẏt1
ẏt2

+



[K] 0 0 0 0

[0]

2∑
i=1

ki

2∑
i=1

(−1)i+1kibi −k1 −k2

[0]

2∑
i=1

(−1)i+1kibi

2∑
i=1

kib
2
i −k1b1 k2b2

ct1[N ]x1ẋ1 − kt1[N ]1 −k1 −k1b1 k1 + kt1 0
ct2[N ]x2ẋ2 − kt2[N ]2 −k2 −k2b2 0 k2 + kt2




{d}
ys
θ
yt1
yt2

 =



2∑
i=1

{N t}i(fyi +mti)g

0
0
0
0


;

(24)

maximum longitudinal stresses σmax along the beam may be
evaluated as:27

Mb =
EI

L2

d2[N ]

dζ2
{d}e; (27)

σmax =
Mbh

I
. (28)

c was the distance from the natural plane to the outermost fiber
of the beam and I was the second moment of area. In the
case of a non-uniform cross-section beam, we used an average
value of I and c for each element. Therefore, the results did
not have the absolutely exact value, but these were appropri-
ate for comparison of stress distribution along the beams with
different thickness profile.

2.5. Modeling the Non-Uniformity of a
Cross-Section

For modeling the non-uniformity of a cross-section of the
beam, we must refer to the derivation of structural mass and
stiffness matrices. Using the interpolation function explained
before, the structural mass and stiffness matrices of element j
could be written as:26

kj =
1

l3

∫ 1

0

EIj(ζ)
d2[N ]

dζ2

d2[N ]T

dζ2
dζ; (29)

mj = l

∫ 1

0

µj(ζ)[N ][N ]T dζ; (30)

where ζ represented the local coordinate, E, Ij(ζ), µj(ζ), and
l are the Young modulus, second moment of area along the
element, mass per unit length of the element, and length of
element respectively.

Figure 5. Variation of thickness along the beam length.

Figure 6. Variation of thickness along the beam length.

For the case of a uniform cross-section beam, EIj and µj
were constant over the element, but for the case of a non-
uniform cross-section, EIj(ζ) and µj(ζ) were variable over
the element, and the integration was carried out on them. For
instance, the beam of constant width and parabolically varying
thickness illustrated in Fig. 5. Its thickness was given by the
following equation:14

h(x) = hbf(x) = hb

[
4(γ − 1)

(
x2

L2
− x

L

)
+ γ

]
; (31)

where
γ =

hm
hb

; (32)

and hb and hm were the minimum and maximum thickness of
the beam.

Consequently, the cross-section area, second moment of
area, and mass per unit length of the beam was:

A(x) = Abf(x); I(x) = Ibf(x); µ(x) = ρA(x);
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Figure 7. Variation of thickness of beam with constant weight based on
Eq. (36).

Figure 8. Variation of thickness of beam with constant weight based on
Eq. (37).

where Ab and Ib were the cross-section area and second mo-
ment of area of uniform beam. And ρ was the density of beam.

Since the characteristics of the beam were variable over the
length of the beam and also over the beam element, the vari-
ation of thickness of beam was implemented in the structural
mass and stiffness matrices. The thickness profile of the beam
could be any analytical function of length. As a different ex-
ample, the thickness could be as follows:

h(x) = hbf(x) = hb

[
γ + 1− 4(γ − 1)

(
x2

L2
− x

L

)
+ γ

]
;

(33)
it is illustrated in Fig. 6.

In order to have same weight in beams with a different max-
imum to minimum thickness ratio (γ parameter), we used dif-
ferent minimum thicknesses which were obtained from follow-
ing equations for Eqs. (31) and (33) respectively:

hbγ =
3hb

2 + γ
; (34)

hbγ =
3hb

1 + 2γ
. (35)

The new form of these equations was:

h(x) = hbγf(x) = hbγ

[
4(γ − 1)

(
x2

L2
− x

L

)
+ γ

]
;

(36)

h(x) = hbγf(x) = hbγ

[
γ + 1− 4(γ − 1)

(
x2

L2
− x

L

)
+ γ

]
.

(37)

Figures 7 and 8 illustrate the variation of thickness for beam of
constant weight.

3. THE SOLUTION METHOD

Now we can solve the governing equations in each case by
knowing the [M ], [K], [C], [M∗], [C∗], [K∗], and {N t} by ap-
plying the Wilson-θ method implicitly. The Wilson-θ method
is basically a linear acceleration method that a linear change
of acceleration is assumed from time t to t + ∆t. Assuming
that τ indicates the time and 0 ≤ τ ≤ θ∆t, then for this time
interval, we may write:25

t+τ Ü = Ü +
τ

θ∆t

(
t+θ∆tÜ − tÜ

)
. (38)

Table 1. Impact factor for the central displacement of a simply supported
beam under moving force.

Tf/T Exact28 Present study Lin13

0.1 1.050 1.048 1.053
0.5 1.250 1.251 1.252
1.0 1.707 1.705 1.705

1.234 1.743 1.732 1.730
1.5 1.710 1.708 1.704
2.0 1.550 1.549 1.550

The parameter θ is a constant that must be θ ≥ 1.37 in order
to have unconditional stability. The value θ = 1.4 was used in
this case. For calculating acceleration, velocity, and displace-
ment in time t+ ∆t, the equilibrium equation, was considered
in time t + θ∆t. A load vector could be extrapolated linearly
using assumed linear acceleration change. So, the following
equation was used:

M t+θ∆tÜ + C t+θ∆tU̇ +K t+θ∆tU = t+θ∆tR; (39)

where
t+θ∆tR = tR+ θ

(
t+∆tR− tR

)
. (40)

To solve the related equation, a computer program was devel-
oped based on the mentioned numerical technique. Further-
more, in order to ensure the stability and convergence of the
solution, sufficiently small time steps were used. Based on
our results, the present method converged to the solution effi-
ciently.

4. IMPLEMENTATION AND VALIDATION

To check the present technique, some classical and well-
known problems of moving concentrated force and mass prob-
lem are presented and compared with the exact analytical so-
lution and published papers.

4.1. Simply Supported Beam Subjected to a
Moving Concentrated Force

A uniform un-damped simply supported beam of length
L = 47 in and the cross-section area of A = 7.90625 in2

was modeled with 20 beam elements. The beam had a den-
sity of ρ = 2.770 × 10−4 lbs2/in4, a modulus of elasticity
E = 15.2×106 psi, and a second moment of area I = 22.7 in4.
A concentrated force started at the left end and traveled to the
right end with a constant velocity. Figure 9 illustrates the ratio
of dynamic to static deflection (impact factor) of the center of
the beam for a different moving force velocity. Tf/T repre-
sents the ratio of the period of the first natural vibration of the
beam to a traveling time of a moving force on the beam.

Results of a similar numerical and analytical analysis by
Lin13 and Warburton28 respectively along with the present
study are summarized in Table 1. It was observed that there
was a good agreement between them.

4.2. Simply Supported Beam Subjected to a
Moving Mass

Consider a simply supported beam under a point mass in-
cluding a moving mass inertia while shear deformation and
rotary inertia of the beam were neglected. The parameters
of the problem are: L = 4.352 m, E = 2.02e11 N/m2,
I = 5.17e−7 m4, ρ = 15267 kg/m3, A = 1.31e−3 m2,
moving mass Mp = 21.8 kg, gravitational acceleration g =
9.806 m/s2, and speed of moving mass V = 27.49 m/s. In
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Figure 9. Central displacement of a simply supported beam under moving
force.

Figure 10. Time history diagram of the deflection of the mid-span, —, present
method, ◦, finite difference method.7

the present case, the beam was modeled by 40 elements and
the time history diagram of the deflection of the mid-span are
demonstrated in Fig. 10 by a solid line. Comparing the results
with those in the literature14 indicates very good agreement be-
tween the findings.

4.3. Response Of A Cantilever Beam
Subjected to a Moving Mass

The cantilever beam with a moving mass and parameters of
M = 3 lbs2/in, V = 2000 in/s, Mp/M = 1.5, L = 300 in,
and EI = 6.81 × 109 lbin2 was analyzed by an analytical-
numerical method13 and determined the dynamic behavior of
the beam. This beam was modeled by 40 beam elements and a
0.001 time step was used to solve the problem by the Wilson-θ
method. Figure 11 illustrates a deflection of the beam’s end
point and was obtained by two methods.

5. NUMERICAL RESULTS AND DISCUSSION

The behavior of a non-uniform cross-section beam carrying
a moving load under different boundary conditions and vehi-
cle body vibration, was analyzed. Using the parameter values:
(1) Beam: E = 2.02e11 N/m2, ρ = 7800 kg/m3, L = 10 m,
I = 0.15 m4, c = 1700 Ns/m; (2) Vehicle: ms = 1700 kg,
mt1 = 80 kg, mt2 = 130 kg, J = 3442.3 kgm2, b1 = 1.2 m,

Figure 11. Time history diagram of the deflection of the end point of the beam,
—, present method, ◦, analytical–numerical method.6

Figure 12. Central displacement of a simply supported non-uniform cross-
section beam under moving mass without inertia effect.

b2 = 1.6 m, d1 = 0.42 m, d2 = 1.15 m, k1 = 66800 N/m,
k2 = 18600 N/m, kt1 = kt2 = 110000 N/m, c1 = 1100 Ns/m,
c2 = 1000 Ns/m, ct1 = ct2 = 14 Ns/m; and with a variable
cross-section, the deflection, natural frequency, and longitudi-
nal stress along the beam have been calculated.

Dynamic responses of the beam under moving mass with
and without mass inertia effect for simply supported boundary
conditions are illustrated in Figs. 12 and 13. It can be observed
in these figures that increasing the ratio of maximum to min-
imum thickness of beam (γ) for thickness profile of Eq. (37)
keeping the total mass of the beam constant, the mid-span de-
flection of beam would decrease considerably.

By increasing γ from 1 (uniform cross–section) to 1.9, the
mid-span deflection decreased about 30% for the simply sup-
ported beam. The variation of maximum deflection of beam
with respect to γ for some constant velocities is illustrated in
Fig. 14. Also as a result of increasing γ, the natural frequencies
of beam increased. The variation of the first natural frequency
for the simply supported boundary condition is illustrated in
Fig. 15. It should be noted that in this analysis, the total mass
of the beam was kept constant.

Changing the simply supported boundary conditions of the
beam to clamped, the results are obtained as Fig. 16. In this
case, the thickness profile was assumed to be that of Eq. (36).
This profile was shown to be less effective for the clamped
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Figure 13. Central displacement of a simply supported non-uniform cross-
section beam under moving mass including inertia effect.

Figure 14. Maximum central deflection of simply supported beam under mov-
ing mass versus variation of thickness.

beam deflection than that of the simply supported beam. Im-
provement in this case was about 7%.

The effect of γ parameter on deflection of mid-span of the
beam at various speeds of the load is illustrated in Fig. 17. It
was clear that there existed a point, approximately γ = 1.8,
at which the deflection of the beam would be minimized. The
variation of first natural frequency for clamped boundary con-
ditions can also be seen in Fig. 18.

In order to observe the effect of mass velocity and inertia ef-
fect, the maximum deflection of the beam with and without the
mass inertia effect versus the ratio of the period of the first nat-
ural vibration of the beam to the traveling time of the moving
force on the beam (indicating velocity), was plotted in Figs. 19
and 20 for simply supported and clamped boundary conditions.
It was clear that the difference between the maximum deflec-
tion of the beam for cases of moving force and moving mass
was considerable at high speeds. The maximum deflection of
the beam was achieved when the ratio of traveling time of load
to the first natural period of the beam was about 1.23. The ve-
locity of the force in this case was called critical velocity. A
similar effect could be observed for the mass velocity. In this
case, the critical speed depended on the ratio of the moving
mass to the beam mass.

The transient response of the bounce motion of the vehi-
cle body versus the vehicle position on the beam for different

Figure 15. Minimum frequency of simply supported beam under moving mass
versus variation of thickness.

Figure 16. Central displacement of clamped non-uniform cross-section beam
under moving mass.

values of the vehicle speed using half-car model is shown in
Fig. 21.

It was clear that as the speed of vehicle varied, the vibration
generated at the beam and vehicle body were considerably af-
fected. The same analysis could be done for the SQC model. In
this case, the beam parameters were kept the same and equiv-
alent values for both SQC and half-car models were used as
follows: M2 = ms, M1 = mt1 + mt2, K1 = kt1 + kt2,
K2 = k1 + k2, C1 = ct1 + ct2, C2 = c1 + c2. Results of
SQC simulation are depicted in Fig. 22. It could be concluded
that the use of the half-car model provides more useful data
for both vehicle dynamics and beam characteristics compared
with SQC model.

As load proceeds along the beam, a maximum longitudinal
stress occurs depending on the position of the load and con-
figuration of the beam cross-section (γ parameter). Figure 23
presents the maximum stress along the simply supported beam
versus variation of a cross-section based on Eq. (37) for each
pass of the force at different speed of the load. It was clear that
as the γ parameter increased, the maximum stress decreased,
while for a specified γ, as velocity increased, the maximum
stress also increased.

For some, specified γ maximum longitudinal stress at each
cross-section is shown along the simply supported beam in
Fig. 24. It was clear that in a uniform beam, maximum stress
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Figure 17. Maximum central deflection of simply supported beam under mov-
ing mass versus variation of thickness.

Figure 18. Minimum frequency of clamped beam versus variation of
thickness.

occured around the mid-span of the beam. As γ increased, the
stress distribution from a quadratic form tended to be in a more
uniform shape. This was true when the γ parameter varied be-
tween 1 and 2.5; as γ increased, a reverse situation could be
seen.

The same investigation was conducted for a clamped beam
using the thickness profile of Eq. (36). These results are illus-
trated in Figs. 25 and 26.

In order to present the time history of the bending longi-
tudinal stress of each point along the beam, the waterfall de-
piction for a uniform and non-uniform cross-section beam are
presented in Figs. 27 and 28 respectively. It was clear that the
maximum stress was reduced considerably and higher unifor-
mity was achieved in the non-uniform cross-section beam.

6. CONCLUSIONS

The problem of a non-uniform cross-section beam with dif-
ferent boundary conditions subjected to moving loads, such as
a moving concentrated mass, a simple quarter-car (SQC) pla-
nar model, and a two-axle dynamic system with four DOF by
developing the derivation of characteristic equations and in-
cluding the effect of structural damping and moving load iner-
tia on the beam, have been considered. Also, the dynamic de-
flection of the beam, critical speed of the moving vehicle, and
distribution of maximum longitudinal stress along the beam is

Figure 19. Impact factor for the central displacement of a simply supported
beam. Tf/T is ratio of first natural period of beam vibration to traveling time.

Figure 20. Impact factor for the central displacement of a clamped beam.
Tf/T is ratio of first natural period of beam vibration to traveling time.

investigated. The effects of variation of a cross-section and
moving load parameters on the deflection, natural frequencies,
and longitudinal stresses of the beam are also investigated. Ad-
ditionally, the interaction of vehicle body vibration and support
structure is considered. The achieved model can be applied for
a general variety of such problems by using the efficient solu-
tion method implemented for solving governing equations.

The obtained results indicate that using a beam of parabol-
ically varying thickness with a constant weight can decrease
the maximum deflection and stresses along the beam while in-
creasing the natural frequencies of the beam, which can be use-
ful in optimizing the design of support structure. The effect of
moving mass inertia at high velocity of moving vehicle is also
investigated and the findings indicate that the effect of inertia
is significant at high speeds.
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The behavior of linear or nonlinear dynamic systems depends on different parameters (identifiable or free) that
are involved in their definition. The stability analysis of such dynamical systems is realized by using a domain
of selected free parameters. In this paper, we discuss specific theorems that concern the stability of linear dy-
namical systems, the stability of nonlinear dynamical systems in terms of ”first linear approximations”, and other
stability criteria. We study the stable/unstable separation property in the free parameters domain and present a
rigorous mathematical justification of this property with specific examples from various branches of science. Fur-
thermore, we investigate specific conditions when the separation property is passed on to the nonlinear dynamical
system from its first order linear approximation. The stable/unstable separation property is also emphasized as an
important property of the environment that can contribute to its mathematical modeling.

1. INTRODUCTION

In this paper, we analyzed the multiple aspects of the stabil-
ity control of linear or nonlinear dynamical systems ensured by
the property of separation between stable and unstable regions
of the free parameters domain.

Numerous authors have studied the problems of dynamic
systems stability. We have surveyed some of the relevant liter-
ature here.1–8, 11–13

Any dynamical system can be considered in terms of its
defining parameters without fixing their values as geometrical
parameters, physical parameters (in particular mechanical pa-
rameters), and possible economical or biological parameters.

Another important idea is that many real-life dynamical sys-
tems are considered in the literature (e.g. the Mathieu equation,
the Hill equation, the harmonic vibration equation, etc.) and
have the property of separation between the stable and unsta-
ble region in a selected domain of free parameters. The stable
and unstable regions are separated by a boundary in the do-
main of the free parameters. The property of separation can be
described by the fact that the stable and unstable regions, ex-
cept the points on the boundary, are open sets. This separation
aspect, which is considered in this paper, creates the freedom
of stability control on a neighborhood of fixed stable point in
the open stable region of the dynamical system.

We discovered some mathematical conditions of the stability
regions existence for dynamical systems using various results
from matrix theory, real analysis, stability theory, and others.

The property of separation of stability regions is an impor-
tant property of the environment, as one refers to a specific
dynamical system locally implemented in the environment.

Our study has not exhausted the subject of stability control.
New results in matrix theory, in the linear or nonlinear dynam-
ical system stability theory, and in real analysis will provide
further direction.

2. ON THE CONTINUITY OF THE REAL
MATRIX EIGENVALUES

The real matrix in the discussion was the matrix that defined
the linear dynamical system, or the ”first approximation”, of
the nonlinear dynamical system depending on some parame-
ters. The components of the real matrix were assumed to be
continuous or piecewise continuous functions of the system
parameters (time could also be considered as a parameter).

The dependence of the spectrum of this matrix on the ma-
trix components properties is discussed in the following para-
graphs.

2.1. QR Algorithm for Hessenberg Form of
the Real Matrix

In what follows, we assumed that the n× n matrix had dis-
tinct eigenvalues. The QR algorithm was formulated for the
matrices of Hessenberg form, meaning that its entries satisfy
aij = 0 for 2 < i ≤ n, j < i− 1.

440 https://doi.org/10.20855/ijav.2016.21.4438 (pp. 440–444) International Journal of Acoustics and Vibration, Vol. 21, No. 4, 2016



M. Migdalovici, et al.: STABILITY CONTROL OF LINEAR AND NONLINEAR DYNAMIC SYSTEMS

We then defined the Schur form of the matrix A. Let
λ be a real eigenvalue and x ∈ Rn×1 the corresponding
real eigenvector of the n × n matrix A so that Ax = λx,
x 6= 0. (We assume n > 2.) Let Q = [x, Y ], x ∈ Rn×1,
Y ∈ Rn×(n−1) be an orthogonal base of vectors in Rn that
include the eigenvector x ∈ Rn×1 so that QQT = In.

Then A = Q

[
λ (xTAY )

0 B

]
QT where, xTAY ∈ R1×(n−1),

0 ∈ R(n−1)×1 and B = Y TAY ∈ R(n−1)×(n−1). When
B (and implicitly A) had a pair of complex conjugate eigen-
values α ± iβ with associated eigenvectors u ± iv where
u, v ∈ R(n−1)×1 were linearly independent real vectors, we
can write:

X∗ = [uv],M =

[
α β

−β α

]
;BX∗ = X∗M. (1)

Let Q∗ = [X∗, Y ∗] be an orthonormal basis of Rn−1 where
X∗ = [u, v] ∈ R(n−1)×2, Y ∗ ∈ R(n−1)×(n−3) and Q∗Q∗T =

In−1. The matrix A with λ and α ± iβ eigenvalues had the
form:

A = Q

[
λ (xTAY )

0 B

]
QT ,

B = Q∗

[
M (X∗TBY ∗)

0 (Y ∗TBY ∗)

]
Q∗T . (2)

Thus the matrix A with (possibly complex) distinct eigenval-
ues, was similar to the associated Schur form (which is a matrix
of Hessenberg type).

The QR algorithm, by the Wilkinson’s manner, is described
below, where the initial real matrix A was denoted A1 in the
algorithm, and where the convergence symbol ”→” was used.9

As = QsRs, As+1 = RsQs, s = 1, 2, . . . ; s→∞.
As = Rs−1Qs−1;As−1 = Qs−1Rs−1, s = 2, 3, . . . ;

Rs−1 = Q−1
s−1As−1;As = Q−1

s−1As−1Qs−1, s = 2, 3, . . . ;

As = Q−1
s−1 . . . Q

−1
1 A1Q1 . . . Qs−1 =

= (Q1 . . . Qs−1)−1A1Q1 . . . Qs−1, s = 2, 3, . . . ;

Q1 . . . Qs−1As = A1Q1 . . . Qs−1, s = 2, 3, . . . ;

Q1 . . . Qs−1QsRs = A1Q1 . . . Qs−1, s = 2, 3, . . . ;

Q1 . . . Qs−1QsRsRs−1 . . . R1 =

= A1Q1 . . . Qs−1Rs−1 . . . R1, s = 2, 3, . . . ;

Q1 . . . Qs−1QsRsRs−1 . . . R1 = As1, s = 1, 2, . . .

(3)

The matrices Qk, k = 1, 2, . . . were orthogonal and the ma-
trices Rk were upper triangular and invertible. The matrices
Ak, Ak+1, k = 1, 2, . . .were also of Hessenberg form and sim-
ilar.

Parlet described the convergence of QR algorithm to the
Schur form of the matrix A, where the real matrix A was con-
sidered in the Hessenberg form.10

The above study was performed under the hypothesis that all
the eigenvalues of the real matrix were distinct. For the case
of real matrix multiple eigenvalues, we used the results from
the matrix theory. Hirsch, Smale and Devaney demonstrated,
on the normed space of dimension n matrices set L(Rn), the
following theorem.1

Theorem 1. The set of matrices with distinct eigenvalues
from linear normed space L(Rn) is an open and dense set in
the linear space L(Rn).

The above theorem created the possibilities to justify the
transmission of some properties from the real matrices set with
distinct eigenvalues to the real matrices set including multiple
eigenvalues that could intervene in the stability analysis of lin-
ear (can be of ”first approximation”) dynamical systems.

2.2. Transmissibility of the Continuity from
the Matrix Elements to the Eigenvalues

The components of the real matrix A that defined the linear
dynamical system depending on parameters were assumed to
be piecewise continuous in the free parameters. We formulated
the following theorem on the transmissibility of the continuity
below:

Theorem 2. If the components of the matrix A are piecewise
continuous relative to the free parameters and the sequence of
Hessenberg matrices As, s = 1, 2, . . . from the QR algorithm,
starting at A, is uniform convergent to the Schur form of the
matrix A, then the eigenvalues of the matrix A are piecewise
continuous.

This theorem was verified using the property from the real
analysis that the uniform convergence of continuous functions
implied the continuity on the function limit. When the eigen-
value was on the boundary, this eigenvalue had a null real part
and the stability character of the point (stable or unstable) was
unknown.

The above property was considered in our study using the
following property of continuous functions, formulated here
for one variable function.

Theorem 3. Let f : E → R, E ⊂ R be a continuous
function in the inner point x0 ∈ E such that α < f(x0) <

β;α, β ∈ R. Then there exists a neighborhood of the point
x0 ∈ E, where the function values respect the same inequali-
ties.

Remark: Theorem 3 ensured that the function f was contin-
uous in the point x0 ∈ E and was preserved in the neighbor-
hood of x0, the function sign in x0.

The mathematical conditions that ensured the separation be-
tween stable and unstable regions for the linear dynamical sys-
tem were described beginning with the following property:

Theorem 4. Let the linear dynamical system be de-
fined by the differential equation dydt = Ay(t), y(t) =

(y1(t), . . . , yn(t))T , A = (aij), i = 1, . . . , n; j = 1, . . . , n,
where the symbol T signifies the transposition of the matrix
and the values aij are assumed to be constants. If the real part
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of all eigenvalues of the matrix A is strictly negative, then the
solution of the differential equation is asymptotic stable in ori-
gin. If the real part of at least one eigenvalue of the matrix A
is strictly positive, then the solution of the differential equation
is unstable in origin.

If the real parts of the matrixA, eigenvalues are strictly neg-
ative, with the exception of at least one eigenvalue that has null
real part, then the stability of the dynamical system in origin is
unknown (possible stable or unstable).

3. ON THE SEPARATION OF THE DYNAMI-
CAL SYSTEM STABLE REGIONS

The possible structure of the stable and unstable points of
the dynamical system free parameters domain is described by
the following cases:

• If the dynamical system was stable in one point of the
domain of free parameters and was not on the frontier be-
tween stable and unstable regions, then there existed a
neighborhood around this point where the dynamical sys-
tem was also stable in each point of the neighborhood and
an analogue property for unstable point.

• The stable or unstable point could be situated on the fron-
tier between stable and unstable regions in the free pa-
rameters domain. Any neighborhood of such point was
composed of stable and unstable points.

In the case of distinct eigenvalues of the real matrixA, to the
linear dynamical system was attached to a theorem of separa-
tion between stable and unstable regions in the free parameters
domain of linear dynamical system, which is formulated be-
low. This theorem was a consequence of the above theorems
2, 3, and 4.

Theorem 5 (Separation theorem). If the linear dynamic sys-
tem is defined by the real matrix A, which has Hessenberg
form and whose entries are piecewise continuous functions of
free parameters, and the convergent QR algorithm ensures that
the real part of eigenvalue functions of the matrix A are also
piecewise continuous, then these conditions determine the sep-
aration between stable and unstable regions of the dynamical
system in the domain of free parameters.

Remark: We comment on the possibility of substituting in
practice the infinite QR algorithm by a finite one that would
simplify the application of the Separation Theorem 5 to the
specific examples later on.

3.1. The Separation Studied by Nonlinear
System “First Approximation”

The stability study for non-null solution of the nonlinear
equation dy/dt = h(t, y), y 6= 0, could be similar to one
corresponding to the null solution. This was the aspect for
which only the stability for the null solution of nonlinear dy-
namical system is analyzed. Another assumption was that the

equation of the dynamical system was in the autonomous form
dx/dt = f(x). Many particular dynamical systems were in
the autonomous form.

The function f(x) was supposed to depend on the vari-
able x = (x1, . . . , xn)T and its components denoted f(x) =

(f1(x), . . . , fn(x)). Its components were assumed to have the
following Taylor expansion near the origin:

fi(x) = fi(0) +

n∑
j=1

(∂fi(x)/∂xj) |x=0xj+

+

n∑
j=1

n∑
k=1

(
∂2fi(x)/∂xj∂xk

)
|x=0xjxk+

+ . . . , i = 1, . . . , n (4)

The above assumptions were permited to consider fi(0) =

0, i = 1, . . . , n and used the notations for derivatives of the
first order aij = ∂fi(x)/∂xj |x=0; i, j = 1, . . . , n we could
formulate the equation:

dx/dt = [aij ]x+ g(x); i, j = 1, . . . , n. (5)

The following theorems were due to Liapunov:
Theorem 6. The evolution of nonlinear dynamical system

in Eq. (5) is asymptotic stable in origin if the real parts of all
eigenvalues of the matrixA = [aij ], i, j = 1, . . . , n are strictly
negative.

Theorem 7. The evolution of the nonlinear dynamical sys-
tem in Eq. (5) is unstable in origin if the real part of at least one
eigenvalue of the matrix A = [aij ], i, j = 1, . . . , n is strictly
positive.

3.2. The Separation Studied on Nonlinear
System by Indirect Method

The indirect method of stability analysis consists in using
the differential equation solution that describes the evolution
of the dynamical system.

We again considered the equation dx/dt = f(x), with the
solution x(t) ≡ 0, x = (x1, . . . , xn)T , and the assumption
that the functions fi(x), i = 1, . . . , n, may be developed into
a series around the origin so that the above equation could be
expressed in the form in Eq. (5), where it was supposed that the
function x(t) was at least C2 class so that the function g(x) =

dx/dt−Ax was at least C1 class.
Because matrix A is a Jacobian matrix in origin x(t) ≡ 0

of the function f(x), then g(x) had the property, so that for
each γ > 0, there was δ(γ) > 0, such that if |x| < δ(γ), then
|g(x)| < γ|x|. This property meant that g(x), which corre-
sponded to ”higher order terms” in the series, was developed
around the origin and became negligible; at was reported to
linear order terms for a sufficiently small x.

A theorem that underlines the property of separation in the
free parameters domain of nonlinear dynamical systems, using
the indirect method is stated below.2
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Figure 1. Physical model.

Theorem 8. Consider the dynamical system defined by
Eq. (5), where A is a constant n × n matrix with real entries,
the variable x = (x1, . . . , xn)T , the function x(t) ≡ 0 is a
solution of the equation, and the function g(x) is supposed to
be continuous. Furthermore, the property that for each γ > 0,
there is δ(γ) > 0, such that if |x| < δ(γ), then |g(x)| < γ|x|.
We also assumed that all the eigenvalues of A have negative
real parts, such that Real λi ≤ −2α < 0, i = 1, . . . , n.

Then there exists δ0 > 0, β ≥ 1, such that for any |x0| < δ0:

|x(t; t0, x0)| ≤ βe−α(t−t0)/2|x0|, t ≥ t0. (6)

In conclusion, if the conditions of theorem 8 are verified,
then the origin stability ensures the stability in a whole neigh-
borhood of the origin which in turn implies the separation of
the stable regions.

Next, we give a concrete example of a dynamical system
with the property of the separation between stable and unsta-
ble regions. We also mentioned the stability study of other
particular dynamical systems in the references.11–13

4. STABILITY ANALYSIS OF PANTOGRAPH-
CATENARY DYNAMICAL SYSTEM

In this application, we analyzed the property of separation
of the stable and unstable regions in the plane of principal pa-
rameters for a particular dynamical system depending on pa-
rameters, namely the pantograph, which is a catenary dynam-
ical system.4 An analysis of the stability was performed here
on the mathematical model attached to the physical model, as
described in Fig. 1, of the electrical locomotive ”pantograph -
contact wire” dynamical system.

The defined physical model came from a vehicle [A] in
a uniform linear motion, which compressed with a force F ,
an oscillating system composed of two sprung concentrated
masses Mu and Ms on the wire [C], where y(x, t) was the de-
flection of the wire, EI was the bending stiffness of the wire
for each specified x and t values, T was the horizontal tension

in the wire, β was the viscous damping of the wire, m was the
mass per unit length of the wire, cs and cL were the damping
coefficients, ks, kL and kp were the stiffness elements of the
system. The values y1, y2, y3 were respectively, the deflection
of the wire compressed by the oscillating system in the contact
point, and the deflections from the equilibrium position of the
masses Mu and Ms. The oscillating system was moving with
a constant speed v at the same time with the vehicle [A].

The transformed system of equations were deduced through
the transformed parameters using dimensionless parameters of
the system:

(1− µ)¨̃y3 + 2(ςsω̃sn + ςLω̃nL) ˙̃y3−
−2ςsω̃sn ˙̃y2 +

(
ω̃2
sn + ω̃2

nL

)
ỹ3 − ω̃2

snỹ2 = 0.

µ¨̃y2 + 2ςsω̃sn ˙̃y2 − 2ςsω̃sn ˙̃y3 + ω̃2
snỹ2 − ω̃2

snỹ3+

+2ςLω̃nL ˙̃y3 + Ω̃2
n

ỹ2 − k∑
j=1

Tj(τ) sin jτ

 = 0.

1

2M̃ sin τ

(
d2Tj
dτ2

+
1.

ṽβ

dTj
dτ

+

(
j4

ṽ2EI
+
j2

ṽ2T

)
Tj

)
−

−Ω̃2
n

ỹ2 − k∑
j=1

Tj(τ) sin jτ

 = 0, j = 1, . . . , k. (7)

For more detailed data one, the references.4

The matrix of the system in Eq. (7), denoted A, in the case
k = 1, had the unknown vector components:

X1(τ) = µỹ2, X2(τ) = µ ˙̃y2, X3(τ) = (1− µ)ỹ3,

X4(τ) = (1− µ) ˙̃y3, X5(τ) =
1

2M̃ sin τ
T1(τ),

X6(τ) =
1

2M̃ sin τ
Ṫ1(τ) (8)

We did not specify the components of the matrix A from
the equation dX/dτ = AX of our dynamical system model,
where the vector X was defined by its components from
Eq. (8).

The stability of the dynamical system was studied in the fol-
lowing case of fixed parameters:

Ω̃n = 3.185, ṽβ = 19.8, ω̃nL = 0.48,

ṽEI = 90.96, ςs = 0.3, ςL = 0.3. (9)

The chosen free parameters were the transformed variables
ω̃ns and ṽT corresponded to the free dimensional parameters
of the dynamical system, respectively, the stiffness parameter
ks of the system and the horizontal tension T in the wire.

We analyzed the stability of motion for the displacement ỹ2
of the concentrated mass Mu in the specified free parameters
domain of interest.

The frontier curve of stable and unstable separation regions
of the displacement ỹ2 was plotted with a continuous line, as
seen in Fig. 2. It was done for two chosen parameters as de-
fined by the variables ω̃ns and ṽT for a selected domain by us-
ing an algorithm elaborated by the authors, which is explained
below and in some previous papers.
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Figure 2. Separation of stable zones.

Basically, the procedure to identify the frontier between the
stable and unstable regions is ensuring that the domain was
covered with a sufficient fine mesh and analyzed the stability
for each specified pair ω̃ns and ṽT . A refined mesh in the iden-
tification algorithm could be deduced by the bisection of the
interval between two neighboring points of the mesh for each
free parameter and the system solution successive values were
compared in order to decide the accepted value. The property
of separation could be justified using a finite QR algorithm in
our separation theorem 5 for the system dX/dτ = AX at-
tached to physical model from Fig. 1.

Again, we specified that the property of separation described
above permitted a selection of the free parameters, in a fixed
neighborhood of the stable region inner point in order to re-
spect one compatible optimized criterion.

5. CONCLUSIONS

A mathematical analysis of the possible structure of the sta-
ble and unstable points of the free parameters domain is per-
formed in this paper. Some mathematical conditions that en-
sure the separation between stable and unstable regions of the
free parameters of the linear or nonlinear dynamical system
are set off. The property of separation described here is also
encountered in many defined dynamical systems from the lit-
erature, without mathematical justification, which is important
because it ensures the possibility that the evolution, stability,
and control of a dynamical system may be optimized using the
compatible criterion in the stability regions. A defined dynam-
ical system that has the property of separation between stable
and unstable regions is described in this paper. We acknowl-
edge that our study has not exhausted the problem of dynami-
cal systems stability and control. However, an interesting do-
main of scientific research has been opened.
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It is clearly known that support vector machine (SVM) parameters have significant effects on the accurate rate of
classification result. Adjusting the SVM parameters improves its effectiveness and accuracy, which is always a
challenge. On the other font, the Backtracking Search Optimization Algorithm (BSOA), an evolutionary algorithm
for solving optimization problems, is proposed and proven to be effective through various benchmark problems.
This paper proposes an optimization method for the SVM parameters based on BSOA. For convenience, the pro-
posed method has been named BSOA-SVM. This method is tested with some real-world benchmark data sets to
verify its robustness and effectiveness. Then, BSOA-SVM is applied for diagnosing roller bearing fault, which is a
real world problem. In this diagnosing process, the original acceleration vibration signals are first decomposed into
product function (PFs) by using the local mean decomposition (LMD) method. Next, initial feature matrices are
extracted from PFs by singular value decomposition (SVD) techniques to give single values. Finally, these values
serve as input vectors for the BSOA-SVM classifier. The results from the problem show that the combination of the
BSOA-SVM classifiers obtains higher classification accuracy with a lower cost time compared to other methods.

1. INTRODUCTION

Optimization of SVM parameters has always been a com-
plex task for researchers since it was developed. In recent
years, many algorithms were employed to handle this task,
such as the trial and error procedures,1 the grid algorithm,2 the
cross-validation method,3 the generalization error estimation
method,4 the gradient descent method,5 and so on. Unfortu-
nately, these methods still contain some drawbacks that ham-
per the effectiveness of SVM. For example, the grid method
requires complex computations and is time consuming while
the cross-validation method also requires long and complicated
calculations.2 The heuristic algorithms, such as the genetic
algorithm (GA), the particle swarm optimization (PSO),6 and
the ant colony optimization (ACO)7 were also used to opti-
mize SVM parameters. However, PSO is easily trapped into
the local optimization areas8 while GA has an expensive com-
putational cost.9

Recently, Pinar Civicioglu developed the Backtracking
Search Optimization Algorithm (BSOA), which is an evolu-
tionary algorithm (EA) for solving optimization problems. The
BSOA method could solve real-valued numerical optimiza-
tion problems for a short time and the search result was bet-
ter than other EAs.10 Unlike other methods in the EA group,
BSOA has only one control parameter in the algorithm. This
makes the method much simpler to use. Therefore, in this
paper, BSOA is combined with the SVM to give a so called
BSOA-SVM for solving classification problems. BSOA-SVM
was applied to diagnose the fault of roller bearing. In this di-
agnosing process, the original acceleration vibration signals
were first decomposed into product function (PFs) by using
the LMD method. Next, initial feature matrices were extracted
from PFs by singular value decomposition (SVD) techniques

to give single values. Finally, these values served as input vec-
tor for the BSOA-SVM classifier. The classification results
of the proposed method show a higher accuracy and lower
cost time compared with the GA-SVM, the PSO-SVM, and
the CMAES-SVM methods.

The rest of this paper is organized as follows: in Section 2,
the BSOA method is briefly reviewed. In Section 3, the param-
eter optimization algorithm based on the BSOA method is ad-
dressed. The fault diagnosis method based on LMD-SVD and
BSOA-SVM, in which initial feature matrices extracted from
a number of PFs are used as input vectors of BSOA-SVM, is
presented in Section 4. In Section 5, the fault diagnosis method
is used to diagnose the condition of actual roller bearings and
is compared with the GA, the PSO, and the CMAES methods.
Finally, the paper is concluded in Section 6.

2. BACKTRACKING SEARCH
OPTIMIZATION ALGORITHM

BSOA is an adaptive search algorithm that uses three basis
genetic operators including selection, mutation, and crossover
to generate trial individuals. The principle of BSOA, which
consists of six steps,10 is presented in the flow chart in Fig. 1.
More details of the steps are presented in following sections.

2.1. Define the Problem and Algorithm
Parameter

The mathematical formulation of a typical optimization can
be written as:
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Figure 1. The flow chart for the Backtracking Search Optimization Algorithm
(BSOA).

Minimize f(x)

subject to xi ∈ Di = [li, ui], i = {1, 2, . . . , N}. (1)

where f(x) is a fitness function, x = (x1, x2, . . . , xN ) is the
vector of decision variables, N is the number of decision vari-
ables, and Di is the range of feasible values for the i-th deci-
sion variable, where li and ui are the lower and upper bounds
of the i-th decision variable, respectively.

2.2. Initialization
In this phase, the setting of the algorithm was initialized and

the values of algorithmic parameters were assigned. Popula-
tion P was initialized as follows:

Pi,j ∼W (li, ui); (2)

for i = 1, 2, 3, . . . , D and j = 1, 2, 3, . . . , N , where N was
the population size (PopSize), D was the dimension of the
problem, W was the uniform distribution, and each Pj was a
target individual in the population P .

2.3. Selection-I
This stage was aimed to determine the previous population

P ′,
P ′i,j ∼W (li, ui). (3)

Based on ‘if-then’ rule, the option of redefining P ′ at the be-
ginning of iteration could be expressed as follows:

If a < b then P ′ := P | a, b ∼W (0, 1); (4)

where ‘:=’ was the update operation and a and b were random
numbers. Next,

P ′ := permuting(P ′); (5)

where the permuting function was a random shuffling func-
tion.

2.4. Mutation
This process generated the initial form of the trial popula-

tion, Mu, as follows:

Mu = P + F (P ′ − P ); (6)

where F was the control parameter that controlled the ampli-
tude of the search-direction matrix (P ′−P ). The value of this
parameter was selected as per the following equation:10

F = 3rn; (7)

where rn ∼M(0, 1), M was the standard normal distribution,
and F was the controlled parameter.

2.5. Crossover
This process generated the final form of the trial population

T , which was updated with:

Ti,j := Pi,j if mapi,j = 1; (8)

where i ∈ 1, 2, 3, . . . , D and j ∈ 1, 2, 3, . . . , D.
The crossover strategy of BSOA used the ceiling function

to define rnd ∼ W (0, 1). Furthermore, the number of ele-
ments of individuals was controlled by a mix rate parameter
(mixrate). These individuals were mutated in a trial by using
the ceiling function dmixrate · rnd ·De.

2.6. Selection-II
Based on greedy selection, the Tjs that had better fitness

values than the corresponding Pjs, were used to update the
Pjs.

In this stage, the boundary control mechanism was also used
to form the limit search space.10

3. PARAMETER OPTIMIZATION OF SVM
BASED ON BSOA

3.1. The Support Vector Machine (SVM)
SVM is a kind of machine learning techniques that is based

on the statistical learning theory. The basic idea of SVM
is mapping the training samples from the input space into a
higher-dimensional feature space by using a mapping func-
tion φ.7 Suppose that there was a given training sample set
G = {(xi, yi), i = 1, 2, . . . , l}, where each sample xi ∈ Rd

belonged to a class by y ∈ {+1,−1} and the training data was
not linearly separable in feature space, then the target function
could be expressed as follows:11

Minimize φ(ω) =
1

2
〈ω.ω〉+ C

l∑
i=1

ξi

subject to yi
(
〈ω.φ(xi)〉+ b

)
≥ 1− ξi, ξi ≥ 0,

i = {1, 2, . . . , l}. (9)

where ω was the normal vector of the hyperplane, C was the
penalty parameter, b was the bias, ξi were nonnegative slack
variables, and φ(x) was the mapping function.
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Figure 2. The parameter optimization flowchart of SVM based on BSOA.

By introducing a set of Lagrange multipliers αi ≥ 0, the
optimization problem could be rewritten as:

Maximize L(ω, b, α) =

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjK(xi, xj)

subject to 0 ≤ αi ≤ C,
l∑

i=1

αiyi = 0. (10)

The decision function can be obtained as:7

f(x) = sgn

[
l∑

i=1

αiyiK(xix) + b

]
. (11)

The most common kernel function used in the SVM method
is the radial basis function kernel, as shown in the following
equation:11

K(x, xi) = exp
(
−‖x− xi‖2/2σ2

)
; (12)

where σ is the kernel parameter.

3.2. Parameter Optimization of SVM Based
on BSOA

It is widely known that the performance of SVM is signif-
icantly affected by its parameters. The parameters need to be
chosen as a penalty factor C and the kernel parameter σ in the
Gaussian kernel function. Selecting these parameters was not
an easy task. Generally, C and σ are selected based on expe-
rience. Therefore, in this paper, BSOA was used to optimize
the parameters of SVM. As a result, C and σ became the vari-
ables and the test error of SVM became the fitness function in
the optimization problem. The test error of SVM was given as
follows:

fitness(x) = Test ErrorSVM(x); (13)

where x = (C, σ) and the test error of SVM was defined as:

Test ErrorSVM =
Number of incorrect classification in test samples

Total number of samples in test set
.

(14)
The flow chart of BSOA-SVM is shown in Fig. 2.

Table 1. Properties of the problems.

Name Data Train Test Input Class
Iris 150 105 45 4 3

Thyroid 215 151 64 5 3
Seed 210 147 63 7 3
Wine 178 125 53 13 3
E. coli 327 229 98 7 5
Glass 214 149 65 9 6

3.3. Experimental Results

To evaluate the performance of the proposed BSOA-SVM
method, six common benchmark data sets from the University
of California Irvine (UCI) benchmark were used, including the
Iris, Thyroid, Seed, Wine, Escherichia coli (E. coli), and Glass
data sets. Table 1 gives the sizes of the training and test sets.
Each sample set was divided into two sub-sets: one for training
the SVM and one for testing the obtained model. The propor-
tion of the training and test sets were 70% and 30% of the total
samples, respectively. This proportion was chosen based on
trial and error so that the performance of the obtained SVM
was optimal with the available samples.

The BSOA-SVM, the GA-SVM, the PSO-SVM, and the
CMAES-SVM methods were used to classify these data sets.
To make a fair comparison, the values of these four meth-
ods were chosen to be the same (e.g., iteration = 30 and
PopSize = 30). For the PSO, the parameters were fixed with
the values given in the literature12 (i.e., W = 0.9, c1 = 0.5,
and c2 = 1.25). For CMAES, the parameters were fixed
with the values given in the literature13 (i.e., σ′ = 0.25 and
µ = 4 + 3 log(N)). The testing results of each method were
taken as the averaged value of 30 runs. The training data and
test data were both mixed and randomly divided, as seen in
Table 1.

According to Lin et al.,14 the lower and upper bounds of C
were given in [0.01, 35000] and σ in [0.01, 32] for the BSOA-
SVM, GA-SVM, PSO-SVM, and CMAES-SVM classifiers.
Each search method gave the values of C and σ in order to
give the smallest value of the classification error. These results
are shown in Table 2.

The detailed classification results of the each data set are
provided in Tables 2 to 7 so as to illustrate the effectiveness
of the proposed method. The Iris, Thyroid, Seed, and Wine
data sets included three classes, so we needed two SVM clas-
sifiers. The E.Coli data set included five classes, so we needed
four classifiers. The Glass data set included six classes, so we
needed five classifiers. These tables show the optimal parame-
ters (C and σ), the average test error, and the average cost time
done by different algorithms.

Table 8 gives the classification results of the Iris, Thyroid,
Seed, Wine, E. Coli, and Glass data sets, respectively. It can be
seen from Table 8 that the test error and the cost time of BSOA-
SVM was lower than the one by the GA-SVM, the PSO-SVM,
and the CMAES-SVM methods. According to Civicioglu,10

BSOA used a mutation mechanism with one individual and a
complex crossover mechanism. Furthermore, BSOA took ad-
vantage of the experiences that were obtained from previous
generations by using its memory. From the tables, it can be
seen that the BSOA-SVM classifier obtained a higher classifi-
cation accuracy in a shorter amount of time compared to other
methods. The BSOA-SVM method was next applied to a roller
bearing fault diagnosis problem.
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Table 2. The identification results of the Iris data set.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 105 45 229.32 26.11 9.21 0.000
PSO-SVM1 105 45 214.60 3.99 22.56 0.215
GA-SVM1 105 45 306.82 18.47 17.17 0.242

CMAES-SVM1 105 45 299.34 7.67 15.28 1.411
BSOA-SVM2 75 30 265.76 21.68 7.41 3.112
PSO-SVM2 75 30 320.75 5.55 15.77 4.118
GA-SVM2 75 30 169.36 31.72 13.37 4.202

CMAES-SVM2 75 30 206.49 11.94 13.57 4.811

Table 3. The identification results of the Thyroid data set.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 151 64 29300.97 0.36 17.28 2.344
PSO-SVM1 151 64 21607.25 10.44 39.31 2.358
GA-SVM1 151 64 6880.24 0.75 32.18 2.442

CMAES-SVM1 151 64 24468.10 10.54 30.13 2.922
BSOA-SVM2 45 20 32570.13 24.75 16.24 0.000
PSO-SVM2 45 20 8896.08 4.74 37.54 0.089
GA-SVM2 45 20 23584.73 29.99 29.18 0.265

CMAES-SVM2 45 20 10571.69 27.29 27.75 0.253

Table 4. The identification results of the Seed data set.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 147 63 16099.27 20.95 24.53 2.910
PSO-SVM1 147 63 27681.87 13.98 48.82 2.918
GA-SVM1 147 63 8338.74 19.4 39.28 4.589

CMAES-SVM1 147 63 18234.38 27.26 39.21 2.997
BSOA-SVM2 98 42 20976.92 24.35 16.97 0.000
PSO-SVM2 98 42 34276.51 5.6 44.98 0.098
GA-SVM2 98 42 27888.75 7.39 35.17 1.546

CMAES-SVM2 98 42 28738.10 17.54 36.19 0.282

Table 5. The identification results of the Wine data set.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 124 54 9411.199 5.867 14.92 0.0617
PSO-SVM1 124 54 32665.452 4.422 33.02 0.0617
GA-SVM1 124 54 0.704 2.792 22.11 2.1711

CMAES-SVM1 124 54 22099.552 4.286 24. 31 0.1852
BSOA-SVM2 84 35 18028.496 30.345 14.61 1.3836
PSO-SVM2 84 35 26695.179 29.837 33.89 1.5723
GA-SVM2 84 35 2.925 2.145 30.91 2.5786

CMAES-SVM2 84 35 4441.430 2.473 26.32 2.3899

Table 6. The identification results of the E. coli data set.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 229 98 7920.09 23.81 26.73 4.341
PSO-SVM1 229 98 6174.79 28.60 59.43 4.364
GA-SVM1 229 98 290.97 17.86 44.78 4.797

CMAES-SVM1 229 98 8213.08 31.02 42.52 7.814
BSOA-SVM2 130 54 25949.05 14.46 25.21 10.200
PSO-SVM2 130 54 19606.28 12.53 53.24 10.200
GA-SVM2 130 54 19860.53 12.83 42.91 10.892

CMAES-SVM2 130 54 337.55 32.00 40.41 11.925
BSOA-SVM3 75 32 33525.82 8.92 23.38 7.742
PSO-SVM3 75 32 33965.60 6.56 47.33 7.777
GA-SVM3 75 32 8421.75 13.26 39.83 7.972

CMAES-SVM3 75 32 31350.95 26.08 38.22 8.728
BSOA-SVM4 50 22 165.11 25.69 17.21 6.315
PSO-SVM4 50 22 10.77 5.89 44.25 6.382
GA-SVM4 50 22 1.01 1.45 37.81 7.111

CMAES-SVM4 50 22 331.07 4.83 37.37 7.647
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Table 7. The identification results of the Glass data set.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 149 65 19822.58 27.91 64.12 0.620
PSO-SVM1 149 65 34301.94 29.24 139.92 0.626
GA-SVM1 149 65 10226.04 3.67 134.82 0.854

CMAES-SVM1 149 65 14153.06 18.37 91.15 0.462
BSOA-SVM2 100 44 504.61 19.37 62.45 2.080
PSO-SVM2 100 44 839.26 29.64 137.53 2.084
GA-SVM2 100 44 11808.45 6.84 110.35 2.365

CMAES-SVM2 100 44 2391.84 24.94 85.83 2.137
BSOA-SVM3 48 20 31452.79 8.63 58.61 0.000
PSO-SVM3 48 20 32529.36 3.23 134.84 0.000
GA-SVM3 48 20 27770.96 11.83 102.26 0.000

CMAES-SVM3 48 20 26416.18 12.41 84.72 0.000
BSOA-SVM4 36 15 34617.43 2.74 57.41 3.050
PSO-SVM4 36 15 34939.12 5.61 131.56 3.065
GA-SVM4 36 15 20462.37 26.62 98.67 6.492

CMAES-SVM4 36 15 31631.04 9.56 80.21 6.321
BSOA-SVM5 27 11 26017.53 1.47 55.62 0.110
PSO-SVM5 27 11 21049.01 6.19 128.82 0.110
GA-SVM5 27 11 28350.18 19.44 86.19 14.247

CMAES-SVM5 27 11 26899.62 27.46 77.24 1.981

Table 8. The average test error and cost time of the proposed BSOA-SVM compared with the GA-SVM, the PSO-SVM, and the CMAES-SVM (%).

Data Average of error and cost time Method
BSOA-SVM PSO-SVM GA-SVM CMAES-SVM

Iris Error (%) 1.556 2.167 2.222 3.111
Time (s) 8.31 19.17 15.27 14.43

Thyroid Error (%) 1.172 1.224 1.354 1.588
Time (s) 16.76 38.43 30.68 28.94

Seed Error (%) 1.455 1.508 3.068 1.640
Time (s) 20.75 46.90 37.23 37.70

Wine Error (%) 0.722 0.817 2.369 1.287
Time (s) 29.53 66.91 53.02 50.63

E. coli Error (%) 7.150 7.181 7.693 9.029
Time (s) 23.13 52.06 41.33 39.63

Glass Error (%) 1.172 1.177 4.792 2.180
Time (s) 59.64 134.53 106.46 83.83

4. BSOA-SVM AND LMD-SVD FOR ROLLER
FAULT DIAGNOSIS PROBLEM

4.1. The Local Mean Decomposition (LMD)
Method

The LMD method was developed from the simple assump-
tion that any complicated signal consists of several product
functions (PF s).15 In this way, each signal could be decom-
posed into a number of PF s and a residue rn(t):

x(t) =

n∑
p=1

PF p(t) + rn(t); (15)

where p is the number of the product function, rn is a mono-
tonic function.15

4.2. The Singular Value Decomposition
(SVD) Technique

The SVD technique is aimed to decompose a matrix into
three matrices: singular values and singular vectors of initial
matrix. Assuming that there was a matrix Σ, which hadM×N
dimension, and was expressed in the form of

Σ = E∆V T ; (16)

where E = [e1, e2, e3, . . . , en] ∈ RN×N , ETE = I , V =
[v1, v2, v3, . . . , vn] ∈ RM×M , V TV = I , ∆ ∈ RN×M , ∆ =
[diag{σ1, . . . , σp} : 0], p = min(N,M), and σ1 ≥ σ2 . . . ≥
σp ≥ 0. The i-th left and right singular vectors of matrix Σ

were vectors ei and vi, respectively. The values of σi were the
singular values of the matrix Σ.

After the roller bearing signals were decomposed into PF s
by the LMD method, all of the PF s were divided into two
initial feature vector matrices X and Y

X =


PF 1

PF 2

...
PF J

 , Y =


PF J+1

PF J+2

...
PFn

 ; (17)

where J = n/2 (when n is an even number) and J = (n+1)/2
(when n is an odd number). The characteristic of the roller
bearing vibration signal x(t) could be extracted from the ini-
tial feature vector matrices X and Y . In addition, the singular
values that reflect the nature characteristics of the vector matri-
ces X and Y as well as the roller bearing vibration signal can
be used as fault feature vectors. After extracting fault feature
vectors, the BSOA-SVM classifier could be employed to iden-
tify the working condition and fault pattern of roller bearing.

The flow chart of the roller bearing fault diagnosis method
based on LMD-SVD and BSOA-SVM is shown in Fig. 3. It
can be seen from the flowchart that the roller bearing fault di-
agnosis process included six main parts:

(1) Select sampling frequency fs under three conditions of
the roller bearing (i.e., normal, outer-race fault, and inner-
race fault).

(2) Sample M times at this frequency. And the 3M signals
were taken as samples that were divided into two subsets:
the training samples and testing samples.
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Figure 3. The flow chart of the roller bearing fault diagnosis based on BSOA-
SVM and LMD-SVD.

Figure 4. The test rig.

(3) Decompose each sample signal by the LMD method.

(4) Denote different amount of PF s in various signals by
n1, n2, . . . , n3M , and let n = max(n1, n2, . . . , n3M ).
If for some signals the amount of PF components,
nk, was less than n: nk < n (k = 1, 2, . . . , 3M),
then it could be padded with zero to n components:
PF 1(t),PF 2(t), . . . ,PFn(t). That is PF i(t) = 0 for
i = nk + 1, nk + 2, . . . , n.

(5) Create initial feature vector matrices X and Y to each
roller bearing vibration signal corresponding to different
working conditions according to Eq. (17). The singular
values of initial feature vector matrices X and Y can be
obtained as follows:

σX,j = [σ1
X,j , σ

2
X,j , . . . , σ

J
X,j ]; (18)

σY,j = [σJ+1
Y,j , σ

J+2
Y,j , . . . , σ

n
Y,j ]; (19)

where σ1
X,j ≥ σ2

X,j ≥ . . . ≥ σJ
X,j , σJ+1

Y,j ≥ σJ+2
Y,j ≥

. . . ≥ σn
Y,j , j = 1, 2, 3 denoted the normal condition,

outer-race fault and inner-race fault, respectively.

(6) Construct and train the BSOA-SVM classifiers with the
training samples, which were obtained from singular val-
ues of the initial feature vector matrices. The fitness func-
tion was given by Eq. (13). The obtained values of C and
σ were inputted into the BSOA-SVM classifier. Next, the

fault feature vectors of testing samples were inputted into
the trained the BSOA-SVM classifier and then the work-
ing condition was given by the output of the BSOA-SVM
classifiers.

5. ROLLER BEARING FAULT DIAGNOSIS
APPLICATION

5.1. Data Acquisition
First, data acquisition was carried out on the small test rig, as

shown in Fig. 4. This is a popular procedure for testing imbal-
ances, misalignment, and various types of bearing faults. This
test rig included a motor, a coupling, a rotor, and a shaft with
two roller bearings. The roller bearings are the 6311 type. The
shaft rotational frequency was 25 Hz, and the rotor’s polar mo-
ment of inertia was 0.03 kgm2. By experimentation, the first
three resonance frequencies of the roller bearing were deter-
mined to be 420 Hz, 732 Hz, and 1016 Hz, respectively. So the
sampling frequency could be taken as 4096 Hz. The vibration
signals were collected from the acceleration sensor, which had
been mounted on a bearing seat at a steady frequency of shaft.
Because the roller bearing was usually turned at a constant
speed, the starting and stopping processes could be ignored.
The fault was created by laser cutting slots that had a width
and depth of 0.15 mm and 0.13 mm, respectively. Three con-
ditions of roller bearings (normal, inner-race fault (IR fault),
and outer-race fault (OR fault)) were tested. There were 45 vi-
bration signals from the bearings in each condition that were
obtained, from which 30 groups were selected at random as the
training data.

Second, the data of the Case Western Reserve Univer-
sity Bearing Data Center Website (CWRUBDCW)16 was used
with the permission of Professor K. A. Loparo. The test
stand included a 2 hp Reliance Electric motor, a torque trans-
ducer/encoder, a dynamometer, and control electronics. The
sample frequency was 485063 Hz and the motor speed was
1772 rpm. The deep groove ball bearing manufactured by SKF
was used in this test stand. The drive end bearings are of the
6205-2RS JEM type. The test bearings of electro-discharge
machining with fault diameters of 0.007 inches were selected.
The roller bearings with the four conditions (normal, inner-
race fault, outer-race fault, and ball fault) were tested, and 80
vibration signals from the bearings in each condition were ob-
tained, from which 56 groups were selected at random as the
training data.

5.2. Application
First, the roller bearing vibration signals are decomposed

into a number of PF s by the LMD method. It’s noticed by the
analysis that the fault information of roller bearing was mainly
included in the first five PF components. Therefore, the initial
feature vector matrix X only was established by the first five
PF components.

Second, the corresponding singular value σX of initial fea-
ture vector matrix X was extracted by applying the SVD.
Then, these values were put into the BSOA-SVM classifier.

Third, in order to define the condition of roller bearing,
SVM1 was first used to separate the normal condition from
another condition by setting the normal condition as y = +1
and the other conditions as y = −1. Next, SVM2 was used
to separate the outer-race fault from other condition by setting
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Table 9. The identification results of the author’s data obtained by LMD-SVD-BSOA-SVM, LMD-SVD-GA-SVM, LMD-SVD-PSO-SVM, and LMD-SVD-
CMAES-SVM methods.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 45 15 1173.746 0.434 4.347 1.667
PSO-SVM1 45 15 2365.376 0.098 9.733 1.905
GA-SVM1 45 15 26190.945 0.602 7.885 1.905

CMAES-SVM1 45 15 1422.560 32.000 7.330 2.381
BSOA-SVM2 20 10 30226.276 2.761 4.084 3.000
PSO-SVM2 20 10 16244.680 22.746 9.630 6.000
GA-SVM2 20 10 27911.125 6.460 7.689 7.667

CMAES-SVM2 20 10 31117.544 32.000 7.264 11.333

Table 10. The identification results of the author’s data based on the LMD-SVD and BSOA-SVM methods.

Test samples Singular value of fault feature σ X , x BSOA-SVM1 classifier BSOA-SVM2 classifier Identification results
(1) Normal 74.51 31.85 18.25 13.09 7.78 (+1) Normal
(2) Normal 55.80 8.98 4.10 2.40 1.76 (+1) Normal
(3) Normal 74.16 39.58 28.44 26.14 22.51 (+1) Normal
(4) Normal 67.47 15.54 6.03 4.24 3.08 (+1) Normal
(5) Normal 65.56 15.99 11.34 9.09 7.53 (+1) Normal
(6) OR fault 139.94 91.39 50.12 27.04 25.94 (-1) (+1) OR fault
(7) OR fault 149.93 123.32 86.34 74.89 56.82 (-1) (+1) OR fault
(8) OR fault 203.29 68.58 45.97 39.68 33.83 (-1) (+1) OR fault
(9) OR fault 75.58 59.36 42.15 36.11 29.43 (-1) (+1) OR fault
(10) OR fault 77.70 42.70 19.70 17.10 7.00 (-1) (+1) OR fault
(11) IR fault 283.48 184.78 98.54 82.4 77.59 (-1) (-1) IR fault
(12) IR fault 199.92 140.14 70.77 54.52 29.69 (-1) (-1) IR fault
(13) IR fault 205.00 108.00 81.00 54.00 31.00 (-1) (-1) IR fault
(14) IR fault 196.49 158.08 73.12 52.14 24.01 (-1) (-1) IR fault
(15) IR fault 173.73 127.74 76.84 53.05 38.86 (-1) (-1) IR fault

Table 11. The identification results of CWRUBDCW data obtained by the LMD-SVD-BSOA-SVM, LMD-SVD-GA-SVM, LMD-SVD-PSO-SVM, and LMD-
SVD-CMAES-SVM methods.

Method Training samples Test samples Optimal C Optimal σ Average cost time (s) Average test error (%)
BSOA-SVM1 56 24 1093.473 18.344 4.0155 1.250
PSO-SVM1 56 24 3434.477 12.445 9.3462 1.389
GA-SVM1 56 24 579.592 14.623 7.5844 1.389

CMAES-SVM1 56 24 25825.370 32.000 6.9994 1.528
BSOA-SVM2 42 18 24476.678 4.646 3.8741 0
PSO-SVM2 42 18 30047.771 1.602 9.1629 0
GA-SVM2 42 18 19252.667 8.882 7.3246 0

CMAES-SVM2 42 18 23781.571 32.000 6.8474 0
BSOA-SVM3 28 12 17539.863 7.110 3.7015 0.278
PSO-SVM3 28 12 4435.299 19.081 8.6774 0.278
GA-SVM3 28 12 0.010 0.663 7.5844 0.278

CMAES-SVM3 28 12 18325.339 32.000 6.4860 0.556

Table 12. The identification results of CWRUBDCW data based on the LMD-SVD and BSOA-SVM methods.

Test Singular value of fault feature BSOA-SVM1 BSOA-SVMr BSOA-SVM3 Identification
samples σ X , x classifier classifier classifier results

(1) IR fault 8.5153 2.9152 1.6010 0.6691 (+1) IR fault
(2) IR fault 8.5559 3.2202 1.8215 0.6273 (+1) IR fault
(3) IR fault 8.4412 3.1352 1.9311 0.5246 (+1) IR fault
(4) IR fault 8.5901 2.8227 1.8962 0.7208 (+1) IR fault
(5) IR fault 8.9155 3.0961 1.5089 0.9228 (+1) IR fault
(6) IR fault 8.8645 3.3804 2.4951 1.9901 (+1) IR fault
(7) OR fault 7.9041 2.6419 2.0240 0.7417 (-1) (+1) OR fault
(8) OR fault 6.6604 2.5858 1.7798 0.8708 (-1) (+1) OR fault
(9) OR fault 6.9439 2.4304 1.3590 0.8068 (-1) (+1) OR fault

(10) OR fault 7.8690 2.2100 1.8414 0.6937 (-1) (+1) OR fault
(11) OR fault 6.7675 2.4369 1.419 0.9283 (-1) (+1) OR fault
(12) OR fault 7.4424 3.4101 2.4794 1.4612 (-1) (+1) OR fault
(13) Ball fault 4.5775 1.2130 0.8730 0.3686 (-1) (-1) (+1) Ball fault
(14 Ball fault 4.4927 0.8078 0.7951 0.4279 (-1) (-1) (+1) Ball fault
(15) Ball fault 4.6239 0.9917 0.7678 0.6424 (-1) (-1) (+1) Ball fault
(16) Ball fault 4.5416 1.1273 0.7654 0.3606 (-1) (-1) (+1) Ball fault
(17) Ball fault 4.4950 0.8587 0.6016 0.5237 (-1) (-1) (+1) Ball fault
(18) Ball fault 4.2611 0.8124 0.6932 0.4347 (-1) (-1) (+1) Ball fault
(19) Normal 2.8399 1.7668 1.6482 1.3742 (-1) (-1) (-1) Normal
(20) Normal 1.9474 1.3361 1.1629 1.0016 (-1) (-1) (-1) Normal
(21) Normal 1.6105 1.1714 0.9231 0.8979 (-1) (-1) (-1) Normal
(22) Normal 1.3062 0.8826 0.7353 0.6410 (-1) (-1) (-1) Normal
(23) Normal 2.2264 1.1755 1.1589 1.0573 (-1) (-1) (-1) Normal
(24) Normal 2.0903 1.3878 1.191 0.8797 (-1) (-1) (-1) Normal
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outer-race fault as y = +1 and the other condition as y = −1.
Because the first data set had only got three conditions that
needed to be identified, the rest was inner-race fault. The iden-
tification results of the same testing samples are shown in Ta-
bles 9 and 10.

Table 9 shows that accuracy of LMD-SVD-BSOA-SVM
is higher than LMD-SVD-PSO-SVM, LMD-SVD-GA-SVM,
and LMD-SVD-CMAES-SVM while the computational time
was lower. Table 10 shows detail identification result of the
author’s data based on LMD-SVD-BSOA-SVM.

The CWRUBDCW data set included four conditions of
roller bearing so three SVM classifiers were used. The iden-
tification results of the same testing samples are shown in Ta-
bles 11 and 12.

It can be seen from Table 11 that the BSOA-SVM classi-
fier gave more accurate results with less computational time
than that by other methods. With IR fault, the BSOA-SVM
method obtained the best identification result compared with
other methods. With the OR fault, the classification success
rate of the four methods was 100%. With ball fault, the identi-
fication result of BSOA-SVM, PSO-SVM, and GA-SVM was
higher than that of CMAES-SVM. Table 12 shows the identi-
fication results of the CWRUBDCW data based on the LMD-
SVD and BSOA-SVM methods.

6. CONCLUSIONS

In this paper, an optimal algorithm for SVM parameter
based on BSOA is proposed. The experimental problems are
solved to demonstrate the effectiveness of BSOA-SVM. The
testing results of some real-world benchmark data sets show
that the BSOA-SVM classifier has a high accuracy with low
computational cost time. These results thus prove that the
BSOA-SVM classifier gave more accurate results in a shorter
time compared to the GA-SVM, PSO-SVM, and CMAES-
SVM methods. Furthermore, the BSOA-SVM method is ap-
plied to diagnose the roller bearing fault by combining it with
the LMD-SVD method. SVD is applied to extract the singu-
lar values of matrices from the initial feature vector matrices
of PF s. The results indicate that a combination of the BSOA-
SVM classifier and the LMD-SVD method can effectively re-
duce the test error and cost time.
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The purpose of this paper is to provide an overview of the sound power radiation mechanism of air-core reactors
and to describe the method that is used to calculate sound power by using the electrical load. Sound power
radiation of an air-core reactor is related to the alternating current harmonics, the mechanical tension stiffness
and, most importantly, the breathing mode resonance. An analytical model that is based on electrical loads and
mechanical properties of the air-core reactor is developed to calculate radial and axial forces caused by the radial
and axial magnetic induction fields. This study employs the hemispherical spreading theory, which is a simple
and common method that is used to predict sound propagation. Additionally, a numerical model is proposed.
In this, the excitation of the acoustic field that surrounds the reactor is introduced by considering the radial and
axial displacements of the reactor’s windings, as the windings are subjected to the action of the radial and axial
electromagnetic forces. Finally, a comparison is presented between analytical and numerical models and it is
observed that the models are correlated.

NOMENCLATURE

B magnetic induction field
Bradial radial magnetic induction field
Baxial axial magnetic induction field
Bavrg,z average magnetic induction field

at z direction
Bavrg,x average magnetic induction field

at x direction
c0 speed of sound in air
dl infinitesimal element
E equivalent Young’s modulus
Efib Young’s modulus of the fiberglass
e thickness of the winding
efib thickness of the fiberglass
eiso thickness of the insulation
F electromagnetic force
Favrg,x average force at x direction
Faxial axial electromagnetic force
Fradial radial electromagnetic force
FZ,avrg average force at z direction
f frequency of the current
Gxy shear modulus at plane xy
Gxz shear modulus at plane xz
Gyz shear modulus at plane yz
H average height of the winding
hws height of the reactor without the spiders
Ieff effective current

i electrical current
K stiffness of a mechanical system
Keq equivalent stiffness
Kfib1 stiffness of fiber layer 1
Kfib2 stiffness of fiber layer 2
l height of the material
lms perimeter of measurement surface
LP average sound pressure
LP sound pressure level
LW sound power level
M mass of the winding
N number of turns per unit of length
nbr total average number of turns in the winding
p sound pressure
p0 reference sound pressure
R average radius of the winding
Re external radius of the winding
Ri internal radius of the winding
r distance point to source
rsr distance source-receiver
S surface of contact between two materials
Sm surface area of measurement
SW sound radiating surface
S0 reference area
t time
νrad average radial speed of the winding
W radiated sound power
W0 reference power
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Wrad radial sound power of the winding
Waxi axial sound power of the winding
z distance in Z axis of the point P
ρ0 density of the air
Φni diameter of the conductor without insulating
Φ diameter of the insulated conductor
µ0 constant of proportionality
ω angular frequency
σ radiation efficiency
∆R radial displacement of the winding
∆H axial displacement of the winding
< ν > RMS value of the vibration

velocity over the surface and time
νxy Poisson’s ratio at plane xy
νxz Poisson’s ratio at plane xz
νyz Poisson’s ratio at plane yz

1. INTRODUCTION

The population growth and the increasing use of electric-
ity demands the construction of substations for power trans-
mission near major consumption centers. Due to this, the sur-
rounding communities are affected by the noise generated by
these stations.1 Substation noise is a problem not only be-
cause of the high power levels, but also because of the pres-
ence of tonal noises that can cause discomfort. Among the
main sources of noise in these industrial plants are transform-
ers, capacitors, and air-core reactors.

When considering the impact of audible noise emanating
from a high voltage direct current (HVDC) station, the alter-
nating current (AC) filter reactors, and the HVDC smoothing
reactor are the main types of air-core reactors that need to be
considered. According to the International Council on Large
Electric Systems,2 the forces resulting from the interaction be-
tween the current flow through the reactor and its magnetic
induction cause the vibration of reactor surfaces. Some re-
searchers consider that, from the viewpoint of noise genera-
tion, vibration amplitude and area of radiating surface deter-
mine the sound power generated by air-core reactors.3, 4

There is a lot interest in determining the forces acting in the
radial direction because they induce bending waves on reactor
surface, while axial forces excite longitudinal waves. In the
case of air-core reactors, the radiation efficiency of bending
waves is greater than the longitudinal waves.

This paper describes the mechanism of sound generation in
air-core reactors. Two models for calculating the sound power
level of reactors are presented: the analytical model estimates
the sound power from the radial and axial force created by the
axial and radial magnetic field that acts over the reactor and
the numerical model uses the radial and axial forces calculated
by the analytical model as the excitation of the acoustic field
that surrounds the reactor. The analytical and numerical results
of a typical configuration of an air-core reactor used in HVDC
system are compared with experimental results.

Figure 1. The air-core reactor with: (a) general view and (b) section view.

2. AIR-CORE REACTORS

It is common practice to employ air-core reactor technology
for different applications in HVDC systems. In such places,
reactors have several functions: harmonic filtering on the AC
and DC side, reduction of high frequency noise propagation in
the lines, and providing inductive compensation for AC har-
monic filters, especially under light load conditions where a
certain minimum number of harmonic filters are required to
satisfy harmonic performance requirements.

The major construction features of an air-core reactor are
illustrated in Fig. 1. The winding of the reactor consists of
one or more resin impregnated and encapsulated layers made
of insulated aluminum conductors. The concentric layers are
connected in parallel by welding their ends to metallic beam
structures, called spiders. Both the top and bottom spider are
clamped together by several sets of fiberglass ties located along
the winding. The packages are radially spaced by circumferen-
tially arranged fiberglass reinforced sticks, which form vertical
air ducts for natural convective cooling of the windings.

The noise generated by air-core reactors results mainly from
vibration forces caused by the interaction of the current flow-
ing through the winding and its magnetic field. The forces in
the winding are proportional to the current multiplied by the
magnetic field in the winding, and thus they are proportional
to the square of the current.5 The forces of interest are primar-
ily those in radial direction, since they create vibrations on the
surface that can propagate sound waves in the air.

The acoustic frequency spectrum depends on the load cur-
rent spectrum of the reactor, and is thus dependent on the reac-
tor application. In the case of single frequency AC current, the
forces oscillate with twice the frequency of the current. How-
ever, if the reactor is simultaneously loaded by several currents
of different frequencies and to vibration modes at double the
electrical frequencies, there are also additional vibration fre-
quencies. This situation is better illustrated by the simplified
current spectrum of an AC filter reactor, Fig. 2a, in which the
current consists of a component with fundamental frequency f
and one harmonic component with harmonic order, h. The
force acting on the winding of these reactors consists of a
static preload and components with frequencies 2f , f(h− 1),
f(h + 1) and 2fh, as is shown at Fig. 2b. Only the vibration
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a)

b)

Figure 2. (a) Currents through AC filter reactor and (b) Forces acting on the
reactor winding.

force components generate noise, the static preload does not
affect the sound power.

It may be concluded that a frequency shift occurs when elec-
trical forces are generated from the electrical load. The num-
ber of forces is equal to the square of the number of loads.
The acoustic frequency spectrum will therefore significantly
increase if the reactor current spectrum includes several har-
monic frequencies.

The dynamic behavior of the reactor may be described in
terms of vibration modes caused by these electromagnetic
forces. Since the oscillating forces are of an almost rota-
tional symmetry, symmetrical modes of the structure coincid-
ing with the shape of the force distribution would expected to
be strongly excited. The fundamental modes of the cylindrical
reactor structure are:

a) The breathing mode. In this mode the forces are uni-
formly distributed around the reactor and try alternately
to expand and compress the winding in the radial direc-
tion or, in other words, the reactor winding is deformed
as a cylindrical pressure vessel. This modal frequency es-
sentially depends on the material parameters of the wind-
ing and is inversely proportional to the winding diameter.
The breathing mode is fully symmetrical and its shape co-
incides with the distributed exciting electromagnetic force
resulting from the axial magnetic field component.

b) The compression mode in the axial direction, where the
reactor is symmetrically compressed towards the reactor
mid-plane. This mode is excited by the radial magnetic
field component.

c) The flexural or bending modes of the winding layers,
which is characterized by the number of nodes in circum-
ferential and axial direction. The frequencies of interest
for these modes are usually lower than the breathing mode
frequency. Although the flexural modes are not of rota-
tional symmetry they become excited by the electromag-
netic forces.

Table 1. The geometrical characteristics of the reactor.

Geometrical characteristics Nomination Values
of the reactor

Diameter of the conductor Φni 4.79×10-3 m
without insulating

Diameter of the insulated conductor Φ 5.19×10-3 m
Average height of the winding H 1.20 m
Internal radius of the winding Ri 5.66×10-1 m
External radius of the winding Re 5.75×10-1 m
Average radius of the winding R 5.70×10-1 m

Mass of the winding M 98 kg
Thickness of the winding e 9.00×10-3 m

Thickness of the insulation eiso 4.00×10-4 m
Thickness of the fiberglass layer efib 3.80×10-3 m
Total average number of turns nbr 66.50 turns

in the winding

The vibration amplitude and size of the sound radiating sur-
face of the apparatus essentially determine the sound power.
Therefore, the sound emission of an air-core reactor is gov-
erned by the magnitude of the winding vibration in the radial
direction, since the winding represents the main part of the ra-
diating surface. The contribution of axial winding vibrations
and that of other components to the total sound emitted is rel-
atively low.

The results of an air-core reactor, which has the configu-
ration usually found in HVDC stations, are presented in this
paper. It has one winding, natural cooling, and its winding is
formed by one layer of insulated aluminum conductor. Among
the conductors, there are layers of fiberglass with epoxy resin.
Other geometrical characteristics of the reactor are shown in
Table 1.

3. SOUND GENERATION MECHANISM

Alternating currents through the reactor simultaneously pro-
duce an electric field due to the electric charges and a magnetic
field because of the flowing current. The resulting electromag-
netic interaction results in the creation of an electromagnetic
force, which causes the vibration of the walls.

3.1. Analytical Model
The determination of the expression of the magnetic induc-

tion field in all points of the winding involves the solution of
complex numerical equations, which does not allow for a sim-
ple analytical expression of the field according to the param-
eters of the system. Therefore, in order to develop an analyt-
ical model, some hypothesis are assumed, and the magnetic
induction field is broken up in two parts: the radial magnetic
induction field Bradial, and the axial magnetic induction field
Baxial. This form will enable the division of the problem in
two parts: the radial mode involves the calculation of the axial
field, which causes a radial electromagnetic force Fradial and
the axial mode, which involves the calculation of the radial
field and causes an axial electromagnetic force Faxial.

The determination of the expressions of the radial and axial
fields will be carried out by the use of the following relations:6

a) The Biot-Savart Law expresses the value of the magnetic
induction field B created by an infinitesimal element of
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Figure 3. The axial induction field in a point P of the axis of the winding.

current dl in a distant point r of the source.

B(t) =
µ0

4π
i(t)

∮
dlxr0
r3

; (1)

where µ0 is the permeability of free space. The small
circle on the integral sign indicates that the path of inte-
gration is a closed loop. Since the current has a sinusoidal
behavior with respect to time, it can be expressed as:

i(t) =
√

2Ieff sin(ωt); (2)

where, Ieff is the effective current (A) and ω is angular
frequency of the current (rad/s).

b) Ampere’s Law provides a method for evaluating B fields
when the current distribution has some simplifying fea-
tures. The law relates the path integral of the magnetic
induction field B around a closed loop to the total current
i(t) passing through the loop. In mathematical terms, this
can be written: ∮

B(t)dl = µ0i(t). (3)

c) The electromagnetic force equation is defined by:

F(t) =

∮
i(t)dlxB. (4)

3.1.1. Radial mode

To simplify the development of equations, the value of the
axial induction field is calculated on the axis of the winding,
as illustrated in Fig. 3. It will be uniformly distributed into the
winding and the conductors. The magnetic induction field in a
point P of the axis of the winding, Eq. (5), can be estimated by
the initial calculation of the field on the axis of one turn using
the Biot- Savart Law, which is followed by the extrapolation of
the expression to an assembly of n turns:7

B(z, t) =

√
2µ0IeffN

2

(
z

(R2 + z2)1/2
+

+
(H − z)

(R2 + (H − z)2)
1/2

)
sin(ωt); (5)

where, µ0 is the permeability of free space, Ieff is the ef-
fective current, N is the number of turns per unit of length
(N = 1/Θ), z is the distance in Z axis of the point P , R is the
average radius of the winding, H is the height of the winding
(H = nbr ·Θ), and ω is the angular frequency of the current.

Figure 4. The radial displacement caused by the action of the radial force.

Observe that the axial induction field is maximum in the cen-
ter of the winding and minimum at the two ends.

To avoid the complex integration of Eq. (5) over the height
of the winding, the following calculation of the average axial
magnetic induction field, Eq. (6), will be used:

Baxial(t) = Bavrg,z(t) =

√
2µ0IeffN

H

(
(R2+

+(H)2)1/2 −R
)

sin(ωt). (6)

Because the turns of the winding are subjected to the average
magnetic induction field Baxial (constant in all inner points of
the winding), each turn of the winding is subjected to the same
radial linear force Fradial determined by Eq. (7).

Fradial(t) = Favrg,x(t) =
2µ0I

2
effN

H

(
(R2+

+(H)2)1/2 −R
)

sin2(ωt). (7)

The radial force is expressed in N/m and has the following
properties:

a) The force is unidirectional and repulsive, i.e., no defor-
mation towards the inner part of the winding;

b) The force is proportional to the square of the current,
Ieff , and proportional to the number of turns per unit of
length N ;

c) The frequency of the average force is twice the frequency
of the current.

Figure 4 shows the distribution of the radial force acting over
one turn of the winding. FN is the normal force of traction that
acts over the thickness of the turn.

Making the vertical balance of the forces that act in Y direc-
tion, the following equation for the radial displacement of the
winding is:

∆R(t) =
2µ0I

2
effR

2

nbrϕ3Ee

[(
R2 + (nbrϕ)2

)1/2 −R] sin2(ωt);

(8)
where, nbr is the total average number of turns in the winding,
ϕ is the conductor diameter, e is the thickness of the wind-
ing, E is an equivalent Young’s modulus calculated based on
the total area of the winding subjected to the normal force and
the total areas of the conductor and fiberglass. Young’s modu-
lus of the aluminum and the fiberglass are 7.2×1010 N/m2 and
3.0×1010 N/m2, respectively.
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Deriving the expression of radial displacement with respect
to time yields the expression of the average radial speed of the
winding as follows:

νrad(t) =
4µ0I

2
effR

2πf

nbrϕ3Ee

[(
R2 + (nbrϕ)2

)0.5−
−R] sin(2ωt); (9)

where f is the frequency of the current in hertz.

3.1.2. Axial mode

For example, considering the winding formed by four turns
located parallel one against each other, as shown in Fig. 5.

Figure 5. The radial induction field of the first turn of the winding.†

The radial induction field that acts over the first turn is equiv-
alent to the sum of the contributions of the fields created by the
others turns. The field that acts over the second turn is null be-
cause of the cancelation of the induction of the first and third
turns. So, it is possible to conclude that the resulting field that
acts over the median turn is null. Using these conclusions and
Ampere’s Law for a linear conductor, the radial induction field
in a point located at z = 0, z < H/2, z = H/2, z > H/2 and
z = H , may be obtained. These expressions utilize conver-
gent series that have hard solutions. To simplify the analytical
calculation procedure, these expressions are reduced to an ex-
pression that can be integrated on the half height of the wind-
ing in order to obtain the average value of the radial magnetic
induction field on both sides.7

Bradial(t) = Bavrg,x(t) =

= ±
√

2µ0Ieff
4πϕ

ln(nbr) sin(ωt)→ (+)

when z < H/2 or (−) when z > H/2; (10)

Bradial(t) = Bavrg,x(t) = 0→ z = H/2; (11)

where, ϕ is the diameter of the conductor and nbr is the total
average number of the turns in the winding.

Therefore, consider again that the winding is subject to aver-
age radial induction field. Each turn undergoes the same linear

†For better understanding of the drawing the turns were isolated, but nor-
mally the distance between them is null.

a)

b)

Figure 6. (a) Equivalent stiffness of each turn that forms the winding and (b)
Contact surface between materials.

force:

Faxial(t) = FZ,avrg(t) =

= ±
µ0I

2
eff

2πf
ln(nbr) sin2(ωt)→ (+)

when z < H/2 and (−) when z > H/2; (12)

Faxial(t) = FZ,avrg(t) = 0→ z = H/2. (13)

The axial force is expressed in N/m and has the following
properties:

a) The force is proportional to the square of the current Ieff .

b) The frequency of the average force is twice the frequency
of the current.

c) The distribution of the axial force compresses the wind-
ing.

The axial force compresses the winding, therefore in this
mode of deformation the winding can be seen as a mass-spring-
mass-spring assembly, as shown in Fig. 6a. The first mass con-
sists of the sum of the mass of the conductor and fiberglass
while the second mass corresponds to the sum of the mass of
the insulator and fiberglass.

The general expression that defines the stiffness K of a me-
chanical system is:

K =
ES

l
. (14)

In this case, l corresponds to the height of the material, S
indicates the contact surface between two materials, and E is
Young’s modulus of the material. The following stiffnessKAl,
Kfib1, Kiso, and Kfib2 will exist for one turn.

The contact surface between conductor and insulator is
weaker than the contact surface between fiberglass layers, so
the stiffness KAl and Kiso can be neglected when compared
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to the stiffness Kfib1 and Kfib2. Once the two springs are in
series, the equivalent stiffness of the system is:

Keq =
Kfib1Kfib2

Kfib1 +Kfib2
. (15)

Young’s modulus of the material that forms the turn can be
obtained by replacing the expression of the equivalent stiffness
in Eq. (14), and assumes that l is equal to the diameter of the
turn.

E =
Keqϕ

2πeR
. (16)

It may be observed that the value of Young’s modulus for
the radial mode and axial mode are different.

As in radial mode, using the definition for Young’s modulus,
the expression for the axial displacement of the winding ∆H

can be obtained:

∆H(t) =
µ0I

2
effnbr

2πEfibefib
ln(nbr) sin2(ωt); (17)

where,Efib and efib are respectively Young’s modulus and the
thickness of the fiberglass.

Deriving the expression of the axial displacement in respect
to time, the expression of the average axial speed of the wind-
ing can be obtained:

νaxi(t) =
fµ0I

2
effnbr

Efibefib
ln(nbr) sin(2ωt). (18)

3.1.3. Acoustic model

According to some research, the equation that defines the
radiated sound power is:8

W = ρ0c0SWσ < ν >2; (19)

where, W is the radiated sound power in Watts, ρ0 is the den-
sity of the air in kg/m3, c0 is the speed of sound in air in m/s,
SW is the sound radiating surface in m2, σ is the radiation effi-
ciency, and ν is the RMS value of the vibration velocity in m/s
over the surface (<>) and time (−).

For the reactor, in the radial direction the internal and ex-
ternal surfaces are responsible for sound generation SWrad =

4πHR. In the axial direction the surface responsible for radia-
tion is the cross sectional area of the winding SWaxi = e2πR.
The radiation efficiency depends on the frequency, geometri-
cal, and structural properties of the component. The value es-
tablished for the radiation efficiency is multiplied by a correc-
tion factor to take into account all approximations made on the
analytical model, neglected internal deformation, dissipation
etc.

Using the considerations above, the radial and axial sound
power of the winding are respectively:

Wrad = 32ρ0c0π
3µ2

0σ
I4effR

5f2

E2e2ϕ5nbr
·

·
[(
R2 + (nbrϕ)2

)1/2 −R]2 ; (20)

Waxi = ρ0c0πµ
2
0σ
I4efff

2nbr2R

E2
fibe

2
fib

·

· [ln(nbr)]
2

(efib + 4ϕ) . (21)

Therefore, the sound power level generated by the reactor in
dB can be expressed by the following expression:

LW = 10 log10

(
Wrad +Waxi

10−12

)
. (22)

The acoustic pressure emitted by the winding in a specific
point where the receiver is found depends on the comparison
between the coordinates of the receiver and the dimension of
the source. When the distance source-receiver rsr is large com-
pared to dimensions of the source (rsr/H > 10), the reactor
is compared with a spherical source. As in most of the times
the reactor is installed near the ground, the sound waves are
reflected by the ground‡. Therefore, the reactor is comparable
with a half-spherical source. The acoustic energy of internal
surfaces and the power of axial modes take part in the acoustic
pressure equation:

p =

√
ρ0c0(Wrad +Waxi)

2πr2sr
; (23)

where, rsr is the distance from the receptor to the center of the
winding.

When rsr/H < 10, the reactor is comparable to a cylin-
drical source. At such distances, the participation of the noise
generated by the interior wall can be neglected in front of that
coming from external surface. The noise created by the axial
mode may also be neglected, since its direction is parallel to
the axis of the reactor.

p =

√
ρ0c0Wrad

4π(rsr +Re)H
; (24)

where Re is the external radius of the winding.
The sound pressure level LP , a quantity that varies accord-

ing to the environment in which the source is, can be mathe-
matically defined as:

LP = 10 log

(
p2

p20

)
; (25)

where p corresponds to the sound pressure in Pa and p0 is
20×10-6 Pa.

Sometimes, the noise created by the axial mode may not
be neglected. This occurs, for example, when the reactor’s
dimensions have a considerable axial area to radiate the sound.

3.1.4. Analytical results

Considering the geometrical properties presented at Table 1
and the equations explained in sections 3.1.1, 3.1.2, and 3.1.3
it is possible to predict the sound power level generated by this
air- core reactor. For the calculations it is supposed that the

‡The ground is supposed to be a perfectly reflective surface, without ab-
sorption.
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Figure 7. The mesh used for the structural analysis.

reactor is loaded with a single AC current of 300 Amps and a
frequency of 60 Hz and the main answer will be at 120 Hz.

Young’s modulus of the aluminum and the fiberglass are
7.2×1010 N/m2 and 3.0×1010 N/m2, respectively. If the ratio
rsr/H < 10, the reactor is comparable to a cylindrical source,
then it is possible to use Eq. (24). The established value for the
radiation efficiency is 0.25.

The sound power level calculated to this equipment was
74.3 dB and the sound pressure level estimated was 58.7 dB. In
the next sections these values will be compared with numerical
analysis and values determined experimentally.

3.2. Numerical Analysis
The numerical models are developed using the finite ele-

ments method. The first step of the numeric modeling was
to build the geometry corresponding to the reactor analyzed in
this research and mesh it. The mesh used for the structural
analysis was constructed using the software Ansys 12.1.9 The
type of the element used was shell 63. This element is de-
fined by four nodes, four thicknesses, elastic foundation stiff-
ness, and orthotropic material properties. Adding to that, the
element has both bending and membrane capabilities. Both
in-plane and normal loads are permitted. The element has six
degrees of freedom at each node with translations in the nodal
x, y, and z directions and rotations about the nodal x, y, and
z-axes. According to the frequency of interest, the mesh was
divided in 22 elements in circumferential direction and 7 ele-
ments in axial direction, see Fig. 7.

The analytical forces Faxial and Fradial calculated by ana-
lytical model were used as boundary conditions of the struc-
tural numerical model. The axial is applied above and below
the mid height. The radial force is decomposed into x and y
components and applied in all nodes of the model. The bound-
ary conditions are shown in Fig. 8.

The mechanical properties defined for the structural model
were: Young’s modulus of the fiberglass (10 GPa) for axial and
radial directions, and Young’s modulus obtained experimen-
tally (30 GPa) for circumferential direction. Shear modulus
Gxy (26.7 GPa) and Gxz = Gyz (1.56 GPa) were obtained ex-
perimentally. Poisson’s ratio νxy equals that of the aluminum

a)

b)

Figure 8. The boundary conditions: (a) radial force decomposed into x and y

directions and (b) the axial force.

Figure 9. The structural displacement at 120 Hz.

(0.25), νxz = νyz is the same as the fiberglass (0.034). The
average density was calculated, based on the area occupied by
the aluminum and the fiberglass in respect to the total area of
the reactor, to be 2,362 kg/m3.

For the calculations the reactor is supposed to be loaded with
a single AC current of 300 Amps and frequency of 60 Hz. Ac-
cording to Section 2, the main answer will be at 120 Hz. The
software Ansys enables the calculation of harmonic solution
for the frequency of interest, Fig. 9.

The acoustic numerical model was developed to calculate
the sound power level radiated by the reactor. It was devel-
oped using Boundary Element Method (BEM) available in the
software Virtual.Lab 11.10 The mesh discretization was the
same of that in the structural model. The displacements on
nodes calculated in the earlier step were used for excitation in
the acoustic field. In the software this boundary condition was
made by the insertion of a vibrant panel. A field point mesh
was created 1.0 m away from the vibration panel to obtain the
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a)

b)

Figure 10. (a) Vibrating panel and field point mesh and (b) the acoustic pres-
sure at 1.0 m from vibrating panel.

pressure results. The acoustic model can be analyzed through
Fig. 10a. The numerical solution enables the determination of
the sound level pressure in all nodes of the mesh. The value of
sound pressure 1.0 m from vibrating panel is 55 dB, Fig. 10b.
The sound power level can be evaluated through this value:
69 dB.

4. EXPERIMENTAL MEASUREMENTS AND
DISCUSSION

The sound power W is the total sound energy emitted by a
source per unit of time. To express that greatness on a scale that
has a better correlation with human hearing, the sound power
level LW , which is related to the sound power, is given by the
following equation:

LW = 10 log

(
W

W0

)
; (26)

where W is the sound power of the source in Watts and W0

is the reference power 1×10-12 Watts. The LW unit is dB.
Using the concept of sound intensity, the equation that defines

a)

b)

Figure 11. (a) The air-core reactor inside the hemi-anechoic chamber and (b)
the circumference with the measurement positions.

de sound power level is rewritten as follows:

LW = LP + 10 log

(
Sm

S0

)
. (27)

The average value of sound pressure level in dB is LP , the
reference area is S0, 1 m2, and Sm is the surface area of mea-
surement in m2. In the case of reactors, the technical standard
IEC 60076-1011 specifies that the microphones must be posi-
tioned 1.0 m from its surface and the surface area of measure-
ment should be calculated by the equation:

Sm = (hws + 1)lms; (28)

where hws corresponds to the height of the reactor without the
spiders and lms is the perimeter of measurement surface. The
sound pressure level LP , a quantity that varies according to the
environment, is determined mathematically at Eq. (25).

According to standard procedure, air-core reactors with a
height less than 2.5 m must be measured at the half height
of the reactor for sound pressure levels. For this height, six-
teen measurement positions were defined over an imaginary
circumference with the center coincident with the equipment
center, according to Fig. 11b. The measurements were per-
formed in the hemi- anechoic chamber, Fig. 11a.

To do the measurements the reactor was loaded with a single
AC current of 300 Amps and a frequency of 60 Hz, the main
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Figure 12. The average sound pressure level measured inside the anechoic
chamber.

Table 2. The geometrical characteristics of the reactor.

Analytical Results Numerical Results Experimental Results
LP LW LP LW LP LW

58.7 dB 74.3 dB 55.0 dB 68.4 dB 59.7 dB 73.1 dB

answer was 120 Hz. At Figure 12, the average sound pressure
level measured inside the hemi-anechoic chamber is presented.
The sound pressure level 1.0 m from reactor was 59.7 dB and
the sound power level was 73.1 dB.

Table 2 compares the results obtained analytically, numeri-
cally and experimentally. There is a strong correlation between
analytical and experimental results. Comparing numerical and
experimental results yields a difference around 4 dB. Consid-
ering the many assumptions, these values are reasonable.

5. CONCLUSIONS

This paper presents two relatively simple models for the
evaluation of the sound power level of air-core reactors. First,
the reactor is modeled as a cylinder with axial and radial dis-
placement, and the total sound power calculated as the sum of
axial and radial sound power. The developed model is general
so that various air-core configurations can be applied. Second,
analytical expressions are used as excitation of a structural fi-
nite element model. The results obtained through this struc-
tural model are used as boundary conditions for the acoustic
boundary element model. This approach is most interesting
for air-core reactors that have more than one winding.

The experimental results presented enable the identification
of frequencies in which the sound power level is larger. In
this region of the frequency spectrum, the vibratory energy is
sufficiently high to generate relevant noise, depreciating the
product.

The analytical results of the sound power level show good
agreement with experimental results, thus demonstrating that
the analytical model can be useful to calculate the sound pres-
sure generated by air-core reactors. The comparison between
experimental and numerical results present some differences.
They are explained by the assumptions in the numerical mod-
els.

The analytical approach is simple and efficient which allows
using it for conducting sensitivity or optimization studies dur-
ing the design stages.
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The subjective evaluation of noise perception is a very broad topic that has many applications in the field of
acoustics. Large variability is usually associated with a subjective evaluation that appears in the standard deviation.
This is due to a small amount of subjects (the outliers), who had different responses compared to most of the other
subjects. By using the Bootstrap statistical method, this paper shows how to identify the outliers and quantify the
contribution to the final results with and without considering the outliers in the calculation.

1. INTRODUCTION

The subjective evaluation of noise perception plays an im-
portant role in the decision making of many applications in the
field of acoustics, such as the evaluation of noise perception
(annoyance) in communities located near airports and studies
on traffic noise, product sound quality, environmental sound-
scapes, sleep disturbance, and hearing protector noise attenu-
ation. The subjective perception of noise by a group of hu-
man evaluators usually shows a large variability, as observed
through the standard deviation. This is because the subjects
differ in terms of their experience, attitudes, expectations, age,
personal state of mind, sensitivity to noise, fear of harm con-
nected with the source, personal evaluation of the source, cop-
ing capacity with respect to noise, trust in or lack of confi-
dence in the relevant authorities, and a history of noise expo-
sure, among other factors. Some subjects paid greater atten-
tion to the assessment and provided more accurate responses
while others did not concentrate properly on the task and per-
formed the evaluation simply for the payment. In general, a
small amount of the subjects gave responses that differed from
most of the other subjects. These few subjects tended to have
a considerable influence on the final results and were the main
reason behind the high standard deviation. Thus, they will be
considered as ”outliers.” This is a very broad topic that has ex-
tensive applications in different fields.1–3

2. STATISTICAL DETERMINATION AND DE-
TECTION OF OUTLIERS

There were different methods available for the detection
of outliers,4 including the box plots, miss match models, the
Dixon test, the Grubbs test, and Z-scores. In the study re-
ported, a mismatch model and the bootstrap method were used
to investigate the statistical distribution and to identify outliers.

Additionally, the quantitative effect on the final results when
the outliers were removed from the dataset was determined.

The subjects considered as outliers, who generally repre-
sented around 3 to 5 out of the total 20 to 30 subjects in the
cases presented herein, were not true outliers. However, their
subjective evaluation was very different from that of the other
subjects. The objective of this paper is to describe a way to
detect these outlier subjects and evaluate their effect on the
final results by eliminating them. Some real cases were de-
scribed here to show the application of the bootstrap statistical
technique to the identification of outliers and to evaluate their
contribution to the results.

2.1. Bootstrap Method
The bootstrap method was introduced by B. Efron in 19795

and its use in statistical sciences became widespread within a
few decades. This method involves taking the original dataset
of N elements and sampling from it by using a computer in
order to generate a new sample with size N/2. The elements
are then exchanged randomly between these two datasets (each
of size N/2).

This process is repeated many times and for each of these
bootstrap samples, the final parameter (e.g. the mean) is com-
puted. The histogram of this final parameter is obtained with
the mean value and standard deviation together with the con-
tribution of the N original elements to the final parameter. The
statistical distribution is then observed and some outliers will
show a non-Gaussian distribution. The outliers can also be
identified and their contribution to the final results evaluated.
If these outliers are eliminated and the distribution is recalcu-
lated, it becomes more Gaussian with a better estimation of the
parameters.

In this study, 20 subjective responses were obtained, with
3 to 7 questions given to each subject. The random selection
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Figure 1. Dose-response data for severe aircraft noise annoyance from several
surveys using a cut-off point of 70 to 75% of the response scale for the defini-
tion of high annoyance (HA). Note that the four points (in the red circle) with
an annoyance of less than 30% were considered as ”outliers”.

of 10 subjects (out of 20) was applied. The procedure was
repeated 20,000 times for each subject. The results were then
used to identify the outliers and their contribution to the final
result.

3. SUBJECTIVE ASSESSMENT: RESULTS
WITH OUTLIERS REPORTED IN
THE LITERATURE

A large number of publications reporting subjective surveys
demonstrate that some subjects (outliers) are only very slightly
disturbed by high levels of noise exposure. Some of these cases
are described herein. Figure 1 shows the percentage of severe
annoyance caused by aircraft noise as a function of the noise
level (Ldn in dBA)6 for different airports. It is clear that there
are a few subjects with annoyance below 30% (marked with a
circle below the line). These were considered as outliers since
they represented a small percentage of the total number of sub-
jects and their values differed greatly from those of the other
subjects. This example proved that a few subjects could typi-
cally alter the final results if they were considered in the statis-
tical evaluation. These few outliers usually gave the response
that the noise from the airport was not very annoying. This
could be because they had a vested interest in the airport. For
instance, they may own a business inside the airport and thus
wished to see its level of activity and capacity maintained or
even increased.

Another published example can be seen in Fig. 2, which
shows the percentage of highly sleep-disturbed subjects as a
function of the sound pressure levels (LeqA) of road traffic
noise.7 In this case, there was one (marked X) with a high
level of exposure (70 dBA) and low disturbance (10%). This
point on the curve was certainly an outlier where perhaps the
subject did not pay due attention and provided an inaccurate
answer or perhaps this subject had a vested interest in traffic
noise. For example, they may have a commercial concern.

The following are four cases of different applications, which
demonstrated how to identify outliers, delete them, and quan-
tify the effect of their contribution to the results.

Figure 2. The percentage of the highly sleep-disturbed population (%HSD)
as a function of LAeq.22-07 in response to road traffic noise. The solid line
and the data points in the LAeq.22-07 range and 49 to 73 dBA represent the
CENVR results. The dashed line represents the European research result.7

The point X indicates an outlier.

3.1. Case Study 1: Hearing Protector Noise
Attenuation Measurements

Measuring the noise attenuation of hearing protector devices
(HPDs) using the REAT ”Real-ear Attenuation at Threshold”
method was based on subjective measurements, where each
subject determines their open (without HPD) and closed (with
HPD) threshold levels.8, 9 The subjective determination of
the threshold levels showed a high variation between the sub-
jects, even when they were qualified and familiarized with the
method used to determine these threshold levels, as required by
the relevant standard. Some subjects paid greater attention and
could determine their threshold with more accuracy than oth-
ers. Some subjects simply did not pay attention and answered
randomly depending on their mood and mental condition that
day. This paper shows a methodology to observe the statistical
distribution and quantify the contribution of each subject to the
final single number Noise Reduction Ratio (NRRsf).8, 9 Elim-
inating a few subjects (the outliers) increased the NRRsf and
reduced the variability of the measurements (from around ±4
to ±1). The results for the measurement of 20 different brands
of pre-molded earplugs were reported.

Hearing protector noise attenuation measurements were
taken according to ANSI 12.6-20088 and ISO 4869-5/4869-
1,9 where the hearing threshold of a number of subjects were
measured with and without the use of a hearing protector and
the difference gave the noise attenuation. Two fitting meth-
ods were considered in the standards: (i) supervised fitting
(method A as described in ANSI S12.6-2008 or ISO 4869-
1), and (ii) subject fitting (method B as described in ANSI
S12.6-2008 or ISO 4869-5). There was a high variability in
the results obtained for the same HPD in the same labora-
tory due to the hearing protector fitting, especially for earplugs
(compared with earmuffs). This measurement variability was
higher for inexperienced subjects (method B) than for trained
subjects (method A) and could reach ±3 dB8 or even a higher
value. According to ANSI S12.6-2008, it was necessary to ac-
quire data for at least twenty subjects for earplugs and ten sub-
jects for earmuffs. Some subjects did not pay due attention to
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specifying their thresholds. In some cases, a few subjects with
threshold levels that differed from the majority of the subjects
could considerably alter the final noise attenuation values (by
more than ±3 dB). That is, the Noise Reduction Ratio (NRR)
and NRRsf (calculated using one standard deviation). Consid-
ering the calculation method and the standard deviation for the
NRRsf values, the statistical interpretation of this value was
under the conditions observed with the use of at least 84% of
the user population; the attenuation was at least equivalent to
the NRRsf value. The ISO 4869-2 standard stated that a vari-
ation of less than ±3 dB was insignificant, but this was not
supported by detailed research studies and was considered in
most publications without the effect of the outlier subjects be-
ing investigated. This paper described how to identify these
outlier subjects, that is, those with very different results com-
pared with most of the subjects, and investigated the effect of
eliminating them on the final NRRsf value. In a real situation
in the field, most HPD users received training on each type of
device and they were aware of the risk of permanent hearing
loss if the HPD was not properly fitted and used throughout
all work shifts. Therefore, the presence of these outliers could
inhibit an evaluation of the real situation and it could be useful
to consider their elimination from the final results in order to
obtain a truly representative sample.

The Real-Ear Attenuation at Threshold (REAT) method was
the gold-standard method, which was most commonly used
and accepted worldwide for the measurement of hearing pro-
tector noise attenuation. This was a subjective measurement
where the subjects determine their own threshold levels (with
and without an HPD). The accuracy of this measurement was
strongly dependent on the subject’s perception of the sound
level at the ear and each subject had to concentrate to determine
their own threshold level. Considering that the subjects were
paid, earning between 10 to 50 USD for each test, there was
no guarantee that they had properly determined their thresh-
old level. Some subjects paid greater attention than others and
some may have had work experience and/or some education
that allowed them to provide better results. Therefore, for each
hearing protector brand measurement, especially for plug-type
devices (which were more difficult to fit than earmuffs), there
were sometimes a few subjects (generally not more than five)
who showed a low accuracy in determining their threshold lev-
els, which could result in large variations in the NRRsf value.
In this paper, the results that were obtained for 20 different pre-
molded earplug brands by using the subject fitting method (B)
of ANSI S12.6-2008 based on the evaluations of 20 subjects
were reported and analyzed.

In this section, the statistical distribution for each HPD
brand is determined and a method is shown to detect the out-
liers and observe the final results for the NRRsf after eliminat-
ing the small number of outliers.

3.2. Methodology
Twenty brands of earplugs were tested by using the boot-

strap statistical methodology. For each group of the ten sub-
jects (out of a total of 20 subjects), the NRRsf was calculated
and this procedure was repeated 100,000 times for each HPD
in order to plot the statistical distribution with high resolution.

As an example, the following table shows the results for 20
subjects for one brand of pre-molded earplugs and two mea-

Figure 3. The statistical distribution of NRRsf and the contribution of subjects
3 and 14.

surements (open and closed thresholds) being taken for each
subject. The noise attenuation results are shown in Table 1 for
the 20 subjects with two repetitions for each subject.

Tabel 1 in A1 shows the results for 20 subjects, with
two measurements each (open and closed thresholds) for an
earplug HPD. Figure 3 shows the results for the bootstrap sta-
tistical analysis, considering 10 subjects, with 100,000 repeti-
tions. The statistical distribution for the NRRsf shows a com-
plex distribution, with four peaks for a range of NRRsf values
of 11 to 20. In this case NRRsf=15 with a standard deviation
of 3 dB (right side of Table 1).

The Crystal Ball software was used to evaluate the sensitiv-
ity of the result with respect to each subject. Fig. 3 shows that
Subject 3 contributes 71.7% to the NRRsf value and Subject
14 contributes 14%.

On removing Subjects 3 and 14 and recalculating the statis-
tical distribution, a new distribution, which was very close to
Gaussian, was obtained, as shown in Fig. 4. Additionally, he
NRRsf value increased from 15 to 19 dB, while the standard
deviation decreased from ±3 to ±1 dB. This process could
then be repeated and in Fig. 4, it can be observed that there
was still a 27% contribution from Subject 16, 15% from Sub-
ject 10, and 13% from Subject 1. It was recommended that in
order to keep the results as representative as possible of a real
situation, a limited number of subjects were removed, where
very few users were not able to achieve a proper fitting of the
HPD. Therefore, in this study, the removal was limited to not
more than 30% of the effect on the NRRsf value.

In this study, Case 1 shows clearly that by observing the
statistical distribution, calculated for each group of 10 subjects
and repeated 100,000 times, it is possible to detect the extent to
which the results deviate from a Gaussian distribution. Crystal
Ball software was then used to identify the contribution of each
subject to the NRRsf. With the removal of only two subjects in
Case 1, the NRRsf increased from 15 to 19 dB and the standard
deviation decreased from 3 to 1 dB.

3.3. Case Study 2: Noise in the Vicinity of an
Airport

A study was carried out in a residential area near an airport.
Twenty subjects were interviewed and each was given 7 ques-
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Figure 4. Case 1 after removing the outliers (Subjects 3 and 14), which show
the NRRsf increased from 15 to 19 dB and the standard deviation decreased
from 3 to 1 dB.

tions as follows:

1. Considering approximately the past hour, how much did
aircraft noise as a whole bother, disturb, or annoy you?

Please give a rank between extremely annoying (0) and
not at all (10).

2. How much does aircraft noise disturb you while you are
watching TV?

Please give a rank between extremely disturbing (0) and
not at all (10).

3. How much does aircraft noise disturb you during conver-
sations with others?

Please give a rank between extremely disturbing (0) and
not at all (10).

4. How loud was the last aircraft sound?

Please give a rank between extremely loud (0) and not
loud at all (10).

5. How much does aircraft noise disturb you while you are
reading?

Please give a rank between extremely disturbing (0) and
not at all (10).

6. How much does aircraft noise disturb you while you are
sleeping?

Please give a rank between extremely disturbing (0) and
not at all (10).

7. Would you like to move away from the airport to avoid
aircraft noise and if so, how far would you like to be?

Please give a rank between I would like to be very near
to the airport (e.g. because it is cheaper) (0) or far away
(10).

These seven questions were given to 20 subjects, who were
chosen randomly at a residential area around an airport. The
obtained scores from their responses are shown in Table 2, A2.

Figure 5. The bootstrap statistical results.

Figure 6. Case 2 after removing the outliers.

Note that a low score for the responses means that the noise
was incredibly annoying to the subject.

Analysis carried out applying the bootstrap statistical tech-
nique using Crystal Ball software for the data shown in Table 2,
A2, provided the results given in Fig. 5. The mean value ob-
tained was 2.1 and the standard deviation was 0.5. Three peaks
were observed in the statistical distribution. Also, two subjects
(S21 and S13) were identified as having the largest contribu-
tions of 58.3% and 33.2%, respectively.

The two aforementioned subjects were removed and the
analysis applying the bootstrap statistical technique was re-
peated. For the new results without these two outliers the mean
value was 1.4 and the standard deviation was 0.1, while the
statistical distribution was very close to normal, as shown in
Fig. 6. Therefore, in this case, on identifying the outliers and
removing them, the mean decreased from 2.1 to 1.4 and the
standard deviation from 0.5 to 0.1.

Case 2 shows clearly that by observing the statistical distri-
bution, calculated for each group of 10 subjects out of a total of
20 subjects, with 100,000 repetitions, it was possible to detect
the normality of the results and the deviation from a Gaussian
distribution. The Crystal Ball software could then be used to
identify the contribution of each subject and detect two sub-
jects with a large contribution to the final results. By removing
these two outliers, the final results better represent the real sit-
uation (a high level of annoyance).
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Figure 7. The binary recording of the sound using NoiseBook.

3.4. Case Study 3: Product Sound Quality
Evaluation

Three different brands of hair dryers of 1100 watts each
were evaluated in terms of noise quality. Special sound qual-
ity equipment for recording and playback, called ”NoiseBook”
produced by HEAD Acoustics, was used to binaurally record
the noise and play it back to an evaluation jury (see Fig. 7).

The sound quality metrics parameters calculated were the
sound pressure levels in dB and dBA, the loudness and the
sharpness (see Fig. 8).

The results for the measurements shown in Fig. 8 indicate
that hairdryer A is probably the least noisy, followed by C, and
then B. The difference between B and C is very small and these
two hairdryers can thus be graded as similar.

A subjective evaluation was carried out by using a panel of
20 women. Each answered the following three questions:

1. After listening through the binaural headset to the sound
of each hairdryer (A, B and then C), please select a score
between 0 (low noise) to 10 (very noisy).

2. After listening through the binaural headset to the sound
of each hairdryer (A, B and then C), please select a score
between 0 (”I would like to purchase it”) to 10 (”I would
not like to purchase it”).

3. After listening through by the binaural headset to the
sound of each hairdryer (A, B and then C), please select

Figure 8. The sound quality parameters, dB, dBA, loudness, and sharpness
for the three tested hairdryers.

a score between 0 (very efficient dryer) to 10 (very ineffi-
cient dryer).

Table 3, A3, shows the scores obtained in the subjective
evaluations of 3 questions for dryer A, B, and C.

Figure 9 shows the results obtained from the bootstrap cal-
culation for the statistical distribution, mean and standard de-
viation and the contribution of outlier subjects in the case of
hairdryers A.

From the results shown in Fig. 9, it can be observed that after
removing the outliers, the mean score for the best hairdryer (A)
was 1.1 with a standard deviation of 0 (rounded). Hairdryers
B and C appeared to be similar with mean values of 1.2 and
1.5, respectively. Once again, in this example, the potential
of the bootstrap technique for the identification of outliers and
demonstrate their contribution to the final results was verified.

3.5. Case Study 4: Traffic Noise and Sleep
Disturbance

Noise was perceived by a specific auditory system in hu-
mans. Therefore, it was a phenomenon that was sensed and
evaluated by everybody and this was why exposure to noise
was one of the most common complaints, if not the most fre-
quent complaint, of people living in large cities. In these areas
and their surroundings, the most frequently cited sources of
noise were traffic, followed by neighborhood noise, and then
aircraft noise. Sleep is a physiological state that needs to be
properly achieved to allow a living organism to recuperate nor-
mally. This state is sensitive to environmental factors that can
interrupt it or reduce its duration. Ambient noise, for exam-
ple, is comprised of external stimuli that are processed by a
sleeping persons sensory functions, with a non-conscious per-
ception of their presence. Over the past 30 years, research into
environmental noise and sleep has focused on different situa-
tions and environments and therefore the findings are variable.
In this regard, some fundamental questions remain to be an-
swered regarding the perception of noise by communities liv-
ing near roads which receive heavy traffic. A large number
of subjective studies have been published in the literature, but
again subjective evaluations lead to large standard deviations
due to extreme responses by some subjects.

A high class residential area in the city of Florianopolis,
Santa Catarina State, in the south of Brazil was evaluated for
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Figure 9. The bootstrap statistical results for hairdryer A with outliers (the top
curve) and without outliers (the bottom curve).

sleep disturbances. This residential area has eight traffic lanes
and the residents mostly overlook a water front and a leisure
walking track and cycle lane. The high density of the traffic re-
sults in sleep disturbance within the community. Research was
carried out through interviews with community members who
answered a questionnaire with the following five questions:

1. Do you suffer sleep disturbance due to traffic noise?

Please give a rank between extremely difficult to sleep (0)
and easy to sleep (10).

2. Do you have trouble conversing at home because of traffic
noise?

Please give a rank between extremely difficult (0) and
easy to converse (10).

3. Do you have problems listening to TV programs at home
because of traffic noise?

Please give a rank between extremely difficult (0) and
easy to listen (10).

4. Do you experience problems doing homework or studying
because of traffic noise?

Figure 10. The bootstrap statistical results for traffic noise with outliers and
its contribution.

Figure 11. The bootstrap statistical results for traffic noise without the outliers

Please give a rank between extremely difficult (0) and
easy to study (10).

5. Do you have a problem relaxing and thinking because of
traffic noise?

Please give a rank between extremely difficult (0) and
easy to relax (10).

Table 4, in A4, shows the scores between zero and ten given
by twenty subjects. A low score means high traffic noise.

The data in Table 4 were fed into the bootstrap framework,
the mean values and standard deviations were calculated, and
the statistical distribution was observed. The results identified
the outliers and indicated their contribution. After removing
the outliers, the statistical distribution came very close to Gaus-
sian and the results were refined. Figure 10 shows the statisti-
cal distribution and the contribution of the outliers and Fig. 11
shows the statistical distribution after removing the outliers.

Once again, in this case applied to a high level of traffic
noise, it was possible to remove an outlier through the use of
the bootstrap statistical method and obtain better results.
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4. CONCLUSIONS

This paper demonstrates that with the use of the bootstrap
statistical method, it is possible to detect abnormalities in sub-
jective data and after removing outliers, the results show a nor-
mal statistical distribution with more accurate final estimates.
Four case studies have been presented: noise attenuation mea-
surements for a pre-molded earplug hearing protector, the an-
noyance of noise from an airport as perceived by the com-
munity in a neighboring residential area, an evaluation of the
sound quality of hairdryers, and sleep disturbance due to traf-
fic noise. This methodology can be used in many other cases
involving the analysis of subjective sound perception.
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APPENDIX 1

Table 1. Noise attenuation results for 20 subjects, with two measurements
each (open and closed thresholds) for an earplug HPD.

Hearing Protector Noise attenuation (dB)

Subject 125 250 500 1000 2000 4000 8000

1
19.17

14.50

17.00

18.67

21.00

21.33

22.67

22.50

27.83

27.83

19.00

19.33

28.83

39.17

2
19.67

17.00

20.00

19.83

21.00

23.67

19.33

20.17

29.50

30.50

26.50

21.67

47.67

35.83

3
-0.83

5.83

3.67

2.00

2.50

6.67

6.50

5.17

5.50

6.17

12.50

12.00

6.50

1.67

4
11.83

20.67

24.00

23.33

24.83

28.17

19.00

23.50

26.33

26.33

28.33

33.33

40.83

44.33

5
16.67

16.00

17.33

18.00

16.67

22.67

16.83

24.50

28.67

23.67

34.50

26.83

40.17

37.17

6
27.17

30.17

28.33

30.67

32.83

35.00

29.50

31.50

30.50

29.50

21.67

38.83

41.17

38.50

7
21.83

29.17

22.00

31.67

16.67

35.67

22.00

26.00

27.33

28.83

23.33

34.50

26.67

46.17

8
23.17

24.50

24.67

28.17

25.83

31.17

24.00

26.17

31.00

34.33

21.17

19.83

38.67

41.5

9
22.00

26.67

25.17

21.33

30.33

29.33

29.67

28.67

26.67

28.67

31.00

29.67

42.00

41.33

10
18.00

16.83

22.83

18.50

24.83

19.17

22.17

21.33

24.00

24.33

23.17

16.33

40.33

27.00

11
13.83

22.50

14.67

25.67

10.83

28.00

15.17

24.67

25.00

38.50

23.17

30.00

32.67

50.83

12
18.83

20.17

26.83

25.33

28.67

29.00

27.00

27.33

25.50

26.00

26.50

28.67

50.33

46.67

13
17.67

5.50

18.55

4.83

23.33

10.17

22.55

13.55

30.17

28.33

25.50

20.50

31.00

29.00

14
1.83

11.67

8.67

19.50

15.83

17.83

15.83

2.67

19.17

11.17

14.83

7.83

31.33

31.33

15
25.83

29.67

24.00

27.83

25.17

27.83

23.83

24.00

32.00

31.83

38.83

31.17

38.17

40.17

16
21.17

17.67

15.33

18.00

21.00

21.00

20.50

21.67

27.00

23.33

16.33

22.67

24.83

21.50

17
30.50

28.50

25.83

27.33

30.67

30.17

25.00

27.00

28.83

32.33

32.83

29.17

47.17

45.83

18
24.00

14.50

29.83

17.67

34.50

17.83

24.67

21.00

24.00

24.17

34.17

30.83

46.33

46.17

19
20.17

24.00

20.33

24.67

26.33

29.00

21.17

21.83

23.17

28.00

26.50

44.33

45.00

51.17

20
20.67

15.67

22.83

21.00

32.00

22.17

26.50

21.17

29.50

22.50

33.00

28.33

49.33

36.17
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APPENDIX 2

Table 2. Scores for the responses of 20 subjects to the 7 questions.

Questions 1 2 3 4 5 6 7

Subject 1 1.0 3.0 5.0 2.0 4.0 3.0 7.0

Subject 2 3.0 5.0 2.0 1.0 3.0 2.0 2.0

Subject 3 1.0 2.0 4.0 5.0 3.0 6.0 2.0

Subject 4 3.0 2.0 1.0 5.0 2.0 5.0 1.0

Subject 5 3.0 4.0 5.0 5.0 2.0 3.0 1.0

Subject 6 1.0 4.0 5.0 3.0 2.0 3.0 1.0

Subject 7 2.0 3.0 5.0 4.0 5.0 4.0 5.0

Subject 8 9.0 8.0 9.0 7.0 9.0 9.0 10.0

Subject 9 3.0 3.0 4.0 5.0 4.0 6.0 3.0

Subject 10 2.0 2.0 4.0 3.0 6.0 4.0 5.0

Subject 11 3.0 4.0 5.0 1.0 2.0 3.0 3.0

Subject 12 1.0 1.0 3.0 2.0 4.0 3.0 5.0

Subject 13 2.0 5.0 3.0 1.0 4.0 6.0 2.0

Subject 14 1.0 4.0 5.0 6.0 2.0 3.0 3.0

Subject 15 2.0 3.0 5.0 3.0 4.0 5.0 2.0

Subject 16 10.0 9.0 9.0 8.0 10.0 10.0 1.0

Subject 17 6.0 5.0 4.0 3.0 2.0 1.0 3.0

Subject 18 2.0 2.0 3.0 3.0 4.0 4.0 5.0

Subject 19 2.0 3.0 2.0 3.0 2.0 4.0 5.0

Subject 20 1.0 3.0 2.0 4.0 5.0 2.0 1.0

APPENDIX 3

Table 3. Appendix C, shows the scores obtained in the subjective evaluations
of 3 questions for dryer A, B and C.

QA1 QA2 QA3 QB1 QB2 QB3 QC1 QC2 QC3

Subject 1 1.0 2.0 3.0 3.0 4.0 3.0 1.0 0.0 3.0

Subject 2 10.0 9.0 9.0 2.0 3.0 1.0 2.0 3.0 1.0

Subject 3 1.0 2.0 3.0 3.0 2.0 1.0 3.0 2.0 1.0

Subject 4 3.0 2.0 1.0 10.0 9.0 10.0 4.0 1.0 2.0

Subject 5 3.0 4.0 5.0 1.0 1.0 3.0 10.0 9.0 9.0

Subject 6 1.0 4.0 5.0 1.0 3.0 2.0 2.0 1.0 2.0

Subject 7 2.0 3.0 1.0 2.0 0.0 1.0 1.0 0.0 1.0

Subject 8 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0

Subject 9 3.0 3.0 1.0 3.0 0.0 1.0 2.0 0.0 1.0

Subject 10 2.0 2.0 4.0 2.0 1.0 4.0 3.0 1.0 4.0

Subject 11 3.0 4.0 0.0 3.0 1.0 0.0 4.0 1.0 0.0

Subject 12 1.0 1.0 3.0 1.0 0.0 3.0 0.0 0.0 3.0

Subject 13 2.0 0.0 3.0 2.0 0.0 3.0 2.0 0.0 3.0

Subject 14 1.0 4.0 0.0 1.0 3.0 0.0 1.0 2.0 0.0

Subject 15 2.0 3.0 1.0 2.0 0.0 1.0 1.0 0.0 1.0

Subject 16 1.0 2.0 1.0 1.0 2.0 1.0 0.0 2.0 1.0

Subject 17 2.0 3.0 1.0 2.0 4.0 1.0 10.0 9.0 10.0

Subject 18 2.0 2.0 3.0 9.0 8.0 10.0 0.0 2.0 1.0

Subject 19 2.0 3.0 0.0 2.0 3.0 0.0 1.0 3.0 0.0

Subject 20 2.0 2.0 3.0 2.0 0.0 3.0 3.0 0.0 3.0

APPENDIX 4

Table 4. Appendix C, shows the scores obtained in the subjective evaluations
of 3 questions for dryer A, B and C.

Questions 1 2 3 4 5

Subject 1 1.0 2.0 3.0 2.0 0.0

Subject 2 10.0 9.0 9.0 10.0 9.0

Subject 3 1.0 2.0 3.0 4.0 1.0

Subject 4 3.0 2.0 1.0 1.0 0.0

Subject 5 3.0 4.0 0.0 2.0 3.0

Subject 6 1.0 4.0 1.0 5.0 1.0

Subject 7 2.0 0.0 1.0 4.0 4.0

Subject 8 1.0 2.0 3.0 3.0 1.0

Subject 9 3.0 3.0 1.0 2.0 5.0

Subject 10 2.0 2.0 4.0 1.0 2.0

Subject 11 3.0 4.0 0.0 2.0 2.0

Subject 12 1.0 1.0 3.0 2.0 3.0

Subject 13 2.0 1.0 1.0 0.0 0.0

Subject 14 1.0 4.0 0.0 1.0 4.0

Subject 15 2.0 3.0 1.0 4.0 2.0

Subject 16 1.0 2.0 1.0 5.0 1.0

Subject 17 2.0 3.0 1.0 5.0 3.0

Subject 18 2.0 2.0 3.0 3.0 5.0

Subject 19 2.0 3.0 0.0 2.0 0.0

Subject 20 2.0 2.0 3.0 5.0 0.0
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Many acoustic and electromagnetic wave scattering problems can be formulated as the Helmholtz equation. Stan-
dard finite and boundary element method solution of these problems becomes expensive, as the frequency of
incident wave increases. On going research has been devoted to finding methods that do not loose robustness when
the wave number increases. Recently, Chandler-Wilde et al. have proposed a novel Galerkin boundary element
method to solve the problem of acoustic scattering by a convex polygon with impedance boundary conditions.
They applied approximation spaces consisting of piecewise polynomials supported on a graded mesh with smaller
elements adjacent to the corners of the polygon and multiplied by plane wave basis functions. They demonstrated
via rigorous error analysis that was supported by numerical experiments that the number of degrees of freedom
required to achieve a prescribed level of accuracy need only grow logarithmically as frequency increases. In this
paper, we discuss issues related to detail implementation of their numerical method.

1. INTRODUCTION

We consider the two-dimensional problem of scattering of a
time-harmonic acoustic incident plane wave:

ui(x) = eikx·d, in D := R2\Ω̄; (1)

by a convex polygon Ω, with impedance boundary Γ. Here
x = (x1, x2) ∈ R2, d = (sin θ,− cos θ) ∈ R2 is a unit
vector representing the direction of the incident field, θ is the
incidence angle, and the frequency of the incident wave is
proportional to the wavenumber k > 0. The scattered field
us := ut − ui ∈ C2(D̄) (where ut and ui denote the total and
incident field respectively) satisfies the Helmholtz equation:

∆us + k2us = 0, in D. (2)

We shall consider the impedance boundary condition here:

∂ut

∂n
+ ikβut = 0, on Γ; (3)

(where n = (n1, n2) denotes the outward unit normal vector
to Γ, as depicted in Fig. 1 and β ∈ L∞(Γ) and Reβ > 0

is relative surface admittance), and is supplemented with the
Sommerfeld radiation condition:

lim
r→∞

r
1
2

(
∂us

∂r
− ikus

)
= 0; (4)

where r := |x| and the limit holds uniformly in x/|x|. The
Sommerfeld radiation condition is essential to scattering prob-
lems because it ensures that the scattered field is not reflected
back from infinity.

As k increases, the incident field oscillates more rapidly, and
so the complexity of the solution of Eq.(2) increases. As a re-
sult, the computational cost of standard schemes, such as the

finite element or boundary element methods will grow in di-
rect proportion to k, leading to large computing times for large
k. It has been shown that in order to accurately model a wave,
a fixed number of degrees of freedom M are needed per wave-
length, with a rule of thumb in the engineering literature of 6 to
10 degrees of freedom per wavelength needed to maintain ac-
curacy.1, 2 The price to pay for fixing M is that the number of
degrees of freedom will be proportional to (kL)d−1 in case of
boundary element methods, where L is the linear dimension of
the scattering obstacle and d = 2 or 3 is the dimension of the
problem. Thus, as either k or the size of the scatterer grows,
so does the number of degrees of freedom (at least O(k)) in
two-dimensional, hence the computational cost of numerical
schemes increases. The previous and the current development
on this active field of scattering problems is outlined explicitly
at length in.3

For this paper we begin in Section 2 by discussing the
boundary integral method we are going to apply. We de-
scribe the approximation space for the problem in Section 3.
We proceed in Section 4 by presenting the implementation of
our Galerkin scheme. We present formulas for the Galerkin
scheme and describe how to evaluate oscillatory and non os-
cillatory integrals. In Section 5, we discuss how to solve non-
overlapping integrals, a detail explanation of Gaussian quadra-
ture rule is also explained in this section. In Section 6 we
choose an example for our numerical experiment and present
some results, whereas most of them can be found in.4, 5 We dis-
cuss our conclusion and some recommendations in Section 7.

2. BOUNDARY INTEGRAL EQUATION
METHOD

The boundary value problem Eqs. (2) - (4) can be reformu-
lated into boundary integral equation by applying Green’s rep-
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Figure 1. Scattering by an impedance convex polygon.

resentation theorems [7.12 and 9.6]6 and Green’s second theo-
rem [theorem 4.4],6 (see also4 for details), which leads to stan-
dard boundary integral equation for unknown ut:

ut(x)−2

∫
Γ

(
∂Φ
′
(x,y)

∂n(y)
+ikβ(y)Φ

′
(x,y)

)
ut(y)ds(y) =

2f(x), x ∈ Γ; (5)

where Φ
′
(x,y) := i

4H
(1)
0 (k|x−y|), (H(1)

0 is the Hankel func-
tion of first kind of order zero) and f(x) = ui(x). The integral
Eq. (5) suffers from so-called spurious eigenfrequencies; that
is, it is not uniquely solvable for all wavenumbers.7, 8 However,
this problem is often ignored in the literature.7 Various options
exist to overcome this difficulty.4

We begin by defining some notations, see Fig. 1. We write
the boundary of the polygon as Γ = ∪nsj=1Γj , where Γj , j =

1, . . . , ns are the nths sides of the polygon, ordered so that Γj ,
j = 1, . . . , nsh, are in shadow, and Γj , j = nsh + 1, . . . , ns
are illuminated, with j increasing anticlockwise, as shown in
Fig. 1.

We denote the corners of the polygon by Vj , j = 1, . . . , ns,
and set Vns+1 = V1, so that for j = 1, . . . , ns, Γj is the
line joining Vj with Vj+1. We denote the length of Γj by
Lj = |Vj+1 − Vj |, the external angle at each vertex Vj by
Ωj ∈ (π, 2π), the unit normal vector to Γj by nj , and the
angle of the incident plane wave, as measured anticlockwise
from the downward vertical, by θ ∈ [0, 2π). We represent
x ∈ Γ parametrically by:

x(s) = Vj +

(
s−

j−1∑
n=1

Lns

)(
Vj+1 − Vj

Lj

)
;

for s ∈

(
j−1∑
n=1

Lns ,

j∑
n=1

Ln

)
, j = 1, . . . , ns. (6)

Define

x(s) = (x1(s), x2(s)) = {(els+ gl), (fls+ hl)};
x(t) = (x1(t), x2(t)) = {(ejt+ gj), (fjt+ hj)}; (7)

where

ej :=
uj+1 − uj

Lj
,

fj :=
vj+1 − vj

Lj
,

gj := uj − ej
j−1∑
n=1

Ln,

hj := vj − fj
j−1∑
n=1

Lns ; (8)

here point s is in element l and point t is in element j. We can
write Eq. (5) in parametric form as:

φ(s)− 2

∫ L

0

K(s, t)φ(t)dt = 2f(s); (9)

where φ(s) = ut(x(s)), L =
∑j
n=1 Lns ,

K(s, t) :=

(
∂Φ
′
(x(s),x(t))

∂n(x(t))
+ ikβ(x(t))Φ

′
(x(s),x(t))

)
;

(10)

and Φ
′
(x(s),x(t)) := i

4H
(1)
0 (k|x(s)− x(t)|) = i

4H
(1)
0 (kR),

here

R =√
[(els+ gl)− (ejt+ gj)]2 + [(fls+ hl)− (gjt+ hj)]2;

(11)

and finally

f(s) = ui(s) = eik(x1(s) sin θ−x2(s) cos θ) =

eik((els+gl) sin θ−(fls+hl) cos θ). (12)

We know that (n1j , n2j).(el, fl) = 0, which implies n1jel +

n2jfl = 0, which implies n1j = fl, n2j = −el or n1j =

−fl, n2j = el (depending on whether the unit normal is in-

ward or outward). Using the fact that ∂H
(1)
0 (z)
∂z = −H(1)

1 (z),
and also that ∂

∂n = n · ∇, we can now evaluate the explicit
formula for:

∂Φ
′
(x(s),x(t))

∂n(x(t))
=

n1l
∂Φ
′
(x(s),x(t))

∂x1(t)
+ n2l

∂Φ
′
(x(s),x(t))

∂x2(t)
=

− ik

4

H
(1)
1 (kR)

R
[fj(x1(t)− x1(s))− ej(x2(t)− x2(s))] =

− ik

4

H
(1)
1 (kR)

R

· [(ejfl − fjel)s+ fj(gj − gl) + ej(hl − hj)] . (13)
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Therefore,

K(s, t) =

− k

4

{
i
H

(1)
1 (kR)

R

[(ejfl − fjel)s+ fj(gj − gl) + ej(hl − hj)]

+ βH
(1)
0 (kR)

}
. (14)

We know that on each side of the polygon ut = ui + ur + ud,

where ur is the field that would be reflected by a side Γj , if
that side was infinitely long, and ud represents in some sense
the waves diffracted by the corners of the polygon .9 For
a straight line polygon, we know ur explicitly, and particu-
larly for a straight line polygon with an impedance bound-
ary condition, ur(x) = Rβ(θ

′
)eikx·d

′

,10 where Rβ(θ
′
) is

the reflection coefficient that is given by a reflective angle,

Rβ(θ
′
) = ( cos θ

′
−β

cos θ′+β
), θ

′
which depends on θ and Γj and

d
′

= (sin θ, cos θ). Since ur is a function of the incident an-
gle, it is only featured on the illuminated side and it is zero on
the shadow side of the polygon. We define our leading order
behavior:

Ψ(s) :=

{
ui(s) + ur(s), in illuminated region,

0, in shadow region,

=

{
2 cos θ

′

cos θ′+β
ui(s), in illuminated region,

0, in shadow region,
(15)

and Φ(s) := ud(s) is viewed as the diffracted wave due to the
corner of the polygon. Therefore, subtracting the leading order
behavior gives:

Φ(s) := φ(s)−Ψ(s). (16)

Substituting Eq. (16) into Eq. (9), we obtain a new second kind
boundary integral equation with unknown Φ(s):

(I −K)Φ(s) = F (s); (17)

whereKv(s) := 2
∫ L

0
K(s, t)v(t) dt, F (s) := 2f(s)−Ψ(s)+

2
∫ L

0
K(s, t)Ψ(t) dt, and I is the identity operator.

3. APPROXIMATION SPACE

We begin by defining a general mesh grading on [0, Lj ],

which is composed of a polynomial grading on [0, λ] and a
geometric grading on [λ, Lj ], where Lj is the length of the jth

side, j = 1 . . . , ns (recalling that ns is the number of sides of
a polygon) λ = 2π/k is the wavelength. We now define our
mesh as follows: for Lj > λ > 0, qj > 0, N = 2, 3, . . .,
where qj = 2ν+3

2π/Ωj+1 and ν is degree of a polynomial. The
mesh
ΛN,Lj ,λ,qj := {y0, . . . , yN+NLj,λ,qj

} consists of the points:

yi = λ

(
i

N

)qj
, i = 0, . . . , N ; (18)

yN+j := λ

(
Lj
λ

)j/NLj,λ,qj
, j = 1, . . . , NLj ,λ,qj . (19)

Where NLj ,λ,qj = dN̂Lj ,λ,qje,

N̂Lj ,λ,qj =
− log(Lj/λ)

qj log(1− 1/N)
. (20)

Here, dze denotes the smallest integer greater than or equal to
z, for z ∈ R. Specifically, NLj ,λ,qj is the smallest positive
integer greater or equal to Eq. (20).

The mesh we propose is that away from the corner (between
[λ, Lj ]) the mesh is chosen such that it is independent of qj ,
while near a corner (between [0, λ]) the mesh is chosen such
that it is independent of Lj . It is reasonable to choose the mesh
such that for a fixed N1:

N = O(N1qj), between [0, λ]). (21)

We now take N , greater or equal to ĉN1qj , and use Eq. (20)
to compute NLj ,λ,qj , where here ĉ is an arbitrary constant. We
now define the two meshes:

Xj := L̃j−1 + ΛN,Lj ,λ,qj , Yj := L̃j − ΛN,Lj ,λ,qj+1
.

(22)

This choice of qj ensures that the approximation error is evenly
spread on each mesh interval. Letting e±(s) := e±iks, s ∈
[0, Lj ], we then define the approximation spaces associated
with each mesh as:

AXj ,ν := {σe+ : σ ∈ ΠXj ,ν},
AYj ,ν := {σe− : σ ∈ ΠYj ,ν}; (23)

for j = 1, . . . , ns, where

ΠXj ,ν := {σ ∈ L2(0, Lns) : σ|(L̃j−1+xm−1,L̃j−1+xm)

is a polynomial of degree ≤ ν,
for m = 1, . . . , N +NLj ,λ,qj ,

and σ|(0,L̃j−1)∪(L̃j ,L) = 0},

ΠYj ,ν := {σ ∈ L2(0, Lns) : σ|(L̃j−ym,L̃j−ym−1)

is a polynomial of degree ≤ ν,
for m = 1, . . . , N +NLj ,λ,qj+1

,

and σ|(0,L̃j−1)∪(L̃j ,L) = 0}; (24)

where {x0, . . . , xN+NLj,λ,qj
} and {y0, . . . , yN+NLj,λ,qj+1

}
denote the points of the meshes ΛN,Lj ,λ,qj and ΛN,Lj ,λ,qj+1

respectively. Our approximation space AN,ν is then the linear
span of ⋃

j=1,...,ns

{AXj ,ν ∪AYj ,ν}. (25)

The number of the degrees of freedom for this problem will be:

DN = 2(ν + 1)

ns∑
j=1

(N +NLj ,λ,qj ); (26)

where the number 2 on the left hand side is due to the fact
that we have two meshes Eq. (22), N is the number of points
between [0, λ] and NLj ,λ,qj is the number of points between
[λ, Lj ]. For our Galerkin Scheme in this paper, we take ν = 0.
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Equation (17) is the one we are going to solve for the un-
known Φ(s) by the Galerkin boundary element method. As
our starting point we seek:

Φ(s) ≈ ΦN (s) :=

DN∑
m=1

vmηm(s); (27)

where vm is the unknown coefficient, ηm are the basis func-
tions, and DN is the total number of basis functions. For
j = 1, . . . , ns, we define n+

j and n−j to be the number of points
of the two meshes Xj and Yj respectively, so

n+
j := N +NLj ,λ,qj , n−j := N +NLj ,λ,qj+1 . (28)

We denote the number of points of Xj and Yj by s+
j,l and s−j,l

respectively, for j = 1, . . . , ns, l = 1, . . . , n±j . We denote the
total number of elements supported on ∪ji=1Γi by

DN,j :=

j∑
i=1

(n+
i + n−i ); (29)

so that the total number of degrees of freedom is DN = DN,j ,
that is,

DN :=

n∑
j=1

(n+
j + n−j ). (30)

Then, for j = 1, . . . , n, the basis functions are given by

ηDN,j−1+j(s) :=
eiks√

s+
j,l − s

+
j,l−1

χ[s+j,l−1,s
+
j,l)

(s),

j = 1, . . . , n+
j ,

ηDN,j−1+n+
j +l(s) :=

e−iks√
s−j,l − s

−
j,l−1

χ[s−j,l−1,s
−
j,l)

(s),

j = 1, . . . , n−j ; (31)

where χ[zm,zm+1) denotes the characteristic function of the in-
terval [zm, zm+1) (zi, i = 0, ..., DN , are the points of each
mesh).

4. GALERKIN SCHEME

Substituting Eq. (27) into Eq. (17) and multiplying by a test
function η̄l(s) and then integrating over [0, L], gives the fol-
lowing Garlekin scheme (which is a system of linear equa-
tions):

DN∑
m=1

[(ηm, ηl)− (Kηm, ηl)] vm = (F, ηl). (32)

Now we have to figure out how to compute (ηm, ηl), (Kηm, ηl)
and (F, ηl). To evaluate these matrices, we follow a simi-
lar procedure to that in Langdon and Chandler-Wilde,11 where
most of the formulas are similar. When evaluating the above
integrals, we encountered difficulties of dealing with singular-
ities and oscillatory integrals at high frequencies. For the spe-
cific problem we are going to discuss here, we encounter the
singularities when the basis functions are supported on differ-
ent side of polygon. When they are supported on the same side

of the polygon, there is hardly any singularity. As such, most
of integrals can be evaluated analytically. Ideas dealing with
oscillatory integrals is on going research.12, 13 For our problem
here, we address the oscillatory integrals by applying standard
Gaussian quadrature rule, see Section 5 for detail.

4.1. Evaluation of (ηm, ηl)
The mass matrix will appear in the following form:

(ηm, ηl) =

∫
supp(ηm)∩supp(ηl)

e(δm−δl)iks√
(zm+1 − zm)(zl+1 − zl)

ds.

(33)
This can be evaluated analytically. Here, δm = ±1. Notice
that, if ηm and ηl are supported on different sides of the poly-
gon, there is no overlap. Hence (ηm, ηl) = 0. If ηm and ηl are
supported on the same side of the polygon and δm = δl, then
there will be total overlap, this forms the diagonal of the whole
matrix (ηm, ηl) and in this case (ηm, ηl) = 1. If ηm and ηl are
supported on the same side of the polygon and δm 6= δl, then
there will be some overlaps and non-overlaps. In this case, we
integrate between the overlapping intervals. If we define the
lower and the upper integrating limits respectively as

Lw = min(zl+1, zm+1) and Up = max(zl, zm); (34)

then

(ηm, ηl) =

∫ Up

Lw

ηm(s)η̄l(s)ds =

e−2ikUp − e−2ikLw

−2ik
√

(zm+1 − zm)(zl+1 − zl)
,

if δm = −1 and δl = 1; (35)

similarly,

(ηm, ηl) =

∫ Up

Lw

ηm(s)η̄l(s)ds =

e−2ikUp − e−2ikLw

2ik
√

(zm+1 − zm)(zl+1 − zl)
,

if δm = 1 and δl = −1. (36)

4.2. Evaluation of (Kηm, ηl)
Evaluating this integral is a challenge because it envolves

double integrals. It will appear in the following form:

(Kηm, ηl) = 2

∫
supp(ηl)

∫
supp(ηm)

K(s, t)ηm(t)η̄l(s)dt ds.

(37)
If we first consider the case where ηm and ηl are supported on
the same side of the polygon, then we see immediately from
Eq. (14) that el = ej , fl = fj , gl = gj , and hl = hj , hence the
term H

(1)
1 vanishes and Eq. (14) becomes:

K(s, t) = −k
4
βH

(1)
0 (k|s− t|). (38)

We know from [(12.31)]14 that

H
(1)
0 (s) =

−2i

π

∫ ∞
0

e(i−t)s

t
1
2 (t− 2i)

1
2

dt, s > 0; (39)
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so

(Kηm, ηl) = −kβ
2

∫ zl+1

zl

∫ zm+1

zm

H1
0 (k|s− t|)

· eik(δmt−δls)√
(zl+1 − zl)(zm+1 − zm)

dt ds =

ikβ

π
√

(zl+1 − zl)(zm+1 − zm)

∫ ∞
0

J(r)

r
1
2 (r − 2i)

1
2

dr; (40)

where

J(r) =

∫ zl+1

zl

∫ zm+1

zm

e−rk|s−t|+ik(|s−t|+δmt−δls)dt ds.

(41)

We explore further on how to evaluate Eq. (41), depending
on how [zl, zl+1] and [zm, zm+1] overlap. In the case where
[zl, zl+1] and [zm, zm+1] do not overlap, then:

J(r) =

[
ek(i(−δl−1)+r)zl+1 − ek(i(−δl−1)+r)zl

k(i(−δl − 1) + r)

]
·
[

ek(i(δm+1)−r)zm+1 − ek(i(δm+1)−r)zm

k(i(δm + 1)− r)

]
; (42)

or

J(r) =

[
ek(i(δl+1)−r)zl+1 − ek(i(δl+1)−r)zl

k(i(δl + 1)− r)

]
·
[

ek(i(δm−1)+r)zm+1 − ek(i(δm−1)+r)zm+1

k(i(δm − 1) + r)

]
. (43)

In the case where [zl, zl+1] and [zm, zm+1] overlap, then
Eq. (41) is split further into three integrals:

J(r) =

∫ zm

zl

∫ zl+1

zm

e−rk(t−s)+ik((t−s)+δmt−δls)dt ds

+

∫ zl+1

zm

∫ zl+1

zm

e−rk|s−t|+ik((|s−t|)+δmt−δls)dt ds

+

∫ zl+1

zl

∫ zm+1

zl+1

e−rk(t−s)+ik((t−s)+δmt−δls) dt ds.

(44)

Computing the first and third integral in Eq. (44) is a straight-
forward procedure and we can obtain similar formula as those
of Eq. (42) or Eq. (43). The second integral of Eq. (44), is a
total overlap of δm and δl (call it Ja(r)). Applying exponen-
tial power series to this integral leads to Eq. (45) (see top of
the next page).

Now we are going to show how to evaluate the integral term:∫ ∞
0

J(r)

r
1
2 (r − 2i)

1
2

dr. (46)

This appears in Eq. (40). The term in the integral is singu-
lar when r = 0. In order to remove this singularity, we first
change the variables. Let r = s2

1−s2 then dr
ds = 2s

(1−s2)2 , when
r = 0 implies s = 0 and r =∞ implies s = 1.∫ ∞

0

J(r)

r
1
2 (r − 2i)

1
2

dr =

∫ 1

0

J( s2

1−s2 )

( s2

1−s2 )1/2( s2

1−s2 − 2i)1/2

2s

(1− s2)2
ds. (47)

Equation (47) appears to be singular at s = 1 or s = 0, but
in fact it is not, since the function J(r) in the numerator com-
posed of exponential functions. Thus, it tends to zero faster
then the denominator, as s → 1 or s → 0. We use a standard
Gaussian quadrature rule to integrate Eq. (47).

Finally, when ηm and ηl are supported on different sides
of the polygon (Kηm, ηl), they can only be evaluated numeri-
cally, since now K(s, t) cannot be simplified further, which is
why we have to use a standard Gaussian quadrature rule.

4.3. Evaluation of (F, ηl)

We shall now evaluate integrals of the form:

(F, ηl) =

1√
zl+1 − zl


∫ zl+1

zl

[2f(s)−Ψ(s)]e−ikδlsds︸ ︷︷ ︸
I1

− 2

∫ zl+1

zl

∫ L

0

K(s, t)Ψ(t)dt e−ikδls ds︸ ︷︷ ︸
I2

 . (48)

Integral I1 and some of I2 can be evaluated analytically while
some of I2 must be computed numerically. When δl is sup-
ported on Γl, we need to consider two cases:
Case1 : If l ≤ nsh then Γl lies in the shadow region and
Ψ(s) = 0, hence I2 = 0. Thus,

I1 =

∫ zl+1

zl

2f(s)e−ikδls ds =

2eik(gl sin θ−hl cos θ)

·
(

eik(el sin θ−fl cos θ−δl)zl+1 − eik(el sin θ−fl cos θ−δl)zl

ik(el sin θ − fl cos θ − δl)

)
.

(49)

Case2 : If l > nsh, then Γl lies in the illuminated region, thus
recalling Eqs. (12) and (15), we have:

I1 =

∫ zl+1

zl

[2f(s)−Ψ(s)]e−ikδls ds =∫ zl+1

zl

2β

cos θ′ + β
ui(s)e−ikδls ds =

2βeik(gl sin θ−hl cos θ)

cos θ′ + β

·
(

eik(el sin θ−fl cos θ−δl)zl+1 − eik(el sin θ−fl cos θ−δl)zl

ik(el sin θ − fl cos θ − δl)

)
.

(50)
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Ja(r) =



e−kr(zl+1−zm)+kr(zl+1−zm)−1
k2r2 + e−k(r−2i)(zl+1−zm)+k(r−2i)(zl+1−zm)−1

k2(r−2i)2 , if δl = δm,

e2ikzl+1

k(r−2i)

[
2

(
e−kr(zl+1−zm)−1

kr

)
− i

(
1−e−2ik(zl+1−zm)

k

)]
, if δm = 1, δl = −1,

e2ikzm

k(r−2i)

[
2

(
e−kr(zl+1−zm)−1

kr

)
− i

(
1−e−2ik(zl+1−zm)

k

)]
, if δm = −1, δl = 1.

(45)

I2 = 2

∫ zl+1

zl

[ ∫ L

∑nsh
m=1 Lm

K(s, t)Ψ(t) dt

]
e−ikδls ds =

2

ns∑
m=nsh+1

∫ ∑m
p=1 Lp∑m−1
p=1 Lp

[ ∫ zl+1

zl

K(s, t)e−ikδls ds

]
Ψ(t) dt =

4 cos θ
′

cos θ′ + β

·
ns∑

m=nsh+1

∫ ∑m
p=1 Lp∑m−1
p=1 Lp

[ ∫ zl+1

zl

K(s, t)e−ikδls ds

]
ui(t) dt =[

4 cos θ
′

cos θ′ + β

ns∑
m=nsh+1

eik(gm sin θ−hm cos θ)

]

·

[∫ ∑m
p=1 Lp∑m−1
p=1 Lp

∫ zl+1

zl

K(s, t)

·eik((em sin θ−fm cos θ)t−δls) dt ds
]

=

4 cos θ
′

cos θ′ + β

n∑
m=nshad+1

eik(gm sin θ−hm cos θ)I2l,m. (51)

We now evaluate I2l,m when s and t are supported on the same
side of the polygon. Recalling Eq. (38),

I2l,m =∫ ∑m
p=1 Lp∑m−1
p=1 Lp

∫ zl+1

zl

K(s, t)eik((em sin θ−fm cos θ)t−δls) dt ds =

−kβ
4

∫ ∑m
p=1 Lp∑m−1
p=1 Lp

∫ zl+1

zl

H
(1)
0 (k|s− t|)

· eik((em sin θ−fm cos θ)t−δls) dt ds =

ikβ

2π

∫ ∞
0

I∗(r)

r1/2(r − 2i)1/2
dr; (52)

where

I∗(r) =

∫ zm+1

zm

∫ zl+1

zl

e(i−r)k|s−t|+ik(δmt−δls) dt ds; (53)

where zm =
∑m−1
p=1 Lp, zm+1 =

∑m
p=1 Lp, δm = em sin θ −

fm cos θ. Evaluating Eq. (53) (with a little more effort) leads
to Eq. (54) (see top of the next page).

Finally, when s and t are on different side of polygon, we
again use the standard Gaussian quadrature rule.

Figure 2. The integrating rectangle.

5. NUMERICAL EVALUATION OF
NON-OVERLAPPING INTEGRALS

To evaluate non-overlapping integrals, we first divide the big
rectangle [tm, tm+1]×[tj , tj+1] into equally spaced small rect-
angles with each of sides Hs ×Ht, as shown in Fig.2.

In Fig.2, Ms are nodes length between [tm, tm+1] in the di-
rection s and Mt are nodes length between [tj , tj+1] in the
direction t. Now define

Hs :=
tm+1 − tm

Ms
, Ht :=

tj+1 − tj
Mt

. (55)

To deal with the oscillatory nature of integrand, we chose
Ms ∝ k and Mt ∝ k. More specifically, we chose Ht ∼ 1/k

and Hs ∼ 1/k, then used the two-dimensional Gaussian
quadrature rule to approximate each integral on each small
rectangle as follows:

∫ tm+1

tm

∫ tj+1

tj

K(s, t)eik(σjt−σms) dt ds =

Ms∑
m=1

Mt∑
j=1

∫ tm+mHs

tm+(m−1)Hs

∫ tj+jHt

tj+(j−1)Ht

K(s, t)eik(σjt−σms)dtds =

Ms∑
m=1

Mt∑
j=1

ms∑
l=1

mt∑
n=1

wlwnK(sl, tn)eik(σjtn−σmsl); (56)
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I∗(r) = eik(δm−1)zm

[
eik(1−δl)zl+1+kr(zm−zl+1) − eik(1−δl)zl+kr(zm−zl)

k(r − i(1− δm)k(r − i(1− δl))

]

+ eik(δm+1)zm+1

[
e−ik(1+δl)zl+1+kr(zl−zm+1) − e−ik(1+δl)zl+1+kr(zl+1−zm+1)

k(r − i(1 + δm)k(r − i(1 + δl))

]

+ 2
(eik(δm−δl)zl+1 − eik(δm−δl)zl)

ik2(δm − δl)

[
r − i

δ2
m + (r − i)2

]
. (54)

Figure 3. Removing the singularity.

where ms and mt are the number of Gaussian points between
[tm + (m− 1)Hs, tm +mHs] and [tj + (j− 1)Ht, tj + jHt]

respectively, and wl and wn are weights. We will, however,
still have a singularity when the supports of ηj and ηl touch
or are close to each other. This situation can occur at the cor-
ners of the shaded region shown in Fig.2, that is, when either
tm+1−tj ≤ ε or tj+1−tm ≤ ε, where ε > 0 is a small number
close or equal to zero. To deal with this situation, we take the
shaded rectangle [tm+1−Hs, tm+1]× [tj , tj +Ht] (the lower
bottom) in Fig.2 and subdivide it into small rectangles, with
the nodes highly concentrated near the peaked area as shown
in Fig.3. We place the nodes at tm+1 − plHs, l = 0, . . . , n (n
is the number of Gaussian quadrature points and p = 0.15)
on [tm+1 − Hs, tm+1] and at tj + plHt, l = 0, . . . , n on
[tj , tj + Ht]. We again use the two-dimensional Gaussian
quadrature rule to approximate each integral on each small
rectangle, thus arriving at an equation similar to Eq. (56).

6. NUMERICAL RESULTS

As our numerical example, we take the scattering object
Ω, to be a square, with vertices (0, 0), (2π, 0), (2π, 2π), and
(0, 2π). We take β = 1 on each side Γj and the incident an-
gle θ = π/4 so that the plane wave is directed towards the
corner at (0, 2π). The reflective angle in Eq. (15) is given by

Figure 4. Behaviour of the solution for increasing k, when N1 = 128.

θ
′

= π/4 and −π/4 in the illuminated regions Γ3 and Γ4 re-
spectively. We code the system Eq. (32) to get the unknown
vm and use Eq. (27) to get ΦN . For this particular example,
we chose the mesh such that for a fixed N1, we use Eq. (21)
to compute N , and we use Eq. (20) to compute NLj ,λ,qj . In
Fig. 4 we plot a comparison of the solutions for N1 = 128

for k = 80, 160, 320, and 640. As k increases, the diffracted
wave decays away faster from the corners. Table 1 shows the
errors for fixed N1 = 32 and increasing k. The results in Ta-
ble 1 shows that errors are inversely proportional to k that is
for increasing k the error decreases. This effect is reflected
in column ‖Φ128 − ΦN1

‖2 in Table 1. The relative L2 errors
‖Φ128 − ΦN1

‖2 / ‖Φ128‖2 remain relatively constant as k in-
creases, which is a good sign for the robustness of our scheme.
The degrees of freedom DN1

is proportional to log(k), that is,
DN1

increase logarithmically as the wavenumber increases.

7. CONCLUSIONS

In this paper, we have described how to implement the
boundary element method developed in4 for high frequency
scattering by convex polygons with impedance boundary con-
ditions. We explaine in detail how to solve the resulting system
of linear equation. We encounter an integration scheme that is
frequency independent when we are integrating over elements
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Table 1. Relative errors, scattering by square, N1 = 32.

k DN1

∥∥Φ128 − Φ32

∥∥
2

∥∥Φ128 − Φ32

∥∥
2
/
∥∥Φ128

∥∥
2

5 376 2.1229×10−2 4.9412×10−2

10 464 1.4873×10−2 4.9022×10−2

20 552 1.0520×10−2 4.9006×10−2

40 640 7.3863×10−3 4.8627×10−2

80 728 5.3551×10−3 4.9871×10−2

160 816 3.6531×10−3 4.8177×10−2

320 904 2.4775×10−3 4.6072×10−2

supported on the same side of the polygon, but our scheme
for elements supported on different sides of the polygon has a
complicated cost that grows with frequency. For this particu-
lar problem, we apply the standard Gaussian quadrature rule in
our code to solve such integrals. For our future work, it will be
interesting to apply frequency independent schemes for these
integrals, such as the ones that have been developed recently by
Melenk and Langdon15 for the problem of scattering by sound
soft convex polygons.
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Current vibration-based techniques for transformer condition monitoring mostly rely on the vibration response
caused by operating excitations, which consist of electrical excitations from the core and winding. Therefore, it is
worthwhile to study the electrically-excited frequency response function (FRF), as it carries information of trans-
former mechanical and electromagnetic properties. This paper includes a sensitivity analysis of the mechanically
and electrically excited FRFs of a model transformer to the reasons behind its failures. A model power transformer
is used as an example to demonstrate the variation of its vibration response to a couple of causes of transformer
faults, such as looseness of clamping forces in winding and core. Experimental evidence is presented to show the
quantitative description of the causes of artificial faults and to extract features of variations of FRFs that might be
useful to the vibration-based detection of the causes of transformer faults in general.

1. INTRODUCTION

In the power industry, monitoring health conditions and de-
tecting the causes of power transformer failures are often done
using one of three methods: dissolved gas analysis (DGA),
frequency response analysis (FRA), and vibration-based meth-
ods.1–5 These methods focus on measuring the indicators of
transformer faults and correlating the trends of changes in
these said indicators with respect to the causes of transformer
failures.

As an online and nonintrusive method, the vibration-based
condition monitoring method has attracted considerable atten-
tion for transformer health monitoring in the past few decades.
Previous work has demonstrated that this method provides
an option for assessing the mechanical integrity of a trans-
former.6–12 Unlike the DGA and FRA methods, it relies on
changes in the vibration response of the transformer under
both steady-state and transient processes. For an example,
Berler found that looseness in the winding clamping force
might cause variations at twice the operating frequency and
its harmonics.6 The transient vibration evoked by transformer
energize/de-energize operations was also employed to detect
abnormalities in transformer winding.7 To further develop
the vibration-based condition monitoring method, efforts were
also made in the area of signal processing to extract the vibra-
tion features of a damaged transformer by advanced signal pro-
cessing methods, including the wavelet transform, the Hilbert
Huang transform, and their combinations.10

Although the feasibility of using the vibration method for
transformer condition monitoring was verified in these case
studies, there is still a gap in understanding the physical cor-
relation between the changes in the vibration response and

changes in the transformer’s mechanical properties associated
with the causes of failures. A better understanding of vibration
changes caused by transformer mechanical faults is beneficial
to fault allocation, even to the development of novel monitor-
ing strategies, which is the research motivation of this work.

The vibration response of a power transformer is a measure
of the transformer vibration (as outputs) with respect to the
transformer’s electrical inputs. Since the transformer online
monitoring techniques mostly rely on the vibration response
caused by operating excitations that consist of electrical excita-
tions from core and winding, it is more straightforward to study
the electrically excited FRF and its variations as opposed to the
mechanical excitation. The previous work by Wang and Pan
examined the vibration FRFs of a model power transformer to
the electrical excitation.13 However, their changes to different
failure causes and corresponding change sensitivities have not
been inferred.

Because the vibration of the winding and core are nonlin-
ear functions of the electrical inputs, the traditional concept of
the frequency response function (FRF) for linear systems does
not apply. In a previous work, it was found that the steady-
state response was characterized by the frequency components
at twice the excitation frequency and its harmonics.5 There-
fore, the nonlinear vibration response of the transformer with
respect to a sinusoidal input can still be specifically defined in
the frequency domain. For example, if the secondary wind-
ing is in an open circuit condition, then the vibration response
function is defined as:

H(xi|ω) =
∞∑
k=1

H2k(xi|2kωo); (1)

where xi was the measurement location of the vibration re-
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sponse, ωo was the excitation frequency, and the frequency re-
sponse component H2k(xi|2kωo) = v(xi|2kωo)

U(ωo)
was defined

by the ratio of the vibration component v(xi|2kωo) at 2kωo

and the primary voltage amplitude at ωo. This definition of
the input and output relationship of a transformer was prac-
tically significant as almost all in-service power transformers
were excited by a sinusoidal voltage. For many practical ap-
plications, a large percentage of the vibration energy was con-
tained at ω = 2ωo. Therefore, the first term of the response
function H(xi|ω) ≈ H2(xi|2ωo) was used as the first-order
approximation of the vibration FRF of the transformer.

Based on this approximation, previous work on mechani-
cally and electrically excited FRFs of a model power trans-
former was extended to the study of FRF variations due to
transformer mechanical faults.13 Research focusing on this
work featured a sensitivity analysis of the mechanically and
electrically excited FRFs of a model transformer to the causes
of faults. Experimental evidence was presented to show the
quantitative description of the causes of artificial faults and
to extract features of variations of FRFs that might be useful
to the vibration-based detection of the causes of transformer
faults in general.

2. THEORETICAL BACKGROUND

The vibration response at location xi with respect to a dis-
tributed force excitation in the transformer mechanical system
can be expressed as:

v0(xi|ω) =
∫
V

HM (xi, xk|ω, ξM )F̂ (xk|ω)dxk; (2)

whereHM (xi, xk|ω, ξM ) was the mechanical FRF between xi
and xk, and F̂ (xk|ω) was the force per unit volume at location
xk, and V was the entire volume of the transformer structure.
Unlike the traditional definition of an FRF, a mechanical pa-
rameter vector ξM = [ξM1, ξM2, . . . , ξMP ] was used to de-
scribe the causes of a transformer’s faults. Following the same
logic, the distributed force could also be described by an elec-
trical FRF that relates F̂ (xk|ω) as an output and the sinusoidal
voltage U(ωo) as an input. As a result of this analysis, the first-
order approximation of the vibration FRF of the transformer
(as described in Eq. (1)) was expressed as:

H(xi|ω, ξM , ξE) =
∫
V

HM (xi, xk|ω, ξM )HE(xk|ω, ξE)dxk;
(3)

where ξE = [ξE1, ξE2, . . . , ξEQ] was an electrical parame-
ter vector. How to relate the parameters in the mechanical
and electrical parameter vectors to the causes of transformer
failures and what was the sensitivity of H with respect to
the changes in ξM and ξE were the challenging questions for
vibration-based fault diagnosis of power transformers. The
variation of H , with respect to the system parameters, could
be expressed as:

δH(xi|ω, ξM , ξE) =
P∑

p=1

∂H

∂ξMp
δξMp +

Q∑
q=1

∂H

∂ξEq
δξEq. (4)

For the electrically excited FRF, which was mostly relevant
to the input/output relationship of an in-service transformer,

the variation of the mechanically excited FRF of the model
power transformer with only the mechanical parameters could
be evaluated. It should be noted here that the vibration-based
method for detecting the causes of faults was mainly focused
on those causes related to the mechanical parameters. Al-
though changes in the electrical parameters would also cause
variations in the electrical FRF of the transformer, such vari-
ations often occurred at a much higher frequency range and
other techniques, such as FRA, were developed for such detec-
tion. If the transformer was excited by a point force at xo, then
this mechanically excited FRF could be expressed by using a
volume integration of HM (xi, xk|ω, ξM ), as shown in Eq. (2).
Its variation with the mechanical parameter vector was:

δHM (xi, xo|ω, ξM ) =

P∑
p=1

∂HM

∂ξMp
δξMp. (5)

The relationship between the variation of the mechanically
excited FRF in Eq. (5) and that of the electrically excited FRF
in Eq. (4) were found by expanding the first term on the right-
hand side of Eq. (4):

P∑
p=1

∂H

∂ξMp
δξMp =

∫
V

[
P∑

p=1

∂HM

∂ξMp
δξMp

]
HE(xk|ω, ξE)dxk.

(6)
It was indicated that the variation of δH(xi|ω, ξM , ξE)
with respect to ξM was the spatially averaged sensitivity
of HM (xi, xk|ω, ξM ) over all of the forcing locations and
weighted by HE(xk|ω, ξE).

3. DESCRIPTION OF EXPERIMENTS

The measurement of vibration responses was performed on
a 10-kVA single-phase transformer with rating voltages of
415/240 V. The experimental set-ups were kept the same as in
a previous article (Wang and Pan), where the mechanical and
electrical excitations were implemented by an impact force and
swept-sine voltage, respectively.13 A sinusoidal voltage signal
from a signal generator (Agilent, 33120A) was amplified by
using a power amplifier (Yamaha, P2500S), and then a variac.
As a result, a 200-V voltage at each test frequency was applied
to the primary input of the model transformer. The transformer
vibrations at 48 measurement locations were measured by ac-
celerometers (IMI, 320A). The outputs of the accelerometers
were pre-amplified by a signal conditioning device before be-
ing sent to a laptop computer for post-processing by using a
DAQ (NI, USB-6259). In order to stay consistent with the
previous study, the same impact location and test points were
used.

To describe the causes of mechanical failures of a model
power transformer using the mechanical parameter vector ξM ,
the percentage looseness of winding clamping pressure, and
the percentage looseness of core clamping pressure are used
as two independent components in ξM . For example, to de-
scribe the changes in the winding clamping force, the first
element in ξM is defined as ξM1 = ξ

(0)
M1(1 − η1), which

changes the nominal value of ξ(0)M1 (set by the manufacturer)
to zero, where 0 ≤ η1 ≤ 1 was the percentage looseness of the
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Figure 1. The design of longitudinal insulation and the arrangement of miss-
ing insulation spacers as a cause of mechanical faults.

core. Similarly, the winding clamping force was described by
ξM2 = ξ

(0)
M2(1− η2) with 0 ≤ η2 ≤ 1.

For this model transformer, its winding and core segments
were fastened by four and eight bolts respectively.13 The nom-
inal clamping forces set by Universal Transformer were ap-
proximately 2250 N in the winding and 1500 N in the core.
These two values were converted from the tightening torque
by considering the bolt diameters, thread lead angle, etc.14

Realizing the aforementioned mechanical failures in terms of
clamping looseness depends upon the gradual adjustment of
the preloading of the corresponding clamping bolts using a
torque wrench. Considering the importance of diagnosis a fault
in its early stages, a maximum 35% clamping looseness in the
winding and 25% looseness in the core were investigated with
δη = 5% increments in both winding and core looseness.

In addition to the clamping looseness, the absence of the
longitudinal insulation spacers was examined as another cause
of mechanical faults, as these would reduce the axial stabil-
ity and cause excessive vibration. The design of longitudinal
insulation and arrangement of its mechanical faults, ξM3, are
presented in Fig. 1, where eight columns of insulation spacers
are circumferentially equispaced along the winding circle.

The detailed dimensions of insulation spacers and winding
conductors can be found in the partial view (A-A), where the
height of the winding conductor and insulation spacer were
8 mm and 3.2 mm, respectively. In addition to the thin dove-
tail spacers between the winding disks, an array of 19.1 mm-
thick insulation blocks were layered at both ends of the wind-
ing assembly. The fault of missing insulation spacers was in-
troduced in the front column, including the insulation blocks
at both ends, as indicated in Fig. 1. This column of insula-
tion spacers was separated into thirteen segments with approx-
imately equal height, corresponding to the thirteen missing in-
sulation statuses of ξ(n)M3 shown in Fig. 1. The insulation spac-
ers were removed cumulatively from n = 1 to n = 13. All the
missing-insulation tests were conducted under the same wind-
ing clamping status.

4. RESULTS AND DISCUSSION

Generally speaking, the development of mechanical faults in
a transformer structure is accompanied by changes in the struc-
tural stiffness, mass, and damping. The resulting variations in

a transformer’s vibration responses due to some common faults
will be presented in the following subsections.

4.1. Vibration Changes Due to Core
Looseness

The first cause of mechanical failure under investigation was
looseness in the transformer core clamping force, which was
described by ξM1 = ξ

(0)
M1(1 − η1) with 0 ≤ η1 ≤ 1. By

gradually reducing the clamping force with the same percent-
age increment (δη1 = 5%), an overall 25% looseness was in-
troduced to the left and right limbs symmetrically. Based on
the experimental methodology described in a previous article,
the vibration FRFs under mechanical and electrical excitations
were measured.13 Spatially averaged FRFs with different core
clamping forces are presented in Fig. 2, where a 5 dB offset
from the FRF underneath is introduced for clarity. On each
FRF curve, four resonance peaks can be clearly discerned un-
der electrical and mechanical excitations. However, the res-
onance peaks at the 3rd and 4th mode responses were greatly
affected due to core looseness, while the other modes seemed
unaffected.

A quantitative comparison of the changes in vibration at
different clamping status, by means of natural frequency
shifts (δfn) and cumulative changes in the FRFs at 100 Hz
(δHM |ω=100 Hz and δH|ω=100 Hz), can be found in Table 1.
The percentage of natural frequency shifts were calculated
around the lowest state (η1 = 0) without core clamping loose-
ness so as to give the cumulative changes of the frequency re-
sponses at 100 Hz. Variations in vibration at discrete frequen-
cies, i.e., 100 Hz and its harmonics, were of most concern in
response-based monitoring strategies. Since the fundamental
frequency at 100 Hz was very close to the 4th core-controlled
mode, the variation of the vibration component at 100 Hz was
selected for a detailed analysis.

From Table 1, a general decrease of the first four natural fre-
quencies is observed in the presence of the growing clamping
looseness from η1 = 5% to η1 = 25%. However, the fre-
quency responses at 100 Hz increased dramatically under both
excitations. To facilitate the explanation of these variations,
the mode shapes of each resonance frequency are recalled in
Fig. 2(a) based on the previous reports.13 According to the
modal participation at each mode, the 1st, 3rd, and 4th modes
could be classified as core-controlled modes, which are dom-
inated by the transformer core assembly. The occurrence of
clamping looseness directly affects the core-controlled modes
owing to the resulting stiffness reduction in the core assembly.
With the development of core looseness, the natural frequen-
cies of the core-controlled modes were consistently reduced
within the tested looseness range. As seen in Table 1, a maxi-
mum 10.19% (9.5 Hz) frequency shift was recorded at the 4th

mode, which was really important for vibration-based condi-
tion monitoring. By using the modal parameter identification
approach, the natural frequency shift could be detected and re-
lated to possible structural damages.

In contrast, the 2nd mode appeared to be unaffected by the
core looseness. The underlying reason for this was the modal
participation, where the 2nd mode was dominated by the trans-
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(a)

(b)

Figure 2. Spatially averaged FRFs of the transformer vibration due to (a)
mechanical and (b) electrical excitations with core clamping looseness.

former winding. Since the transformer core also participated
in this mode, the 2nd mode was classified as a coupled mode
between the core and winding assemblies. The orthogonality
of vibration modes determines what causes of failure in the
transformer core will not have much effect on the winding-
dominated mode, i.e., the 2nd mode in this study.

The above experimental results verify that core looseness is
able to change more than one mode in the low-frequency range.
The dependency of natural frequency shifts on the causes of
structural damage could potentially be employed for damage
location. In addition to the frequency shift analyzed above, the
deviations of both mechanically and electrically excited FRFs
at 100 Hz due to core clamping looseness are listed in Table 1,
where a maximum 2.56 dB increased under electrical excita-
tion is observed. As another “side-effect” of stiffness reduc-
tion, an increase in the amplitude of the FRF was expected.
Attention should be paid to the frequency shifts, which would
increase the vibration response when a resonance peak was ap-
proaching and vice versa.

However, the variation under two excitations exhibits differ-
ent sensitivities. The deviation of the electrically excited FRFs
(δH) depends not only on the stiffness changes but also on
the magneto-mechanical coupling during magnetization of the
transformer core. With clamping looseness, the internal stress

Table 1. Quantitative variation of the transformer vibration FRFs due to core
clamping looseness.

η1 (%) 5 10 15 20 25

δfn (%)

1st mode –1.43 –2.85 –2.85 –4.28 –5.71
2nd mode –0.94 –0.94 –0.94 –0.94 0
3rd mode –1.3 –2.6 –3.25 –4.55 –5.19
4th mode –3.4 –4.37 –6.8 –8.74 –10.19

δHM (dB) ω = 100 Hz 1.15 1.49 2.04 0.74 0.69
δH (dB) ω = 100 Hz 0.51 0.91 1.77 2.56 2.12

Table 2. Quantitative variation of the vibration FRFs due to winding clamping
looseness.

η2 (%) 5 10 15 20 25 30 35

δfn (%)

1st mode –1.4 –1.4 –1.4 –1.4 –1.4 –1.4 –1.4
2nd mode –1.9 –3.8 –5.7 –6.6 –9.4 –10.4 –11.3
3rd mode –0.6 –0.6 –0.6 0 0 0 –0.6
4th mode –1.5 –0.9 –0.5 –0.5 –0.9 –1.94 –1.94

δHM (dB) 50 Hz 0.44 2.43 3.65 3.7 2.39 1.97 2.09
δH (dB) 50 Hz 1.53 2.19 4.07 4.52 4.75 4.24 3.62

of the silicon steel laminations is reduced as well, which leads
to a weaker magneto-mechanical coupling and thus results in a
smaller magnetostriction.15, 16 This is another factor influenc-
ing the electrically excited FRFs, as core clamping looseness
will decrease the magnetostriction. Combined with the above
factors, the synthetic effect is to increase the electrically ex-
cited FRFs due to core looseness in this study. It is also worth
mentioning that the vibration response under electrical excita-
tion is more sensitive to core looseness, as can be concluded
from Table 1.

4.2. Vibration Changes Due to Winding
Looseness

Transformer winding looseness is the second cause of me-
chanical failures in the model transformer to be studied. Wind-
ing looseness is described by ξM2 = ξ

(0)
M2(1 − η2) with

0 ≤ η2 ≤ 1 to represent different clamping statuses. By grad-
ually reducing the clamping force with the same percentage in-
crement (δη2 = 5%), an overall 35% looseness was introduced
to the transformer winding. The mechanically and electrically
excited FRFs were measured using the same test equipment in
Section 4.1. Figure 3 shows the spatially averaged FRFs under
different winding clamping forces. A 5 dB offset from the FRF
underneath is also introduced to clarify the picture.

As can be seen in Fig. 3, four natural frequencies can be
recognized from the electrical and mechanical FRFs below
120 Hz. The difference comes from their variations in the pres-
ence of winding clamping looseness. When the mechanical
parameter vector changed from η2 = 0 to η2 = 35% by reduc-
ing the winding clamping forces, a gradual decrease occured at
the 2nd natural frequency. Meanwhile, the natural frequencies
of the other modes appeared to be unaffected. Compared with
the variation of the FRFs in the presence of core looseness,
this phenomenon was regarded as one of the characteristics for
winding anomalies. Similarly, the quantitative variation of the
vibration FRFs due to winding clamping looseness is summa-
rized in Table 2. Since the most affected mode was the 2nd

mode at 53 Hz, the frequency response at 50 Hz was analyzed
as well as the natural frequency shift.

As can be seen in Table 2, the appearance of winding clamp-
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(a)

(b)

Figure 3. Spatially averaged FRF of the transformer vibration due to (a) me-
chanical and (b) electrical excitations with winding clamping looseness.

ing looseness leads to a general decrease of all four natural fre-
quencies. The most affected mode was the 2nd mode at 53 Hz,
which caused about a 11.32% (6 Hz) decrease at maximum
looseness. This experimental result was fully expected since
the aforementioned causes of the failures were a natural re-
duction in the transformer’s local stiffness. As to why the fre-
quency shift occured at the 2nd mode, the answer was found
from the modal analysis, where the 2nd mode was dominated
by the winding assembly. The winding clamping looseness
mainly caused a stiffness reduction in the winding rather than
the core assembly. Since the natural frequencies were mea-
sured in exactly the same way as in the mechanical and elec-
trical excitation cases, the same trend in frequency shift was
observed in the electrically excited cases.

Apart from the analysis of natural frequency shifts, ampli-
tude variations of the FRFs due to winding looseness were
also examined in both the mechanically and electrically ex-
cited cases. The deviations calculated in Table 2 were also
cumulative changes relative to the lowest state without loose-
ness (η2 = 0). Compared to the vibration FRF of the initial
clamping state, a general increase at 50 Hz was found in both
the mechanically and electrically excited cases in the presence
of winding looseness. In particular, the vibration response at
50 Hz first increased with the approach of the 2nd natural fre-

quency and then decreased as it moved further away. The over-
all increase in the vibration response could be understood as a
result of the reduction of the stiffness in the winding assembly.

Since the vibration test was performed in a transformer un-
der no-load conditions, the electromagnetic (EM) force in the
winding was caused by the interaction between the magnetiz-
ing current and the leakage field. The magnetizing current was
only a few hundred milliamps and the resultant EM force was
relatively small. Excitation caused by EM forces in the wind-
ing was very weak and could be neglected compared to core
excitation. Therefore, the excitation force in these cases re-
mained almost the same, and was mainly composed of mag-
netostrictive force in the core. In other words, the changes in
mechanical properties induced by a structural anomaly were
responsible for the variations of the vibration FRFs. Maxi-
mum increases of 3.7 dB and 4.75 dB were measured at 50 Hz
in the mechanical and electrical FRFs, respectively. Such ob-
vious deviations were more than enough to be detected in the
vibration response-based monitoring methods.

4.3. Vibration Changes Due to Missing
Insulation Spacers

The third case study is dedicated to one of the causes of in-
sulation faults in the winding assembly. As described in Fig. 1,
insulation damage was simulated by removing a small portion
of the insulation spacers along the longitudinal direction. In
this study, the absence of insulation spacers was catalogued as
a mechanical property change, since it indeed altered the me-
chanical integrity of the transformer structure. The spatially
averaged FRFs of the transformer vibration with missing insu-
lation spacers in the winding insulation system are presented
in Fig. 4.

No obvious frequency shifts in this frequency range could
be found by visually examining the mechanically and electri-
cally excited FRFs, even when all the front insulation spacers
were removed (n = 13). To quantitatively analyse the varia-
tion of the FRFs due to missing insulation spacers, a detailed
summary of these frequency shifts is listed in Table 3. Since
the missing insulation spacers were introduced in the wind-
ing assembly and the 2nd mode at 53 Hz was dominated by this
component, the vibration response at 50 Hz is also presented in
Table 3. The maximum frequency shift in this case was 2.5 Hz
(4.71%) at the 2nd mode, while the other modes appeared un-
affected. The underlying reason was also attributed to stiffness
reduction in the winding.

The analysis of extracted data verified that although the fre-
quency shifts were small, the amplitude increases at 50 Hz
were pronounced; they were 2.29 dB and 3.47 dB in the me-
chanical and electrical FRFs, respectively. These results imply
that the amplitude of the frequency response at certain frequen-
cies could be altered dramatically, even with a small frequency
shift when there was a resonance frequency nearby. Similar to
the winding looseness case, these variations in the FRFs were
merely caused by changes in the mechanical property rather
than by excitation differences.

It was found that a structural anomaly in the core could pro-
duce considerable variations in the low-frequency range. Al-
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(a)

(b)

Figure 4. Spatially averaged FRFs of the transformer vibration due to (a)
mechanical and (b) electrical excitations with missing insulation spacers.

though the amplitude of the FRFs changed dramatically as a
result of winding anomalies, i.e., missing insulation spacers,
the sensitivity of the natural frequency shift was not high. As
can be seen in Fig. 2(a), although the coupled mode at 53 Hz
was dominated by the transformer winding, it was actually
the rigid-body movement around the core bottom yoke. The
clamping looseness and missing insulation spacers affected the
connection boundaries in this coupled mode and thus gave rise
to the above variations in the FRFs. However, the most affected
modal response was anticipated to be at the winding-controlled
modes in the higher frequency range. According to the pre-
vious modal analysis on the same transformer, the winding-
controlled modes were in a frequency range of > 200 Hz.13

To verify this speculation, the variation of the FRFs between
120 Hz and 1000 Hz were investigated in the following section.

Table 3. Quantitative variation of the transformer vibration FRFs due to miss-
ing insulation spacers.

n 1 5 9 13

δfn (%)

1st mode 0 0 0 –1.43
2nd mode –1.9 –2.83 –3.77 –4.71
3rd mode 0 0 0 –0.65
4th mode 0 0 –0.49 0

δHM (dB) f = 50 Hz 0.76 1.97 2.0 2.29
δH (dB) f = 50 Hz 2.51 2.99 3.04 3.47

(a)

(b)

Figure 5. Spatially averaged FRFs of the transformer vibration due to winding
looseness in the (a) radial and (b) axial directions.

4.4. Variation of the High-frequency
Vibration Response

As was seen in the above discussion, the natural frequencies
obtained under the electrical excitation were the same as under
the mechanical excitation. To study the frequency shift due
to winding anomalies, the FRFs of the mechanical excitation
are selected for analysis. The electrical excitation case was not
examined due to the lack of a high-voltage source with variable
frequencies.

4.4.1. Variation of high-frequency response to wind-
ing looseness

To study the vibration changes in a higher frequency range,
the radial and axial vibration modes were first examined to
classify whether they are winding-controlled modes. The spa-
tially averaged FRFs due to the different winding clamping
forces are presented in Fig. 5, where the mode shapes for spe-
cific resonances are shown as well. The winding-controlled
modes at around 200 Hz, 400 Hz, 500 Hz, and 600 Hz were all
dominated by the winding assembly, where the participation of
the core could be neglected. As can be seen from Fig. 5, the
natural frequencies at these four modes all decreased with the
development of winding clamping looseness.
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Table 4. Natural frequency shifts (δfn) of the winding-controlled modes due
to looseness in the winding clamping force.

η2 (%) 5 10 15 20 25 30 35
1st (Hz) –12 –28 –35 –40 –53 –63 –75

Radial 2nd (Hz) –13 –28 –42 –50 –58 –70 –86
modes 1st (%) –2.8 –6.8 –8.9 10.3 –13.8 –17 –20.8

2nd (%) –1.9 –4.3 –6.6 –8 –9.4 –11.6 –14.5
1st (Hz) –12 –21 –26 –29 –31 –33 –35

Axial 2nd (Hz) –11 –26 –41 –59 –91 –114 –137
modes 1st (%) –5.1 –9.4 –12.2 –13.9 –15 –16.1 –17.3

2nd (%) –2.1 –4.9 –8.1 –11.9 –19.2 –25.7 –32.6

Table 5. Natural frequency shifts (δfn) of the winding-controlled modes due
to missing insulation spacers.

n 1 3 5 7 9 11 13
1st (Hz) –3 –4 –9 –17 –26 –39 –45

Radial 2nd (Hz) –9 –17 –23 –32 –38 –66 –67
modes 1st (%) –0.8 –1.1 –2.3 –4.9 –7.8 –12.1 –14.2

2nd (%) –1.5 –2.9 –4.0 –5.7 –6.8 –12.3 –12.8
1st (Hz) 0 1 0 –3 –4 –8 –8

Axial 2nd (Hz) 2 3 –3 –16 — — —
modes 1st (%) 0 0.5 0 –0.17 –0.23 –4.6 –4.6

2nd (%) 0.5 0.75 –0.75 –4.0 — — —

This observation was the same as in the low-frequency
range. However, the sensitivity of the frequency shift to the
winding looseness was much higher than that in the low-
frequency range. Table 4 specifies the corresponding fre-
quency shifts of the relevant modes, where a maximum 32.6%
(137 Hz) decrease in the natural frequency could be found for
the 2nd winding-controlled mode in the axial direction. The
frequency shifts for the modes with large radial components
were also remarkable, which reached a 20.8% reduction at
35% winding looseness.

4.4.2. Variation of high-frequency response to miss-
ing insulation spacers

As reported in Section 4.3, the frequency shift due to miss-
ing insulation spacers was not obvious, since there was only
one coupled mode in the analysed low-frequency range and it
was not sensitive to the change in clamping force. Here, the
investigation was extended to a higher frequency range from
120 Hz to 1000 Hz, which covered four winding-controlled
modes, as illustrated in Fig. 5. Given the high sensitivity of the
frequency shift to looseness of the winding clamping force,
finer test steps were adopted in this case study. Seven missing
insulation statuses were equally spaced from n = 1 to n = 13

with the same amount of total missing spacers, as conducted in
Section 4.3.

Figure 6 shows the spatially averaged FRFs between 120 Hz
and 1000 Hz of transformer vibration for different amounts of
missing insulation spacers. The shift of resonance peaks could
be clearly discerned at the winding-controlled mode in the ra-
dial direction. Detailed percentage variations and absolute fre-
quency shifts in hertz are summarized in Table 5. A maximum
14.2% (45 Hz) decrease was measured at n = 13 in the 1st

winding-controlled mode in the radial direction. However, the
frequency shift did not appear to be obvious in the axial di-
rection. For the axial mode at 400 Hz, the frequency shifts
at the last three statuses were not listed due to the local reso-
nance after n = 7. This indicated that reducing the clamping

(a)

(b)

Figure 6. Spatially averaged FRFs of the transformer vibration due to missing
insulation spacers in the (a) radial and (b) axial directions.

force would not only cause the shifts of natural frequencies,
but also allow the observation of extra resonances in the FRF.
This may be another interesting vibration feature that might be
useful for transformer condition monitoring. Either frequency
shifts or the appearance of extra resonance peaks could be re-
lated to the looseness of the clamping force.

5. CONCLUSIONS

In this paper, a single-phase 10-kVA model transformer was
studied as an example to demonstrate the changes in its vi-
bration response to several winding faults, namely looseness
of clamping forces in the winding and in the core, and the
absence of insulation spacers. The variations of the FRFs
due to mechanical parameter changes were measured using
the sweep-sine test and the impact test. For the three differ-
ent causes of transformer faults, their influences on the vibra-
tion response were examined by comparing the structural fre-
quency responses of the intact and “damaged” transformers.
The underlying reasons for these variations were then anal-
ysed.

As expected, the faults were all capable of altering the me-
chanically and electrically excited FRFs. More specifically, the
occurrence of winding and core looseness, as well as the ab-

484 International Journal of Acoustics and Vibration, Vol. 21, No. 4, 2016



Y. Wang, et al.: CHANGES TO THE VIBRATION RESPONSE OF A MODEL POWER TRANSFORMER WITH FAULTS

sence of insulation spacers decreased the relevant natural fre-
quencies as a result of the loss of structural stiffness caused
by the faults. The maximum 11.32% decrease in the low-
frequency range and 32.6% in the high-frequency range were
measured in the presence of these causes of failure.

Compared to the low-frequency FRFs, higher sensitivities to
variation were found in the high-frequency FRFs. Moreover,
local resonances would be produced in the high-frequency
range with the development of the causes of failure, as shown
in the missing insulation spacer case.
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Microfibrous thin films (µFTFs) of Parylene C are deposited to a thicknesses of about 100 µm by physicochem-
ical vapor deposition with the intention of determining the sound absorption of these films in the lower audible
frequency range. The objective is to determine the sound absorption by the µFTFs by using dynamic loading
experiments. The µFTFs were subjected to cyclic elastic loads in the frequency range of 5 to 200 Hz over a tem-
perature range of 25 to 50 ◦C to determine their dynamic moduli and thus extract the Parylene-C µFTFs sound
absorption properties. The absorption coefficient of microfibrous Parylene-C is found to be weakly dependent on
temperature, however it increases with increasing frequency. Peaks in the spectra of the absorption coefficient were
attributed to resonant coupling between incident sound waves and vibrating microfibers.

1. INTRODUCTION

Microfibrous thin films (µFTFs) are important materials in
optical, chemical, and biochemical applications.1 µFTFs are
fabricated by either physical or chemical vapor deposition
methods with oblique-angle deposition techniques.1, 2 Differ-
ent material types, including metals, ceramics, and polymers
were successfully sculptured by using these techniques.1 The
typical structural µFTF morphologies produced are shown in
the scanning electron microscope (SEM) images in Fig. 1.

Figure 1. A typical FESEM micrograph of a Parylene-C µFTF.

Parylene-C, a polymer material, has often been used as
moisture-impermeable coating in medical devices and elec-
tronics.3 For these medical and electronic applications,
Parylene-C was prepared in bulk form, i.e., as a dense homoge-
neous film, by using chemical vapor deposition.4 However, the
µFTF-growth of Parylene-C introduced periodicity. Therefore,
it aided in the the investigation of acoustic and electromag-
netic wave propagation characteristics and availed the possi-
bility of acoustics optical applications. These applications re-
quired the investigation of the mechanical and dielectric prop-
erties of Parylene-C µFTFs.

In this article, µFTFs of Parylene-C were fabricated using
a physicochemical vapor deposition process and examined us-
ing dynamic mechanical loading, acoustic insertion loss, and

transmission spectroscopy.5, 6 The storage, loss, moduli, and
absorption coefficient for the Parylene-C µFTFs were obtained
as a function of temperature and frequency. There are several
studies on the effects of nano/microstructures on sound absorp-
tion. However, this is the first such study on microfibrous thin
films.7–9

2. THE EXPERIMENTAL PROCEDURE

The microfibers of Parylene C used in this work were fab-
ricated using a physicochemical vapor deposition process(5, 6)
and used a custom made PDS2010 Labcoater. Four grams of a
Parylene-C dimer were first vaporized at 175 ◦C and then py-
rolyzed at 690 ◦C into a monomer vapor. A collimated flux of
the monomer vapor was directed from a nozzle at 45 ◦ towards
a planar 2 cm × 2 cm Si substrate in a low-pressure chamber
maintained at 175 ◦C and 28 mTorr. Finally, the thin film was
removed from the silicon substrate using a razor.

After being removed, the morphologies of the grown sam-
ples were first examined using a field-emission scanning elec-
tron microcopy (FESEM) with a Model LEO 1530, Carl Zeiss
microscope. After the morphology examination, each sam-
ple was held between the two appropriately spaced grips of
a tension clamp and subjected to cyclic loading in a dynamic
mechanical analyzer (DMA). The DMA used was the Model
Q800 equipment, which was made by TA Instruments and used
a ”Multi-Frequency Strain” module. The tension-clamp was
calibrated with a thin steel sheet of known compliance and di-
mensions. The measured experimental temperature range was
between 25 ◦C and 150 ◦C in steps of 5 ◦C. At each temper-
ature, a cyclic strain of amplitude 0.046 % (elastic regime)
was set for frequencies between 5 and 200 Hz in increments
of 5 Hz.

3. RESULTS AND DISCUSSION

From FESEM, the thicknesses of the samples were found to
be in the range of 100 to 110 microns and the microfiber diam-
eters were determined to be about 5 µm inclined at about 80 ◦
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to the substrate plane. Fig. 1 shows a typical SEM micrograph
observed in the film. To vary the inclination of the microfiber,
one needs to change the angle of incidence of the collimated
flux on the substrate.

In this work, we attempted to determine the acoustic absorp-
tion coefficient α of the Parylene-C µFTF in order to explore
its application in acoustic applications, as discussed in the fol-
lowing subsection. The absorption coefficient α obtained in
this study determined sound absorption through the relation
Ix = (Io − IR)e−αx, where Io was the sound intensity inci-
dent on the film’s surface, IR was the reflected sound intensity
at x = 0, and I(x) was the intensity at distance x below the
surface. However, determining α for films as thin as the ones
grown in this work was challenging and the method employed
here used dynamic loading. For a linear material subjected to
cyclic loading at frequency f a phase shift δ existed between
stress σ and strain ε, which are given by:

σ = σ0 sin(ωt)and ∈= ε0 sin(ωt+ δ); (1)

where t is time, σo and εo were the respective amplitudes of
stress and strain, ω = 2πf was the angular frequency, and δ
was a phase shift. The two elastodynamic moduli were the
storage (elastic) modulus E′ = σo

εo
cos δ and the loss modulus

E” = σo

εo
sin δ.10 The absorption coefficient, α, was obtained

from the phase shift δ using the relation:

α =
ω

2c
tanσwherec =

√
E′

ρ
; (2)

where ρ was the film density.
We noted that α obtained in these experiments was extracted

from an elastic and loss moduli that were determined by the
stress-strain parameters on the plane of the substrate at an av-
erage angle of about 80 ◦ to the microfibers. This was expected
to be different from α perpendicular to the substrate, i. e., mak-
ing about 10 ◦ to the microfiber axis. The reason for this was
the anisotropic nature of the film morphology, as is apparent
from the SEM in Fig. 1. Also, α was expected to vary with χ,
since the microfiber inclination to the substrate and the spacing
between the microfibers were expected to vary with χ. Cur-
rently experiments are in progress in our laboratory to study
changes in α with χ.

In an earlier study of Parylene-C µFTFs of similar thick-
nesses, we found that the glass transition temperature was
Tg = 65 ◦C.11 This was in contrast to the Tg reported between
30 ◦C and 60 ◦C in films of thicknesses about 20 µm and 92 ◦C
for about 5 µm-thick films of dense (non-fibrous) Parylene-
C.12, 13 This leads to the suggestion that the surface area of mi-
crofibrous thin film may be the reason for the differences of
Tg between dense and microfibrous thin films. Therefore, the
acoustic absorption coefficient data shown in Fig. 2 are limited
to temperatures below Tg . In Fig. 2 we observed that the de-
pendence of α on temperature was somewhat weak. However,
there was a much stronger dependence of α on frequency in
the range 5 Hz to 200 Hz measured in these experiments. α
increased with increasing f and this increase was an order of
magnitude as the frequency increased from 5 Hz to 200 Hz.

Figure 2. The acoustic absorption coefficient α in about 100 µm-thick
Parylene-C µFTFas a function of temperature and frequency f in the low au-
dible frequency range. α is in m-1.

Figure 3 offers a closer look at the dependence of the absorp-
tion coefficient on f . Figure 3 features three distinct peaks in
the 75–200 Hz frequency range at temperatures between 25 ◦C
and 50 ◦C. The strongest middle peak occurs at f about 125 Hz
with two smaller peaks: one below 100 Hz and the other above
150 Hz.

For a square µFTF film the stiffness constant, k, may be
determined using the method described by Lintymer et al.14

k =
Ed4 cosβ

n(d′ + b)Λ3 tan2 β
; (3)

where E is Young’s modulus of the film, β was the angle the
column made with the horizontal plane, d was the column di-
ameter, d′ was the longer axis of the elliptical cross section
projection in the horizontal plane, b was the distance between
two adjacent columns, Λ was the single period thickness, and
n was the number of periods. By using values estimated from
the film SEM micrographs, one gets k ≈ 8 Nm-1. The density
of Parylene-C of 1289 kg/m3, when used with the geometry
of the µFTF sample, held between the two grips and yielded a
film mass of m = 1.36×10-5 kg. The resonant frequency fo
for a microfiber of stiffness k and carrying a load m was given
by:

ω0 = 2πf0 =

√
k

m
= 244 Hzorf0 = 122 Hz. (4)

This value for fo agreed very well with the position of the
largest peak in the frequency f at about 125 Hz. Therefore,
the large peak in the absorption coefficient at f , which was
about 125 Hz, was attributed to the resonant coupling between
the incident sound waves and the vibrating microfibers. The re-
maining two peaks were suggested to arise from two additional
secondary resonance frequencies, presumably from variations
in the µFTF morphology.

4. CONCLUSIONS

We used vapor deposition to grow about 100 µm of microfi-
brous thin films (µFTFs) of Parylene C on top of a Si substrate.
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Figure 3. The acoustic absorption coefficient α in about 100 µm-thick
Parylene-CµFTFas a function of frequency f and temperature. α is in m-1.

The film microfibers are observed by FESEM are found to be
about 5 µm thick and inclined at about 80 ◦ to the plane of the
Si substrate. The Parylene-C µFTF was subsequently held be-
tween two appropriately spaced grips of a tension clamp and
subjected to cyclic loading in a dynamic mechanical analyzer.
Stress-strain measurements on the films allowed the determi-
nation of thestorage and loss moduli. Hence, the absorption
coefficient α of the Parylene-C µFTFs is a function of temper-
ature in the range 25 ◦C to 50 ◦C and the frequency in the low
audible range up to 200 Hz. The acoustic absorption coeffi-
cient determined in this study is in a direction making about
80 ◦ to the microfiber axis. The dependence of α on tempera-
ture is found to be somewhat weak, whereas a much stronger
dependence of α on frequency is observed. Three resonant fre-
quencies have been determined for α, with the strongest reso-
nance frequency located at about 125 Hz. This resonance is
attributed to the resonant coupling between the incident sound
waves and vibrating microfibers. We note that the absorp-
tion coefficient measured in these experiments is for acous-
tics waves incident in a transverse direction to the microfibrous
columns. The film geometry is not amenable to applying this
dynamic loading technique to directions closer to the column
axis.
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