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This work presents a model-based algebraic approach to robust parameter estimation in uncertain dynamics rotating
machinery. The approach evades some mathematical intricacies of the traditional stochastic methods, proposing an
affordable Jeffcott-model-based scheme with several easy-to-implement computational advantages for processing a
real-world rotor frequency response or orbit. Therefore, it takes out the dynamic parameters from one of the orbit’s
resonant humps when the multistage rotor orbit shape behaves closely to the Jeffcott-model orbit. This occurs for
a valuable array of cases. The approach applies the spatial `2-norm looking forward to the correlation between the
analytical Jeffcott-orbit model and the experimental rotor’s orbit hump, handling the normalized frequency ratio.
Experimental results are also included to face this method with real-world rotating machinery orbits.

1. INTRODUCTION

Rotating machinery vibration response reflects the com-
bined interaction of dynamic and stationary machine elements,
in fact the history of rotodynamics consist in a collection of
trade off between theory and practice dealing with the vibra-
tion response. There are situations where the experimental data
of a case study rotor are unavailable due to some constraints.
For instance, the machine running speed cannot be increased
to investigate the detrimental effects of a resonant mode due
to hazardous conditions. If this is the case, then modelling be-
comes the most appealing option. Modelling solutions include:
Transfer Matrix Methods, Finite Element Analysis (FEA), and
affordable analytical approachs. For the first and second cases,
there are quite valuable computational plus time-cost penalties.

Alternatively, there is a wide array of the cases where there
is a chance to develop rotor vibration field measurements un-
der variable running speed. As an illustrative example, con-
sider the pre-programmed shut downs and re-starts of a refin-
ery unit in spite of the economic impact. If this is the case
from a problem solving standpoint, then an investigation needs
to be by comparing the predicted machine behaviour based on
an affordable analytical model. The experimental measured
behaviour then becomes the most appealing option. Thus, it is
not surprising that a large amount of research and development
has gone to deal with this subject as will be shortly disclosed
in the following.

To understand the fundamental behaviour of a rotor, per-
haps the first step should include determining the frequency
of the system’s critical speeds. Historically, one of the ear-
liest procedures for critical speed calculations was developed
by Julius Frith and Ernest Lamb (1901) dealing with torsional
vibrations involved by brake of shaft with different inertial
loads.1 However, in the beginning of the 1870th, transverse
cracks occurred in the heavy horizontal rotors of some tur-
bosets. This scenario stimulated the research on transverse
vibrations in shafts. Rankine (1869) and Laval (1889) devel-
oped the primary theory corresponding to the determination of
critical speeds by modeling flexible shafts with concentrated
and distributed masses.2, 3 A benchmark one degree of free-

dom model proposal for an unbalanced rotating machine dates
back to 1919, when Henry Hoffman Jeffcott developed a sim-
ple jet representative model based on a uniform flexible shaft
over rigid bearings at its ends.4 The shaft mass plus the stage
mass is concentrated at the shaft center. The Jeffcott rotor
(named after Henry Homan Jeffcott), also known as the Gustaf
de Laval rotor in Europe, is a simplified lumped parameter
model. By this time 1920, the critical speeds of shafts with
distributed masses were examined by Grammel.5 In the same
period a discussion of shaft stability conditioned by internal
friction forces was given by Kimball and Newkirk.6, 7 Also,
the turbine expert A. Stodola made an experimental analysis
dealing with the gyroscopic effect of a disc mounted on a shaft
and the secondary resonance phenomena.8 Nevertheless, the
presence of disturbing forces is not restricted to unbalancing
nature forces, in plain words a keyed shaft generates variable
stiffness disturbing forces that excite resonance at angular ve-
locities under the criticals.9

During the decades of 1940’s and 1950’s other similar cases
were pointed out by Natanzon, Bogdanoff, Green and Dick.10

However, it was not until the next decade of 1960’s when ex-
haustive analysis of problems relating to determination of nat-
ural vibration frequencies was developed. This analysis was
given by Dimentber as a result of experiments carried out at
the ’Elektrosila’ Lab and the Leningrado Foundry.11 This is a
more general problem than the determination of critical speeds
because the latter are special frequency values of natural vi-
brations, which match the shaft speed of rotation at a given op-
eration time. The valuable contribution of his hypotheses and
propositions about shaft stability, verified experimentally, can
be hardly emphasized at this point. By this time another no-
table contribution on the field thanks to Den Hartog, a mechan-
ical engineer at Westhinghouse company, must be mentioned.9
Anyway, in all of these cases the shaft vibrations analyses is
developed under a varying rotation speed.

During the 1980s, progress in analytical rotor modeling has
been closely associated with the process of the transfer ma-
trix calculations. On the other side, during 1980s, the rotating
machinery monitoring, which was based on the signals sup-
pield by sharp analog probes and digital keyphasors plus on-
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line digital signal processing, facilitated the progress of pre-
ventive fault detection and field balancing. To this goal, the
rotor orbit, i.e., the log of transversal amplitudes of vibration
plus phase delay of the deflective response, depicted in polar
coordinates, reveals as a quite valuable tool as demonstrates
the popular work of Donald Bently.12 Also, the primary works
of Eisenman reinforce this notion.13 He is a prolific author on
the field of rotating machinery fault detection and balancing.
At the 1990th, Eisenman’s son got an application to work as
manager of rotating equipments at a refinery. He came back
home almost every day carrying a question on the subject for
his father Eisenman Sr. The answers to the questions became
the main argument of a new textbook written by both.14 Any-
way, in most of the aforementioned works the rotor orbit shape
becomes paramount to examine the shaft vibrations nature re-
sulting form varying rotation speed. Between others the orbit
shape allows to characterize cracked or bowed shafts, mechan-
ical looses, i.e., machinery malfunctions.

However, the estimation of the frequency corresponding to
system critical speeds from the orbit requires a more detailed
analysis than the only consideration of the orbit shape referred
above. In fact, the exact frequency at which it occurs has
a rather valuable uncertainty associated due to the fast phase
variation at such resonant region. Overcome this drawback be-
come one of the arguments for the present work.

By the 21st century, a wide array of works have been pub-
lished which deal with the stability analysis and control of un-
balanced shafts vibrations. The stability analysis of the Laval’s
rotor with a transverse crack was developed.15 Vibrations iso-
lation with a semi-active pneumatic damping was also pre-
sented.16 Auto-balancing using speed dependent vibration ab-
sorbers was also investigated.17 Radial magnetic force was
used for shaft vibration suppression to go through the first crit-
ical speed.18 Under a periodic axial force, a rotating Timo-
shenko shaft with a rigid unsymmetrical disc was modelled as a
parametrically excited system using the finite-element method
and a harmonic balance method.19 Undesired whirling mo-
tions of rotating machines are efficiently reduced by support-
ing journal boxes elastically and controlling their movement by
viscous dampers or by dry friction surfaces normal to the shaft
axis.20 Damping lateral vibrations using rotor speed modula-
tion also become a recent alternative presented.21 The method
is based on the generation of an harmonic additive to the con-
stant rotation speed, that provides significant damping at criti-
cals. This suggests the notion that the influence of the electric
drive-converter can not be neglected dealing with real-world
rotating machines powered by electric motors plus converters.
This issue is taking into account in the present work, by in-
stalling a well suited passive LC filter behind a three phase
PWM driver. This set up guarantees that a sinusoidal modu-
lation feed the asynchronous electrical motor minimizing har-
monics detrimental effects in the experimental orbits.

The present work is organized as follows: in section-2 sym-
bolic computations, involving the normalized frequency ra-
tio, over the analytical Jeffcott-Orbit expression, are devel-
oped. These will facilitate in section-3 synthesize an advan-
tageous analytical formulation, regarding the orbit extreme
points properties. Thus, the estimation of the actual critical
frequency on the basis of the correlation between the experi-
mental multi-stage rotor orbit-hump to the equivalent Jeffcott-
model-rotor orbit by Least Squares Fitting algebraic method.
Later, the synthesized analytical formulation to estimate the
corresponding Jeffcott-model-rotor parameters was applied:
stiffness of the shaft, damping ratio and the unbalance force
phase. In section 4, experimental results dealing with a real-
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Figure 1. Jeffcott-model rotor orbit. Conditions: ωn=23.56 Hz, ζ=0.1.

world multi-stage rotor plus continuos and keyed shafts, are
given. Also, a discussion on the aforementioned parameter es-
timation good performance. Finally, section-5 includes some
modest conclusions.

2. THE MODEL
Dealing with the wide array of machines with rolling ele-

ment bearings without resilience at the shaft journals, usually
synchronous whirling takes place. In plain words, the flexi-
ble shaft and the inertial stages whirls with the same angular
velocity, so that rotate together as a rigid body. Also, if the
inertial stages are close to the shaft center and the customary
range of rotating velocities behaves moderate, the gyroscopic
effects can be assumed moderate as well. If this the case, the
resonant hump shape of a multi-stage rotating machine orbit,
behaves closely to the orbit shape of a Jeffcott-model equiva-
lent machine.22

Regarding the conditions stated above, the stationary fre-
quency response of a flexible shaft without resilience at the
journals and the inertial stage close to the shaft center has been
exhaustively addressed in the the literature11,22 and is given by

X(iω) =
ω2
neu

ω2 − ω2
n + 2ζωωni

=
eu

(( ω
ωn

)2 − 1)) + i2ζ ω
ωn

.

(1)
Nonetheless, an interesting geometric translation can be ex-

tracted from this expression given in terms of the normalized
frequency ratio. To this goal, let it be X(iω) = x − iy a cus-
tomary complex number, q = ω

ωm
the normalized frequency

a non-dimensional speed of rotation that states the frequency
ratio between the actual rotating frequency and the assumed or
modeled natural frequency. This normalized value q, is usu-
ally adopted for robust filters design.23 Note that the value
anticipated by the referred benchmark model for the natural

frequency would be ωn ' ωm =
√

k
m where k = 48EIz/`

3

and m states the mass of the inertia disk. Finally, without lost
of generality eu is allowed to be the unit, then Eq. (1) becomes

x− iy =
1

(q2 − 1) + 2ζqi
. (2)

The use of algebraic manipulations to expand Eq. (2) as a func-
tion of the normalized frequency ration q gives

x(q2 − 1) + 2ζyq = 1; (3)

2ζxq − (q2 − 1)y = 0. (4)
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Table 1. Jeffcott Model Concerned Parameters.

Machine model parameter Assumed value
Young module, E 206,000 MPa
Rotor Diameter, d 0.015 m
Second moment of the cross section, Iz (πd4/64)2.48 · 10−9m4

Rotor length, l 0.500 m
Unbalanced distance, eu 0.010 m
Asynchronous motor nominal velocity 1500 rpm
Disk mass, m 9 Kgr.

Eliminating the parameter q between Eq. (3) and Eq. (4) can
be done by firstly rewriting them as

(q2 − 1) =
1− 2ζyq

x
; (5)

(q2 − 1) =
2ζxq

y
; (6)

it follows that
y − 2ζy2q = 2ζx2q; (7)

therefore
q =

y

2ζ(x2 + y2)
. (8)

Substituting the q parameter value given by Eq. (8) into Eq(3)
yields

xy2 − x(2ζ(x2 + y2))2 + 2ζy2 + 2ζy22ζ(x2 + y2)

= (2ζ(x2 + y2))2; (9)

reordering terms and rejecting the null solution, Eq. (9) be-
comes

y2−4ζ2x4−8ζ2x2y2−4ζ2y4−4ζ2y2x−4ζ2x3 = 0. (10)

At this point, acknoledging that x2 << y2, rejecting second
order terms closed to zero Eq. (10) yields

y2 − 4ζ2y4 − 4ζ2y2x ' 0. (11)

This a quadratic equation in y, again rejecting the trivial solu-
tion it simply becomes

1 ' 4ζ2(y2 − x). (12)

The Eq. (12) expresses a parabola curve whose hump inter-
section with the y-axis is at the point y = 1

2ζ . Differentiating
Eq. (12), the slope value at such point is ẏ = ζ, depicted in
Fig. 1. Thus, using this property, it is feasible to extract the
damping ratio from the theoretical rotor orbit. Also accord-
ingly, the orbit hump size is a function of the damping ratio. In
general terms, as the damping increases the orbit size reduces.
Anyway this is only one of the outcomes that can be obtained
from the orbit geometric properties. In fact, the orbit hump
provides quite valuables tracks in order to analyse the dynamic
behaviour of the rotor.

3. METHODS
Actually, dealing with a real world rotating machine orbit,

several humps might take place. Each one corresponds to a res-
onant situation. All of them lumped together build the whole
rotating machine orbit. In addition, each hump has its own ori-
entation in the complex plane. Thus, between each hump of a
real world rotating machine orbit and the Jeffcott-model orbit,
depicted in Fig. 2, the following differences can be found:
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1. The parameters ρ and q involved by the Jeffcott-model
orbit are dimensionless while the real world hump values:
R the amplitude, and ω the frequency have dimensions.

2. With reference to the initial and final points of the
Jeffcott-model orbit, the actual orbit lacks such points or
regions corresponding to the cases when ω equals zero
and ω equals∞, which can not be reached.

3. In fact, each hump of the orbit is not placed at the theoret-
ical orientation, its origin is arbitrary and it is a function
of other humps that the actual orbit might have.

4. Finally, the shape of an orbit’s hump would differ from
the Jeffcott-model orbit.

Anyway, this work attempts to overcome these drawbacks. Un-
less otherwise stated the availability of experimental reliable
measurements corresponding to the rotor deflection Ri at the
frequency ωi, are quite valuable. The maximum deflection
R0 of the orbit hump is a reliable value, however the exact
frequency at which it occurs ωn versus ω0 have a quite valu-
able uncertainty associated due to the fast phase variation at
such resonant region. Actually, the most affordable experimen-
tal approach consist in measure the inertial unbalanced force
phase depicted in Fig. 3. Two signal are involved: the periodic
signal supplied by the keyphasor plus the analog signal sup-
plied by the probe. For a given rotor angular velocity such an-
gular phase, keeping unchanged the angular velocity, remains
proportional to the time delay between the analog signal high
point, corresponding to inertial stage weighted point, and the
keyphasor flank as shows the Fig.4

The experimental measurement outcomes resulting from the
just described set up reinforces the notion of the fast phase
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Figure 5. The phase variation at the resonant region (experimental data).

variation corresponding to the inertial force when the rotor tra-
verses the critical, as demonstrated overall in Fig. 5. In view
of this, to estimate the actual critical frequency ωn of a multi-
stage rotating machine from an experimental orbit-hump at a
resonant zone, the following analysis is developed.

First, recall from Eq. (2) that the theoretical amplitude of
vibration ρ can be expressed by

ρ =
1√

(q2 − 1)2 + 4ζ2q2
. (13)

Let it be ρ0 the maximum dimensionless rotor deflection am-
plitude that takes place at the normalized frequency ratio q0. If
this the case the condition that occurs, at this extreme, is[

dρ

dq

]
0

= 0. (14)

From this point, Maple 13 was used to carry out the values of
ρ0 and correspondingly q0 plus other symbolic computations.
Deriving Eq. (13) according Eq. (14) it is first obtained

q0 = ±
√

1− 2ζ2; (15)

by simply substituting this value of q0 as a function of ζ, versus
Eq. (15) into Eq. (13) yields,

ρ0 =
1

(1− 2ζ2)
√

(1− 1
1−2ζ2 )2 + 2ζ2

1−2ζ2

. (16)

In addition and inversely, by using symbolic computation any

dimensionless amplitude of vibration ρ can be expressed in
terms of its corresponding normalized frequency ratio q = ω

ωm

plus q0 = ω0

ωm
, without involving the damping ratio ζ parame-

ter.

ρ =
1

q2
√

1
q4 −

2q20
q2 + 1

. (17)

Next, this result was used to solve the correlation between an
experimental rotor orbit and the theoretical one synthesized
above on the basis of the assumed or modeled natural fre-
quency ωm and damping ratio ζm.

Estimation of the actual critical frequency on the basis of
the experimental orbit correlation with the Jeffcott-model or-
bit. At this point, the experimental rotor orbit will be used
to extract the actual critical frequency, that coincides with a
natural frequency under the resonant situation. To this end, as
shown in Fig. 2, let it be the ratio between any experimentally
measured amplitude of vibration Ri and the maximum mea-
sured amplitude R0. Note that R0 is a reliable value and able
to be easily obtained from the experimental measurements

R2
i

R2
0

=
1

Zi
; (18)

where the dimensionless parameter Zi > 1 states the inverse
of such ratio. And for each frequency ωi corresponding to the
amplitude Ri, let it be

bi =
ω2
i − ω2

0

ω2
0

; (19)

the squared normalized `2-norm. Recalling that q = ω/ωm
states again the normalized frequency. Thus, dividing the sec-
ond’s term, num and den, of Eq. (19) by ω2

m is equivalent to

q2i = q20(1 + bi); (20)

where ω0 states the actual global machine critical frequency.
Looking forward, the correlation between the experimental and
the theoretical orbit yields

R1

ρ1
=
R2

ρ2
= · · · = Ri

ρi
= · · · = R0

ρ0
; (21)

thus, according to Eq. (18) and (21) it can be written

R2
i

R2
0

=
ρ2i
ρ20

=
1

Zi
; (22)

where Zi =
R2

0

R2
i

is a dimensionless scalar. At this point, substi-
tuting Eq. (17) into Eq. (22) yields,

ρ2i
ρ20

=
1− 2q40 + q20

1− 2q20q
2
i + q2i

; (23)

combining Eq. (23), (22), and (20) gives,

1

Zi
=

1− q40
1− q40 + q40b

2
i

; (24)

rearranging terms, Eq. (24) becomes

b2i = (Zi − 1) · 1− q40
q40

; (25)

International Journal of Acoustics and Vibration, Vol. 22, No. 2, 2017 227



P. Izquierdo, et al.: MODEL-BASED ALGEBRAIC APPROACH TO ROBUST PARAMETER ESTIMATION IN UNCERTAIN DYNAMICS. . .

Figure 6. The Least Square polynomial fitting for the set of points (b2i , Zi).

finally, letting

Q =
1− q40
q40

; (26)

where q0 = ω0

ωm
. Thus the Eq. (25) can be simply rewritten as

b2i = Q · (Zi − 1). (27)

A linear relationship between b2i and Zi has been found.
Such linear polynomial traverses the point (1,0) of the Zi−bi2
plane. In addition, according to Eq. (26), its slope Q links the

prime concern modelled frequency ωm =
√

k
m of the Jeffcott

model ( ωm = 23.46[Hz] according to table 1), and the ac-
tual global machine critical frequency, ω0. However, given a
set of experimental points (Zi, b

2
i ) coming from the measured

response in the frequency domain configuring the rotating ma-
chine orbit, there is a mismatch between this set of experimen-
tal points (Zi, b

2
i ) and the theoretical linear polynomial found.

In view of this scenario, the most appealing option com-
prises a Least Square polynomial fitting procedure shown in
Fig. 6. The first step consists in building a table of the type
shown in Table 2. Given the dataset (Zi, b

2
i ) the method of

least squares minimizes the error associated to saying b2i =
Q · (Zi − 1) by

min→ E(Q) =

3∑
i=1

(b2i −Q · (Zi − 1))2. (28)

To this goal, it is necessary the availability of an initial
modelled or guess frequency ωm. Recall that Q is a function
of q0 and q0 is a function of ωm because q0 = ω0

ωm
. However,

for such a guess frequency, the outcoming line obtained
from the fitting process, must traverse the point (1,0). If this
constraint is not verified, the value of the assumed modeled
frequency ωm must be shifted upwards or downwards by
the algebraic algorithm until the linear polynomial traverses
the constraint point as shown in Fig. 7 and Table 3. Once a
well suited ωm value has been reached from the least squares
method, the slope Q of the corresponding linear polynomial
allows to carry out ω0 using

ω0 = ωm
1

4
√

1 +Q
. (29)

Table 2. Experimental Measurements Involved Ratios. 5

i-input Ri ωi b2i = (
ω2
i −ω2

0

ω2
0

)2 Zi =
R2

0

R2
i

1 10.13 26.4061 0.0315 1
2 10.13 26.441 0.0342 1
3 10.0789 26.476 0.037 1.0102
4 10.0782 26.5252 0.0408 1.0103
5 10.0747 26.5393 0.0419 1.011
6 10.0785 26.5887 0.0458 1.0102
7 10.0805 26.6241 0.0486 1.0099
8 10.0779 26.6667 0.0519 1.0104
9 10.0769 26.7094 0.0553 1.0106
10 10.0776 26.7237 0.0564 1.0104
11 10.0798 26.7666 0.0598 1.01

Figure 7. Convergence of the LQE linear polynomial fit procedure. Constrain:
traverse the point (1,0) of the Zi− bi2 plane.

Figure 8. Experimental set up.

Shortly, the procedure just described provides an affordable
method for evaluating the corresponding critical frequency of
an orbit hump. The relevance of this procedure can be stated by
recalling that the exact frequency at which it occurs ωn versus
ω0 have a quite valuable uncertainty associated due to the fast
phase variation at such resonant hump-region.

However, this is only the primary result. In addition, the
presented method might be helpful to identify others dynamics
parameters. To that goal let assume that the mass value of the
inertial stage is known, this is a quite reasonable supposition.
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Table 3. Convergence of the LQE linear polynomial fit procedure.

ωm linear polynomial Zi b2i
26.5 b2i = 0.006684Zi + 0.5853 1 0.591984
33 b2i = 0.004616Zi + 0.0002295 1 � 0.0048455
34 b2i = 0.004348Zi − 0.05774 1 -0.0533952

Thus, from Eq. (26) the shaft stiffness can be obtained as,

k = ω2
0m
√

1 +Q. (30)

The damping ratio can be easily obtained from Eq. (15)

ζ =

√
1− q20

2
. (31)

Or equivalently identify the damping of the benchmark model

c =
√
km(1− q20) (32)

Dealing with the phase delay of the shaft response to the un-
balance force F at the system critical ω0, it is given by

tan(ϕ0) =
2ζq0

1− q20
. (33)

The direction of ρ0 can be found into the orbit, in view of this,
from Eq. (33) the direction of the unbalance excitation force
F , that causes the rotor orbit, can be also estimated as shown
in Fig. 9. Finally, the module of F can be found because

R0k = Fρ0. (34)

Thus, from Eq. (17) and Eq. (33) it is obtained

F = kR0

√
1− q40 . (35)

At this point, the procedure just described above allows
to estimate the corresponding Jeffcott-model parameters from
one of the orbit’s resonant humps, when the multi-stage rotor
orbit shape behaves closely to the Jeffcott-model orbit. If, as
it is customary, the mass m is the parameter whose value is
available then the a simple look up method was given above to
estimate the addressed model parameters.

4. MATERIALS

4.1. Continuous Shaft Rotor
To demonstrate these assessments, a multi-stage rotating

machine experimental response to a varying velocity was col-
lected. The sketch of the machine is shown in Fig. 8. The
machine is composed by two inertial stages with associated
measurement planes consisting of a bridge where two analog
probes plus a digital keyphasor have been installed. Table 1
includes the theoretical parameters corresponding to the mod-
eled shaft stiffness plus individual disk inertia, when the two
stages are coupling to the asynchronous motor. Finally, the fre-
quency response bellow the second critical frequency is shown
in Fig. 9. This orbit was translated to the Zi−b2i plane depicted
in Fig. 10. This dataset underwent the Least Square fitting pro-
cedure with the help of MATLAB R© Toolstrip. The MATLAB-
script procedure converges to a solution for ωm = 33 Hz as
demonstrates the Fig. 7. Also, the slope of the optimal lin-
ear polynomial found was Q=0.004616 ±8.3510−5. Thus,

Figure 9. Unbalanced rotor experimental orbit. Conditions: linear response.

the actual critical frequency estimated according Eq. (28) was
ω0 = 32.962±7 ·10−4 Hz, carrying a low level of uncertainty
associated, as shows the figure 11.

ω0 = 33
1

4
√

1 + 0.004616± 8.35 · 10−5

= 32.962± 7 · 10−4 Hz. (36)

To verify this result, a finite element model of the corre-
sponding Jeffcott-model rotor plus the electrical motor was
built, as shown in Fig. 12, giving a first natural frequency of
around 44 [Hz]. Regarding that, in general terms, the FEM
method is an extension of the Rayleigh’s energy approxima-
tion method,24 it is customary to obtain for the lowest natu-
ral frequency a value which is somewhat quite high.9 This
result reinforces this notion, when compared with the exper-
imental value obtained above, extracted from the actual real
world multi-stage rotor orbit.

Assuming that the mass m is the parameter whose value is
known given in table 1, the corresponding Jefcott-model shaft
stiffness can be estimated according to Eq. (29),

k = ω2
0m
√

1 +Q = (32.962 ∗ 2π)2 · 9 ·
√

1 + 0.004616

= 3.87 · 105 N/m. (37)

The modeled value for the shaft stiffness were km = 48EIz
`3 =

1.96·105 N/m according to Table 1. The estimated value found
for the stiffness differs largely from the beam-model one, actu-
ally it is nearly twice the initially modelled value. The proce-
dure also allows to estimate the damping ratio value. Accord-
ing to Eq. (30), it is given by

ζ =

√
1− q20

2
=

√
1− ( 32.96

33 )2

2
= 0.0335; (38)
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Figure 10. Transformation of the orbit into the Zi− b2i plane.

or equivalently the damping

c =
√
km(1− q20) =

√
3.87 · 105 · 9 · (1−

[
32.96

33

]2
)

= 88.34 · N
s
m
. (39)

At this point, the whole set of fundamental dynamic param-
eters of the Jeffcott-model corresponding to the real world
multi-stage rotor has been identified. However, the question of
the unbalance force direction remains still unanswered. Such
direction can be specified by Eq. (32) according to

tan(ϕ0) =
2ζq0

1− q20
=

2 · 0.335 · 32.9633

1−
[
32.96
33

]2 = 1.0069 · 104; (40)

this equation leads to a value for ϕ0 of around 880. Thus, to
produce a well suited balancing force at such resonant rotating
velocity it should nearly have the opposite direction as shows
Fig. 9. Anyway, the balancing procedure has been exhaustively
addressed in textbooks on the subject.14 The customary ap-
proach establishes the balancing force direction by setting up a
vector from the beginning to the end of the resonant hump, as
shown in Fig. 13 (keeping in mind the angular reference of the
physical rotor). As can be see both directions, the one depicted
in Fig. 9 and the second one shown in Fig. 13 agree. Also, this
univocal direction has demonstrated to be effective regarding
the balancing purposes as corroborates the Fig. 14. This fact
reinforces the notion that the results obtained by the presented
method agree with the previously mentioned literature on the
subject.

4.2. Keyed shaft rotor
For the case of a keyed rotor referring to Fig. 15, the orbit

has two humps showing a more complex dynamic response.
During the whole revolution, the keyed shaft stiffness passes
through two cycles, as shows the Fig. 16. Let it be the min-
imum value k - ∆k , and the maximum k + ∆k, with and
average value of k. Then for uniform rotating speed the in-
stantaneous stiffness can be expressed by

k(t) = k + ∆k · sin(2ωt). (41)

The variable component of the spring force becomes a disturb-
ing force of frequency 2ω. If the shaft is running at its half

Figure 11. Estimation of the actual critical frequency. Conditions: slope
Q=0.004616 ±8.35 · 10−5.

Figure 12. Estimation of the assumed modeled frequency by the Finite Ele-
ment Method. Result: ωm ' 44 Hz.

critical speed ω0

2 , the impulses of this force will occur at the ro-
tating machine natural frequency. If this occurs, the case a res-
onant situation occurs delivering a hump into the whole orbit at
such frequency: ω = ω0

2 . Thus, a two humps orbit is expected.
The first hump occurs closed to the half critical speed plus the
second one at the first critical. Both appear in the experimental
orbit depicted in Fig. 15. The main hump with constant radius
seems to be a circle. The reason can be found in the saturation
of the analog probes as a consequence of the vibration severity.
This is a weak point of the proposed method. As the pollution
of the Ri experimental measurements increases, the reliability
of the method obviously decreases. furthermore, the transla-
tion of the two humps orbit to the Zi − b2i plane is given in
Fig. 17 reinforcing the notion of a complex dynamic behavior.
Also, Table 4 was built using the same experimental measured
data.

After the fitting procedure, the guess frequency correspond-
ing to the linear polynomial, traversing the constraint point
(1,0) of the Zi − b2i plane, is ωm = 26.5, such polynomial
have a slope Q of 0.1772 . Finally, the actual natural frequency
found was

ω0 = 26.5
1

4
√

1 + 0.1772
= 25.44 Hz. (42)
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Figure 13. Balancing direction estimation, by setting up a vector from the
beginning to the end of the orbit hump. Conditions: clock wise rotation.

Figure 14. Time-based dynamic signals and polar plot: (a) unbalanced rotor
and (b) balanced rotor (two correction weights added). Conditions: mechani-
cal frequency 20 Hz, discrete correction weight 8gr at the inertial disk surface.

The uncertainty is not important here due to the polluted
measurement data. However, in spite of something corrupted
data, as expected from a qualitative view point, the global ro-
tating machine natural frequency is shifted down this is caused
by the stiffness loose of the keyed shaft if compared with the
continuous shaft without the slot along it. This statement can
be proved by applying the Eq. (29) to the keyed shaft to esti-
mate the corresponding Jeffcot-model stiffness

k = ω2
0m
√

1 +Q = (25.44 · 2π)2 · 9 ·
√

1 + 0.1772

= 2.49 · 105 N/m. (43)

This is a lower value than the prior case of the non-keyed
shaft, verifying the expected theoretical result, and reinforces
the presented method conformity with the experimental facts.

5. CONCLUSIONS
At this point, a Jeffcott-model algebraic method that makes

affordable analytical expressions available for engineers

Figure 15. Experimental keyed rotor orbit that was polluted by probes satura-
tion, including one hump of constant radius.

Figure 16. Variable stiffness of the rotor induced by the slot along its length.
Conditions: b=5 mm,t=2.65 mm,d=15 mm. Iz = 2485−331.25 ·10−12 m4.

Table 4. Convergence of the LQE linear polynomial fit procedure for the
keyed-rotor.

ωm linear polynomial Zi b2i
ωm = 25 b2i = 0.1991Zi − 0.07652 1 0.12258
ωm = 26 b2i = 0.1841Zi − 0.1462 1 0.0379
ωm = 26.5 b2i = 0.1772Zi − 0.1781 1 � 0.0009

to estimate the most descriptive parameters for uncertain
dynamics rotating machinery has been developed. Thus, the
critical frequency, the stiffness of the shaft, the damping ratio
plus the unbalance force phase, are estimated in a straight
forward manner on the basis of the correlation between any
experimental real-world rotating machine orbit’s hump to the
Jeffcott-orbit. This comprises an affordable Least Square
polynomial fitting procedure applied to the log of to the ex-
perimental orbit. The results show clearly the conformity with
the physical evidence and accuracy for the aforementioned
parameters estimation.
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Figure 17. Location of the main resonant zone in the Zi − b2i plane for the
keyed rotor.
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