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The behavior of linear or nonlinear dynamic systems depends on different parameters (identifiable or free) that
are involved in their definition. The stability analysis of such dynamical systems is realized by using a domain
of selected free parameters. In this paper, we discuss specific theorems that concern the stability of linear dy-
namical systems, the stability of nonlinear dynamical systems in terms of ”first linear approximations”, and other
stability criteria. We study the stable/unstable separation property in the free parameters domain and present a
rigorous mathematical justification of this property with specific examples from various branches of science. Fur-
thermore, we investigate specific conditions when the separation property is passed on to the nonlinear dynamical
system from its first order linear approximation. The stable/unstable separation property is also emphasized as an
important property of the environment that can contribute to its mathematical modeling.

1. INTRODUCTION

In this paper, we analyzed the multiple aspects of the stabil-
ity control of linear or nonlinear dynamical systems ensured by
the property of separation between stable and unstable regions
of the free parameters domain.

Numerous authors have studied the problems of dynamic
systems stability. We have surveyed some of the relevant liter-
ature here.1–8, 11–13

Any dynamical system can be considered in terms of its
defining parameters without fixing their values as geometrical
parameters, physical parameters (in particular mechanical pa-
rameters), and possible economical or biological parameters.

Another important idea is that many real-life dynamical sys-
tems are considered in the literature (e.g. the Mathieu equation,
the Hill equation, the harmonic vibration equation, etc.) and
have the property of separation between the stable and unsta-
ble region in a selected domain of free parameters. The stable
and unstable regions are separated by a boundary in the do-
main of the free parameters. The property of separation can be
described by the fact that the stable and unstable regions, ex-
cept the points on the boundary, are open sets. This separation
aspect, which is considered in this paper, creates the freedom
of stability control on a neighborhood of fixed stable point in
the open stable region of the dynamical system.

We discovered some mathematical conditions of the stability
regions existence for dynamical systems using various results
from matrix theory, real analysis, stability theory, and others.

The property of separation of stability regions is an impor-
tant property of the environment, as one refers to a specific
dynamical system locally implemented in the environment.

Our study has not exhausted the subject of stability control.
New results in matrix theory, in the linear or nonlinear dynam-
ical system stability theory, and in real analysis will provide
further direction.

2. ON THE CONTINUITY OF THE REAL
MATRIX EIGENVALUES

The real matrix in the discussion was the matrix that defined
the linear dynamical system, or the ”first approximation”, of
the nonlinear dynamical system depending on some parame-
ters. The components of the real matrix were assumed to be
continuous or piecewise continuous functions of the system
parameters (time could also be considered as a parameter).

The dependence of the spectrum of this matrix on the ma-
trix components properties is discussed in the following para-
graphs.

2.1. QR Algorithm for Hessenberg Form of
the Real Matrix

In what follows, we assumed that the n× n matrix had dis-
tinct eigenvalues. The QR algorithm was formulated for the
matrices of Hessenberg form, meaning that its entries satisfy
aij = 0 for 2 < i ≤ n, j < i− 1.
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We then defined the Schur form of the matrix A. Let
λ be a real eigenvalue and x ∈ Rn×1 the corresponding
real eigenvector of the n × n matrix A so that Ax = λx,
x 6= 0. (We assume n > 2.) Let Q = [x, Y ], x ∈ Rn×1,
Y ∈ Rn×(n−1) be an orthogonal base of vectors in Rn that
include the eigenvector x ∈ Rn×1 so that QQT = In.

Then A = Q

[
λ (xTAY )

0 B

]
QT where, xTAY ∈ R1×(n−1),

0 ∈ R(n−1)×1 and B = Y TAY ∈ R(n−1)×(n−1). When
B (and implicitly A) had a pair of complex conjugate eigen-
values α ± iβ with associated eigenvectors u ± iv where
u, v ∈ R(n−1)×1 were linearly independent real vectors, we
can write:

X∗ = [uv],M =

[
α β

−β α

]
;BX∗ = X∗M. (1)

Let Q∗ = [X∗, Y ∗] be an orthonormal basis of Rn−1 where
X∗ = [u, v] ∈ R(n−1)×2, Y ∗ ∈ R(n−1)×(n−3) and Q∗Q∗T =

In−1. The matrix A with λ and α ± iβ eigenvalues had the
form:

A = Q

[
λ (xTAY )

0 B

]
QT ,

B = Q∗

[
M (X∗TBY ∗)

0 (Y ∗TBY ∗)

]
Q∗T . (2)

Thus the matrix A with (possibly complex) distinct eigenval-
ues, was similar to the associated Schur form (which is a matrix
of Hessenberg type).

The QR algorithm, by the Wilkinson’s manner, is described
below, where the initial real matrix A was denoted A1 in the
algorithm, and where the convergence symbol ”→” was used.9

As = QsRs, As+1 = RsQs, s = 1, 2, . . . ; s→∞.
As = Rs−1Qs−1;As−1 = Qs−1Rs−1, s = 2, 3, . . . ;

Rs−1 = Q−1
s−1As−1;As = Q−1

s−1As−1Qs−1, s = 2, 3, . . . ;

As = Q−1
s−1 . . . Q

−1
1 A1Q1 . . . Qs−1 =

= (Q1 . . . Qs−1)−1A1Q1 . . . Qs−1, s = 2, 3, . . . ;

Q1 . . . Qs−1As = A1Q1 . . . Qs−1, s = 2, 3, . . . ;

Q1 . . . Qs−1QsRs = A1Q1 . . . Qs−1, s = 2, 3, . . . ;

Q1 . . . Qs−1QsRsRs−1 . . . R1 =

= A1Q1 . . . Qs−1Rs−1 . . . R1, s = 2, 3, . . . ;

Q1 . . . Qs−1QsRsRs−1 . . . R1 = As1, s = 1, 2, . . .

(3)

The matrices Qk, k = 1, 2, . . . were orthogonal and the ma-
trices Rk were upper triangular and invertible. The matrices
Ak, Ak+1, k = 1, 2, . . .were also of Hessenberg form and sim-
ilar.

Parlet described the convergence of QR algorithm to the
Schur form of the matrix A, where the real matrix A was con-
sidered in the Hessenberg form.10

The above study was performed under the hypothesis that all
the eigenvalues of the real matrix were distinct. For the case
of real matrix multiple eigenvalues, we used the results from
the matrix theory. Hirsch, Smale and Devaney demonstrated,
on the normed space of dimension n matrices set L(Rn), the
following theorem.1

Theorem 1. The set of matrices with distinct eigenvalues
from linear normed space L(Rn) is an open and dense set in
the linear space L(Rn).

The above theorem created the possibilities to justify the
transmission of some properties from the real matrices set with
distinct eigenvalues to the real matrices set including multiple
eigenvalues that could intervene in the stability analysis of lin-
ear (can be of ”first approximation”) dynamical systems.

2.2. Transmissibility of the Continuity from
the Matrix Elements to the Eigenvalues

The components of the real matrix A that defined the linear
dynamical system depending on parameters were assumed to
be piecewise continuous in the free parameters. We formulated
the following theorem on the transmissibility of the continuity
below:

Theorem 2. If the components of the matrix A are piecewise
continuous relative to the free parameters and the sequence of
Hessenberg matrices As, s = 1, 2, . . . from the QR algorithm,
starting at A, is uniform convergent to the Schur form of the
matrix A, then the eigenvalues of the matrix A are piecewise
continuous.

This theorem was verified using the property from the real
analysis that the uniform convergence of continuous functions
implied the continuity on the function limit. When the eigen-
value was on the boundary, this eigenvalue had a null real part
and the stability character of the point (stable or unstable) was
unknown.

The above property was considered in our study using the
following property of continuous functions, formulated here
for one variable function.

Theorem 3. Let f : E → R, E ⊂ R be a continuous
function in the inner point x0 ∈ E such that α < f(x0) <

β;α, β ∈ R. Then there exists a neighborhood of the point
x0 ∈ E, where the function values respect the same inequali-
ties.

Remark: Theorem 3 ensured that the function f was contin-
uous in the point x0 ∈ E and was preserved in the neighbor-
hood of x0, the function sign in x0.

The mathematical conditions that ensured the separation be-
tween stable and unstable regions for the linear dynamical sys-
tem were described beginning with the following property:

Theorem 4. Let the linear dynamical system be de-
fined by the differential equation dydt = Ay(t), y(t) =

(y1(t), . . . , yn(t))T , A = (aij), i = 1, . . . , n; j = 1, . . . , n,
where the symbol T signifies the transposition of the matrix
and the values aij are assumed to be constants. If the real part
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of all eigenvalues of the matrix A is strictly negative, then the
solution of the differential equation is asymptotic stable in ori-
gin. If the real part of at least one eigenvalue of the matrix A
is strictly positive, then the solution of the differential equation
is unstable in origin.

If the real parts of the matrixA, eigenvalues are strictly neg-
ative, with the exception of at least one eigenvalue that has null
real part, then the stability of the dynamical system in origin is
unknown (possible stable or unstable).

3. ON THE SEPARATION OF THE DYNAMI-
CAL SYSTEM STABLE REGIONS

The possible structure of the stable and unstable points of
the dynamical system free parameters domain is described by
the following cases:

• If the dynamical system was stable in one point of the
domain of free parameters and was not on the frontier be-
tween stable and unstable regions, then there existed a
neighborhood around this point where the dynamical sys-
tem was also stable in each point of the neighborhood and
an analogue property for unstable point.

• The stable or unstable point could be situated on the fron-
tier between stable and unstable regions in the free pa-
rameters domain. Any neighborhood of such point was
composed of stable and unstable points.

In the case of distinct eigenvalues of the real matrixA, to the
linear dynamical system was attached to a theorem of separa-
tion between stable and unstable regions in the free parameters
domain of linear dynamical system, which is formulated be-
low. This theorem was a consequence of the above theorems
2, 3, and 4.

Theorem 5 (Separation theorem). If the linear dynamic sys-
tem is defined by the real matrix A, which has Hessenberg
form and whose entries are piecewise continuous functions of
free parameters, and the convergent QR algorithm ensures that
the real part of eigenvalue functions of the matrix A are also
piecewise continuous, then these conditions determine the sep-
aration between stable and unstable regions of the dynamical
system in the domain of free parameters.

Remark: We comment on the possibility of substituting in
practice the infinite QR algorithm by a finite one that would
simplify the application of the Separation Theorem 5 to the
specific examples later on.

3.1. The Separation Studied by Nonlinear
System “First Approximation”

The stability study for non-null solution of the nonlinear
equation dy/dt = h(t, y), y 6= 0, could be similar to one
corresponding to the null solution. This was the aspect for
which only the stability for the null solution of nonlinear dy-
namical system is analyzed. Another assumption was that the

equation of the dynamical system was in the autonomous form
dx/dt = f(x). Many particular dynamical systems were in
the autonomous form.

The function f(x) was supposed to depend on the vari-
able x = (x1, . . . , xn)T and its components denoted f(x) =

(f1(x), . . . , fn(x)). Its components were assumed to have the
following Taylor expansion near the origin:

fi(x) = fi(0) +

n∑
j=1

(∂fi(x)/∂xj) |x=0xj+

+

n∑
j=1

n∑
k=1

(
∂2fi(x)/∂xj∂xk

)
|x=0xjxk+

+ . . . , i = 1, . . . , n (4)

The above assumptions were permited to consider fi(0) =

0, i = 1, . . . , n and used the notations for derivatives of the
first order aij = ∂fi(x)/∂xj |x=0; i, j = 1, . . . , n we could
formulate the equation:

dx/dt = [aij ]x+ g(x); i, j = 1, . . . , n. (5)

The following theorems were due to Liapunov:
Theorem 6. The evolution of nonlinear dynamical system

in Eq. (5) is asymptotic stable in origin if the real parts of all
eigenvalues of the matrixA = [aij ], i, j = 1, . . . , n are strictly
negative.

Theorem 7. The evolution of the nonlinear dynamical sys-
tem in Eq. (5) is unstable in origin if the real part of at least one
eigenvalue of the matrix A = [aij ], i, j = 1, . . . , n is strictly
positive.

3.2. The Separation Studied on Nonlinear
System by Indirect Method

The indirect method of stability analysis consists in using
the differential equation solution that describes the evolution
of the dynamical system.

We again considered the equation dx/dt = f(x), with the
solution x(t) ≡ 0, x = (x1, . . . , xn)T , and the assumption
that the functions fi(x), i = 1, . . . , n, may be developed into
a series around the origin so that the above equation could be
expressed in the form in Eq. (5), where it was supposed that the
function x(t) was at least C2 class so that the function g(x) =

dx/dt−Ax was at least C1 class.
Because matrix A is a Jacobian matrix in origin x(t) ≡ 0

of the function f(x), then g(x) had the property, so that for
each γ > 0, there was δ(γ) > 0, such that if |x| < δ(γ), then
|g(x)| < γ|x|. This property meant that g(x), which corre-
sponded to ”higher order terms” in the series, was developed
around the origin and became negligible; at was reported to
linear order terms for a sufficiently small x.

A theorem that underlines the property of separation in the
free parameters domain of nonlinear dynamical systems, using
the indirect method is stated below.2
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Figure 1. Physical model.

Theorem 8. Consider the dynamical system defined by
Eq. (5), where A is a constant n × n matrix with real entries,
the variable x = (x1, . . . , xn)T , the function x(t) ≡ 0 is a
solution of the equation, and the function g(x) is supposed to
be continuous. Furthermore, the property that for each γ > 0,
there is δ(γ) > 0, such that if |x| < δ(γ), then |g(x)| < γ|x|.
We also assumed that all the eigenvalues of A have negative
real parts, such that Real λi ≤ −2α < 0, i = 1, . . . , n.

Then there exists δ0 > 0, β ≥ 1, such that for any |x0| < δ0:

|x(t; t0, x0)| ≤ βe−α(t−t0)/2|x0|, t ≥ t0. (6)

In conclusion, if the conditions of theorem 8 are verified,
then the origin stability ensures the stability in a whole neigh-
borhood of the origin which in turn implies the separation of
the stable regions.

Next, we give a concrete example of a dynamical system
with the property of the separation between stable and unsta-
ble regions. We also mentioned the stability study of other
particular dynamical systems in the references.11–13

4. STABILITY ANALYSIS OF PANTOGRAPH-
CATENARY DYNAMICAL SYSTEM

In this application, we analyzed the property of separation
of the stable and unstable regions in the plane of principal pa-
rameters for a particular dynamical system depending on pa-
rameters, namely the pantograph, which is a catenary dynam-
ical system.4 An analysis of the stability was performed here
on the mathematical model attached to the physical model, as
described in Fig. 1, of the electrical locomotive ”pantograph -
contact wire” dynamical system.

The defined physical model came from a vehicle [A] in
a uniform linear motion, which compressed with a force F ,
an oscillating system composed of two sprung concentrated
masses Mu and Ms on the wire [C], where y(x, t) was the de-
flection of the wire, EI was the bending stiffness of the wire
for each specified x and t values, T was the horizontal tension

in the wire, β was the viscous damping of the wire, m was the
mass per unit length of the wire, cs and cL were the damping
coefficients, ks, kL and kp were the stiffness elements of the
system. The values y1, y2, y3 were respectively, the deflection
of the wire compressed by the oscillating system in the contact
point, and the deflections from the equilibrium position of the
masses Mu and Ms. The oscillating system was moving with
a constant speed v at the same time with the vehicle [A].

The transformed system of equations were deduced through
the transformed parameters using dimensionless parameters of
the system:

(1− µ)¨̃y3 + 2(ςsω̃sn + ςLω̃nL) ˙̃y3−
−2ςsω̃sn ˙̃y2 +

(
ω̃2
sn + ω̃2

nL

)
ỹ3 − ω̃2

snỹ2 = 0.

µ¨̃y2 + 2ςsω̃sn ˙̃y2 − 2ςsω̃sn ˙̃y3 + ω̃2
snỹ2 − ω̃2

snỹ3+

+2ςLω̃nL ˙̃y3 + Ω̃2
n

ỹ2 − k∑
j=1

Tj(τ) sin jτ

 = 0.

1

2M̃ sin τ

(
d2Tj
dτ2

+
1.

ṽβ

dTj
dτ

+

(
j4

ṽ2EI
+
j2

ṽ2T

)
Tj

)
−

−Ω̃2
n

ỹ2 − k∑
j=1

Tj(τ) sin jτ

 = 0, j = 1, . . . , k. (7)

For more detailed data one, the references.4

The matrix of the system in Eq. (7), denoted A, in the case
k = 1, had the unknown vector components:

X1(τ) = µỹ2, X2(τ) = µ ˙̃y2, X3(τ) = (1− µ)ỹ3,

X4(τ) = (1− µ) ˙̃y3, X5(τ) =
1

2M̃ sin τ
T1(τ),

X6(τ) =
1

2M̃ sin τ
Ṫ1(τ) (8)

We did not specify the components of the matrix A from
the equation dX/dτ = AX of our dynamical system model,
where the vector X was defined by its components from
Eq. (8).

The stability of the dynamical system was studied in the fol-
lowing case of fixed parameters:

Ω̃n = 3.185, ṽβ = 19.8, ω̃nL = 0.48,

ṽEI = 90.96, ςs = 0.3, ςL = 0.3. (9)

The chosen free parameters were the transformed variables
ω̃ns and ṽT corresponded to the free dimensional parameters
of the dynamical system, respectively, the stiffness parameter
ks of the system and the horizontal tension T in the wire.

We analyzed the stability of motion for the displacement ỹ2
of the concentrated mass Mu in the specified free parameters
domain of interest.

The frontier curve of stable and unstable separation regions
of the displacement ỹ2 was plotted with a continuous line, as
seen in Fig. 2. It was done for two chosen parameters as de-
fined by the variables ω̃ns and ṽT for a selected domain by us-
ing an algorithm elaborated by the authors, which is explained
below and in some previous papers.
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Figure 2. Separation of stable zones.

Basically, the procedure to identify the frontier between the
stable and unstable regions is ensuring that the domain was
covered with a sufficient fine mesh and analyzed the stability
for each specified pair ω̃ns and ṽT . A refined mesh in the iden-
tification algorithm could be deduced by the bisection of the
interval between two neighboring points of the mesh for each
free parameter and the system solution successive values were
compared in order to decide the accepted value. The property
of separation could be justified using a finite QR algorithm in
our separation theorem 5 for the system dX/dτ = AX at-
tached to physical model from Fig. 1.

Again, we specified that the property of separation described
above permitted a selection of the free parameters, in a fixed
neighborhood of the stable region inner point in order to re-
spect one compatible optimized criterion.

5. CONCLUSIONS

A mathematical analysis of the possible structure of the sta-
ble and unstable points of the free parameters domain is per-
formed in this paper. Some mathematical conditions that en-
sure the separation between stable and unstable regions of the
free parameters of the linear or nonlinear dynamical system
are set off. The property of separation described here is also
encountered in many defined dynamical systems from the lit-
erature, without mathematical justification, which is important
because it ensures the possibility that the evolution, stability,
and control of a dynamical system may be optimized using the
compatible criterion in the stability regions. A defined dynam-
ical system that has the property of separation between stable
and unstable regions is described in this paper. We acknowl-
edge that our study has not exhausted the problem of dynami-
cal systems stability and control. However, an interesting do-
main of scientific research has been opened.
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