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This study investigated the damping effects of a dynamic vibration absorber (DVA) attached to a hinged-hinged
nonlinear Euler-Bernoulli beam. The model constructed in this study was used to simulate suspended nonlinear
elastic beam systems or vibrating elastic beam systems on a nonlinear Winkler-type foundation. This makes
the modeling in this study applicable to suspension bridges, railway tracks, and even carbon nanotubes. The
hinged-hinged beam in this study includes nonlinear stretching effects, which is why we adopted the method
of multiple scales (MOMS) to analyze the frequency responses of fixed points in various modes. The use of
amplitudes and vibration modes made it possible to examine the internal resonance. Our results indicate that
particular elastic foundations or suspension systems can cause 1:3 internal resonance in a beam. The use of 3D
maximum amplitude contour plots (3DMACPs) enabled us to obtain a comprehensive understanding of various
DVA parameters, including mass, spring coefficient, and the location of DVA on the beam, and thereby combine
them for optimal effect. Our results were verified using numerical calculations.

1. INTRODUCTION

Engineering from the scale of small mechanical components
to that of aircraft wings and bridges must take into account
the effects of vibration, which can cause fatigue, loosening of
parts, and failure. Vibration can be linear or nonlinear, with
the latter involving internal resonance that is complex and dif-
ficult to analyze. As described by Nayfeh and Mook,1 in the
event that the natural vibration frequencies of various degrees
of freedom (DOFs) are multiples of one another, excitation
at high frequencies can increase amplitudes at low frequen-
cies. This study sought to account for this unique nonlinear
phenomenon. Nayfeh and Balachandran2 defined several sta-
ble conditions in nonlinear systems and presented a number
of methods that could be used to determine system stability,
and are therefore highly valuable as a reference in the anal-
ysis of system stability. Nayfeh and Pai3 investigated vibra-
tions in nonlinear Euler-Bernoulli beams. According to New-
ton’s laws, Euler’s angle transformation, and the Karman-type
strain-displacement relationship in order to derive 3D and 2D
equations associated with nonlinear beams. These theoreti-
cal models have greatly benefited related research. Nayfeh
and Mook1 also proposed a number of methods with which
to solve nonlinear systems, including the Poincaré method, the
Lindstedt method, the average method, and MOMS, which is
highly conducive to the analysis of damped vibration systems.
Ji and Zu4 studied the rotating shaft system of a Timoshenko
beam using MOMS to analyze the natural frequency responses
of nonlinear systems. Nayfeh and Nayfeh5 employed MOMS
to identify nonlinear modes and nonlinear frequencies, where-

upon they applied the Galerkin method to the analysis of dy-
namic responses in a nonlinear beam. Analysis of vibrations
in an elastic beam involves many factors. Van Horssen and
Boertjens6 considered a suspension bridge under the influence
of nonlinear aerodynamic effects using the theoretical model
of a Euler-Bernoulli beam with linear springs to simulate vi-
brations in the bridge. They discovered that energy can shift
between the first and third modes and that this is typical of non-
linear internal resonance. Their study prompted a great deal
of research based on theoretical models. Theories similar to
this, in which a beam is placed on an elastic foundation, have
been widely applied to civil, mechanical, and aerospace engi-
neering, by researchers such as Mundrey.7 Fu et al.8 reported
nonlinear vibrations in embedded carbon nanotubes (CNTs),
based on research involving the use of nonlinear 2D Euler-
Bernoulli beams to simulate vibrations in CNTs on elastic ma-
trices. Shen9 used the model of a nonlinear 2D Euler-Bernoulli
beam to analyze vibrations in a post-buckling beam placed on a
double-layered elastic foundation, thereby demonstrating that
the stiffness of elastic foundations has a significant influence
on the vibration behavior of nonlinear beams.

Wang and Chen10 developed a damping approach to vibra-
tion reduction without the need to change the damper, but
merely enable its relocation by having a mass-spring-damper
vibration absorber hung from the optimal damping location on
a rotating mechanism (a CD-ROM drive or the coupling sys-
tem of rotary wings and swashplates). Wang and Chang11 stud-
ied nonlinear vibrations in a rigid plate using cubic springs
to simulate supports at the four corners with two single-
mass dampers hung from beneath the plate. The locations
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of the dampers were adjusted to achieve optimal damping ef-
fects. Dynamic vibration absorber (DVA) is a practical passive
damping device for vibrating systems. For a linear vibrating
beam, DVA can be pre-tuned to the modal frequency of the
vibrating structure or the disturbance frequency to damp out
the beam vibration. Wang and Chang12 discussed a hinged-
free linear Euler-Bernoulli beam placed on a nonlinear elas-
tic foundation. They found that placing a DVA of appropriate
mass could prevent internal resonance and suppress vibrations
in the beam. Nambu et al.13 studied the smart self-sensing
active DVA attached on a flexible beams supported string. A
small cantilevered piezoelectric transducer was used to real-
ize this active DVA. They showed improvement control ro-
bustness upon passive DVAs. Tso et al.14 proposed a novel
design method of hybrid dynamic vibration absorber (HVA) to
suppress broadband vibration of the whole structure instead of
just one point of the structure. Samani and Pellicano15 identi-
fied the optimal locations of a DVA applied to a simple beam
subjected to regularly spaced and concentrated moving loads.
The nonlinear stiffness of a nonlinear DVA possesses com-
plex dynamic properties such as quasi-periodic, chaotic, and
sub-harmonic responses. They discovered that the damping
effects of a nonlinear non-symmetric dissipation DVA are su-
perior to those of a linear DVA. In contrast, Wang and Lin16

used internal resonance contour plots (IRCPs) and flutter speed
contour plots (FSCPs) to analyze nonlinear dynamic stability.
Their results demonstrated that changing the location of the
damper can prevent internal resonance and inhibit vibrations
in the main body. Wang and Kuo17 examined the vibrations
of a hinged-free nonlinear beam placed on a nonlinear elastic
foundation. The 1:3 internal resonance in the first and second
modes of the beam was found. An optimal location of an at-
tached DVA was proposed to prevent internal resonance and
suppress vibrations. Wang and Tu18 investigated the damp-
ing effects of a tuned mass damper (TMD) on a fixed-free 3D
nonlinear beam resting on a nonlinear elastic foundation with
existing internal resonances. They proposed that the locations
of the maximum amplitudes between node points in the mode
shapes and near the free end of the beam display the best damp-
ing effect for the fixed-free 3D beam. In the works of Wang
and Kuo17 and Wang and Tu,18 the nonlinear geometry and
nonlinear inertia were included in these two nonlinear beams.
The conditions to trig the internal resonance were also inves-
tigated in their researches. The various beam boundary condi-
tions were examined for better understanding the DVA damp-
ing effects on beam vibrations. Wang and Liang19 investigated
the damping effects of vibration absorbers with a lumped mass
on a hinged-hinged beam. This kind of vibration absorber is
able to mitigate vibrations in mechanical or civil engineering
structures on an elastic foundation; however, they are not ap-
plicable to all suspension systems. It is this shortcoming that
we sought to address in this research.

Further consideration of resonance analysis of structures us-
ing the analytical and numerical strategies can be found in the
work of Ansari et al.20 They derived a geometrically nonlinear
beam model to simulate the nanobeam vibration under ther-
mal environment. The material properties of nanobeams vary
through the thickness direction with functionally graded (FG)
distribution. The method of multiple scales was applied to de-

termine the frequency response of the temperature and material
properties. A 2-DOF nonlinear system (the main body and the
controller (absorber)) with quadratic and cubic nonlinearities
under external and parametric bounded excitations was con-
sidered in the work of Sayed and Kamel.21 The method of
multiple scales was applied to determine the amplitudes and
phases in the existence of internal resonance. The stability
of the controlled system was studied. Ghayesh et al.22 in-
vestigated the axially moving beam with a three-to-one inter-
nal resonance. The coupled longitudinal and transverse dis-
placements of the beam were studied numerically. The fre-
quency response of the nonlinear forced system was solved
by the pseudo-arc length continuation method and direct time
integration. Ghayesh and Amabili23 provided a detailed dis-
cussion of an axially moving Timoshenko beam with an inter-
nal resonance. They used the Galerkin’s scheme to discretize
the nonlinear partial differential equations into a set of non-
linear ordinary differential equations. The pseudo-arc length
continuation method was also employed to find the frequency
response of the nonlinear forced system. The dynamic and res-
onant response were examined by the Poincaré maps. Stabil-
ity properties with and without internal resonance were pre-
sented. Ansari et al.24 investigated the forced vibration of
nonlinear magneto-electro-thermo elastic (METE) nanobeams.
The Galerkin technique was applied to obtain a time-varying
set of ordinary differential equations. The pseudo-arc length
continuum scheme was also used to solve this nonlinear beam
system. Ansari et al.25 applied the similar numerical strategies
in the analysis of the forced vibration behavior of reinforced
single-walled carbon nanotubes (SWCNTs). Different effects
of SWCNT parameters were examined by the frequency re-
sponses. Their results showed that the amplitude peak reduces
when the nanotube volume fraction or dimensionless damping
parameter gets larger. Ansari et al.26 also invested the sur-
face stress effect on the vibrations of nanobeams. The general-
ized differential quadrature method and the shifted Chebyshev-
Gauss-Lobatto grid points were employed to solve the nonlin-
ear problem. The frequency response of nanobeams including
the effect of surface stress was investigated. Ansari et al.27

performed a numerical study of two-phase BiTiO3-CoFe2O4

composites nanobeams subjected to various boundary condi-
tions. The Galerkin and pseudo arc-length methods were em-
ployed for solving nonlinear problems. They also provided a
novel technique of periodic time differential operators for the
time domain discretization. Ansari and Gholami28 further in-
vestigated the surface stress and surface inertia effects on the
rectangular nanoplates. The equations of motion were solved
numerically for the rectangular Si and Al nanoplates with vari-
ous boundary supports by means of the generalized differential
quadrature method. The hardening nonlinearity and surface ef-
fects showed considerable influences on nanoplates.

This study considered a nonlinear hinged-hinged Euler-
Bernoulli beam supported or suspended using nonlinear
springs, including internal resonance and the coupling of mul-
tiple modes. This system is able to simulate a vibrating me-
chanical system suspended or placed on an elastic medium,
such as a suspension bridge or the tracks of subways or high-
speed trains. This system can also be used to simulate CNTs
placed on an elastic matrix. The main body in this study was
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(a)

(b)

(c)

Figure 1. A schematic of the hinged-hinged beam system, (a) suspension beam, (b) Winkler type foundation, (c) relationship between beam displacement and
rotation angle.

subjected to a harmonic force. We used a mass-spring DVA
to reduce vibrations, taking into account the effects of stretch-
ing. The influence of parameters, such as the mass, elasticity
coefficient, and location of the DVA on damping performance
were analyzed extensively. We used 3D maximum amplitude
contour plots (3DMACPs) to identify the optimal combination
of parameters as well as numerical calculations to verify the
accuracy of the results.

2. DEVELOPMENT OF THE THEORETICAL
MODEL

The main body in this study comprised of a nonlinear elastic
beam supported or suspended by nonlinear springs to simulate
an elastic foundation or suspension cables. Figure 1 illustrates
the coordinate system, wherem denotes the mass of the elastic
beam per unit length; A, E, and IA are the cross-section area,
Young’s modulus, and moment of inertia of the beam, respec-
tively; k is the liner spring constant of the elastic foundation; β
signifies the nonlinear spring constant; µ is the linear damping
coefficient of the beam; and fs and gs denote the linear spring
constant and the damping coefficient of the DVA, respectively.

2.1. Deduction and Non-Dimensionalization
of Nonlinear Equations of Motion

Figures 1a and 1b exhibit the hinged-hinged nonlinear beam
employed in this study. We referred to the nonlinear beam the-
ory proposed by Nayfeh and Pai9 and used Newtonian’s Laws

to develop a complete model including the elastic foundation
and the DVA. We first considered the initial status of the beam
when it is straight and assumed that each cross-section is a
plane that follows the stress-strain laws. According to Nayfeh
and Pai9 and from Fig. 1c, the axial strain e and the rotation an-

gle θ are related to u′ and W
′

as e =

√
(1 + u′)2 +W

′2 − 1,

cos θ = (1 + u′)/(1 + e), and sin θ = W
′
/(1 + e). As-

suming u and W are small but finite, then e and θ can be
further expanded as e = u′ + W

′2
/2 − (u′W

′2
)/2 . . . and

θ = tan−1(W
′
/(1 + u′)) = W

′ − u′W ′ + u′2W
′
+ u′2W

′ −
W
′3
/3 . . . . Using Newton’s Laws, Euler’s angle transforma-

tion, and Taylor series expansion, we obtained the basic equa-
tions of motion for the nonlinear beam. We excluded any ro-
tations in the beam, limiting it to planar motions. Thus, the
equations of motion for the 2D beam are as follows:

mü− EAu′′ = EA

(
1

2
W
′2 − u′W ′2

)′
+

EIA

[
W
′ (
W
′′′ − u′′′W ′ − 2u′′W

′′ − 3u′W
′′′)]′

; (1)

mẄ − EIAW
iv

= EA

(
u′W

′ − u′2W ′ + 1

2
W
′3
)′

+

EIA

[
u′W

′′′
+
(
u′W

′)′′ − (u′2 −W ′2)W ′′′ −
u′
(
u′W

′)′′ − (u′2W ′ − 1

3
W
′3
)′′ ]′

; (2)
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where ( )′ and (˙) denote d/dx and d/dt, respectively. The
u and W represent the beam displacement in the longitudinal
direction (x-axis) and transversal direction (vertical-axis), re-
spectively. The system considered in this study is a slender
elastic beam; therefore, the longitudinal inertia force mü in
Eq. (1) can be disregarded. The beam is hinged at both ends,
and no longitudinal forces were imposed. This made it neces-
sary to consider the effects of stretching. The boundary condi-
tions are as follows:

u(0, t) = 0; u(l, t) = 0; W (0, t) = 0;

W (l, t) = 0; W
′′
(0, t) = 0; W

′′
(l, t) = 0. (3)

From Eq. (1), we can express the u′′ as

u′′ = −
(

1

2
W
′2
)′

+ . . . . (4)

The integral of Eq. (4) is

u′ = −1

2
W
′2

+ c1(t);

u = −1

2

∫ l

0

W
′2
dx+ c1(t)x+ c2(t). (5)

Substituting Eq. (5) into the boundary conditions in Eq. (3)
produces

c2(t) = 0; c1(t) =
1

2l

∫ l

0

W
′2
dx. (6)

After substituting Eqs. (5) and (6) into Eq. (2), we can simplify
the equations of motion to an equation in which vibrations are
presented in theW direction. We included the structural damp-
ing term µẆ of the elastic beam, the linear and nonlinear elas-
tic terms k[W + βW

3
] of the support or suspension springs,

and the uniform distributed load F = FeiΩt , where µ is the
structural damping coefficient; k and β represent the linear and
nonlinear elastic constant of the support or suspension springs,
respectively. The hanging DVA was regarded an external force
{fs[W (x, t)−WD]+gs[Ẇ (x, t)−ẆD]} δ[x−lD], where fs
and gs denote the spring constant and the damping coefficient
of the DVA, respectively. It is also noted that l represents the
beam length and the WD and lD represent the displacement
and the location of the DVA, respectively. We used Newton’s
laws to deduce the equation of motion before reorganizing and
nondimensionalizing it, thereby obtaining the following:

∗∗
W +W iv + ω2W + µ

∗
W +KW 3 +

{
k̃
[
W (x, τ)−WD

]
+

λ
[ ∗
W (x, τ)−

∗
WD

]}
δ[x− lD] =

1

2
Â

[∫ l

0

W ′2dx

]
W ′′ + FeiΩτ . (7)

The boundary conditions in Eq. (3) are thus

W (0, τ) = 0; W ′′(0, τ) = 0;

W (l, τ) = 0; W ′′(l, τ) = 0. (8)

The non-dimensionalized equation of motion of the DVA is

m0

∗∗
WD(τ)−

[
k̃(u) + λ(

∗
u)
]

= 0; (9)

where
u(τ) = W (lD, τ)−WD(τ). (10)

Equation (7) is the non-dimensionalized equation of motion of
the main body, in which ( )′ and (∗) represent d/dx and d/dτ ;
ω2 is the ratio between the linear elasticity coefficient of the
support or suspension springs and the elasticity coefficient of
the elastic beam; µ is the non-dimensionalized beam damping
coefficient; K is the ratio between the nonlinear vibration fre-
quency of the supports or suspension springs and the vibration
frequency of the elastic beam, lD is the non-dimensionalized
DVA position, Â is the non-dimensional beam rigidity; and k̃
and λ are the non-dimensionalized spring constant and damp-
ing coefficient of the DVA, respectively. Appendix 1 contains
the definitions of the other non-dimensionalized coefficients.

2.2. Application of MOMS
This study adopted MOMS to analyze the frequency re-

sponse and fixed points of the nonlinear equation, which
involves dividing the time scale into fast and slow time
scales. Suppose T0 is the fast-time term, T1, T2, . . . are
the slow-time terms, and W (x, τ, ε) = W0(x, t0, t1, . . .) +
εW1(x, t0, t1, . . .), where ε is the time scale of small distur-
bances and is an infinitesimal value. We also considered the
damping and nonlinear terms as well as the external force as
small disturbance terms and set the order at ε1 to facilitate anal-
ysis. We substituted these principles into Eq. (7) and disre-
garded the influence of high-order terms such as ε2, ε3, . . . on
the system. The terms of ε0 are as follows:

∂2W0

∂T 2
0

+
∂4W0

∂x4
+ ω2W0 = 0. (11)

The terms of ε1 are as follows:

∂2W1

∂T 2
0

+
∂4W1

∂x4
+ ω2W1 =

∂2W0

∂x2
Â

[
1

2

∫ 1

0

(
∂W0

∂x

)2

dx

]
+

F −
[
k̃(u) + λ(

∗
u)
]
δ[x− lD]− 2

∂2W0

∂T0∂T1
−

µ
∂W0

∂T0
−KW 3

0 . (12)

The boundary conditions corresponding to ε0 and ε1 equations
are as follows: W (0, τ) = 0, W ′′(0, τ) = 0, W (l, τ) = 0,
W ′′(l, τ) = 0. Considering that the DVA is linear, MOMS
need not be used to divide the time scale, such that only ε0 is
considered in the DVA equation of motion.

3. ANALYSIS OF INTERNAL RESONANCE
CONDITIONS

3.1. Equation of Motion for the Nonlinear
Beam Without DVA

The process of modeling the system without the DVA is the
same as the development of the theoretical model in Section 2.
Thus, we only provide a brief description below.
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After dropping the DVA from the equation of motion in the
previous section, we obtain the following:

∗∗
W +W iv + ω2W =

1

2
Â

(∫ l

0

W ′2dx

)
W ′′ − µ

∗
W −KW 3 + FeiΩτ. (13)

In this model, the two ends are hinged; therefore, the boundary
conditions are

W (0, τ) = 0; W ′′(0, τ) = 0;

W (l, τ) = 0; W ′′(l, τ) = 0. (14)

Note that in this non-dimensionalized circumstance, l = 1.

3.2. Conditions of Internal Resonance in the
Beam System without DVA

We applied MOMS and the terms comprising ε0 are as fol-
lows:

∂2W0

∂T 2
0

+
∂4W0

∂x4
+ ω2W0 = 0. (15)

Terms comprising ε1 are as follows:

∂2W1

∂T 2
0

+
∂4W1

∂x4
+ ω2W1 =

1

2
Â
∂2W0

∂x2

[∫ 1

0

(
∂W0

∂x

)2

dx

]
+

F − 2
∂2W0

∂T0∂T1
− µ∂W0

∂T0
−KW 3

0 . (16)

Suppose that the general solution to W (x, τ) is

W (x, τ) =
(
A(T1)e−iζeiωT0 +A(T1)eiζe−iωT0

)
φ(x); (17)

where ζ is the phase angle. Also, let

φ(x) = E1 sin γx+ E2 cos γx+ E3 sinh γx+ E4 cosh γx.
(18)

By substituting the equation above into the boundary condi-
tions, we obtain the eigenvalues γn = nπ/l, n = 1, 2, 3, . . . ,
and l = 1, whereas the mode shape φn(x) can be expressed as
φn(x) = sin γnx. After using orthogonal method, W0n(x, τ)
can be written as

W0n(x, τ) =
∞∑
n=1

(
Bn(T1)e−iζneiωnT0 +Bn(T1)eiζne−iωnT0

)
φn(x) =

∞∑
n=1

ξ0n(τ)φn(x). (19)

Using the orthogonal method, we multiply Eq. (15) by φn(x)
and integrate it from 0 to l (l = 1 (normalized)) and obtain
∗∗
ξ0m(τ) +

(
γ4
m + ω2

)
ξ0m(τ) = 0; (20)

∗∗
ξ1m(τ) +

(
γ4
m + ω2

)
ξ1m(τ) =

− 1

2
γ2
mξ0mÂ

[∫ 1

0

( ∞∑
p=1

γ2
pξ

2
0p cos2γpx

)
dx

]
+

F

∫ 1

0
φmdx∫ 1

0
φ2
mdx

− 2
∂2ξ0m(τ)

∂T0∂T1
− µ∂ξ0m(τ)

∂T0
−

K∫ 1

0
φ2
mdx

∫ 1

0

( ∞∑
i

ξ0iφi

)( ∞∑
j

ξ0jφj

)( ∞∑
k

ξ0kφk

)
φmdx;

(21)

and set the natural frequencies of the various modes in the
system as ωn =

√
γ4
m + ω2. To determine the existence of

internal resonance in the beam system, we must derive the
ω2 conditions capable of causing internal resonance. Among
these conditions, Eq. (21) contains ξ0iξ0jξ0k, an infinite se-
ries of nonlinear terms. This hinders the determination of
internal resonance with ω2; therefore, we used the method
proposed by Van Horssen6 and followed the procedure de-
scribed by Wang and Liang19 to derive the internal reso-
nance conditions created by ω2. We first observe the inte-
gration term

∫ 1

0
φi(x)φj(x)φk(x)φm(x)dx on the right side

of Eq. (21), which is the orthogonal product of φm(x) and
φi(x)φj(x)φk(x). Based on the orthogonal method, the inte-
gration term in Eq. (21) may contribute to the secular terms
if it does not equal 0 and m = ±i ± j ± k. Further-
more, as the dominant term in φm(x) is sin γmx, we can
only observe whether ±γi ± γj ± γk equals γm in the prod-
uct terms in

∫ 1

0
φi(x)φj(x)φk(x)φm(x)dx in order to confirm

the existence of orthogonality before addressing the question
of whether the harmonic frequencies extending from the har-
monic combination are secular terms. As γm = nπ > 0, we
can eliminate −γm = γi + γj − γk and −γm = γi − γj + γk
from the possibilities in ±γm = ±γi ± γj ± γk. Since γm =
γi+γj −γk, −γm = γi−γj −γk, and γm = γi−γj +γk are
similar; therefore, we need only to discuss three combinations:
γm = γi+γj +γk, γm = γi−γj−γk, and γm = γi+γj−γk
from the possibilities in ±γm = ±γi ± γj ± γk. Further-
more, in the product ξ0iξ0jξ0k on the right side of Eq. (21),
there exists secular terms that are equal to the harmonics on
the left side, which prevents the system from reaching con-
vergence. Of these terms, only those that exist in the form
of ei(±ωi±ωj±ωk)T0 are possible. Hence, we only considered
the combinations in ωm = ±ωi ± ωj ± ωk, which is why we
discussed the following combinations according to conditions
described above:

(A)

{
γm = γi + γj + γk(
γ4
m+ω2

)1
2 = ±

(
γ4
i +ω2

)1
2±
(
γ4
j +ω2

)1
2±
(
γ4
k+ω2

)1
2

;

(B)

{
γm = −γi − γj + γk(
γ4
m+ω2

)1
2 = ±

(
γ4
i +ω2

)1
2±
(
γ4
j +ω2

)1
2±
(
γ4
k+ω2

)1
2

;

(C)

{
γm = γi + γj − γk(
γ4
m+ω2

)1
2 = ±

(
γ4
i +ω2

)1
2±
(
γ4
j +ω2

)1
2±
(
γ4
k+ω2

)1
2
.
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We determined the following ranges: when 0 ≤ ω2 ≤ 10π4

and γi, γj , γk ≥ π, solutions contributing to secular terms can
be found in these combinations; thus, the discussion on the
combinations and probabilities is as follows.

Case (A) γm = γi + γj + γk.

Combination (1):
(
γ4
m + ω2

)1
2 =

(
γ4
i + ω2

)1
2 +
(
γ4
j + ω2

)1
2 +(

γ4
k + ω2

)1
2 . Using inequality h2 <

(
h4 + ω2

)1
2 ≤ h2 −

a2 +
(
a4 + ω2

)1
2 and let γ2

m = γ2
i + γ2

j + γ2
k + λ, where

λ = 2(γiγj + γjγk + γiγk). This enables us to derive the

following inequality: γ2
m <

(
γ4
m + ω2

)1
2 ≤ γ2

i + γ2
j + γ2

k −
3π2+3

(
π4 + ω2

)1
2 , such that 2(γiγj+γjγk+γiγk) < −3π2+

3
(
π4 + ω2

)1
2 . We also know that if γ2

m− π2 +
(
π4 + ω2

)1
2 ≥(

γ4
m + ω2

)1
2 > γ2

i + γ2
j + γ2

k , we can get π2 −
(
π4 + ω2

)1
2 <

λ < −3π2 + 3
(
π4 + ω2

)1
2 and γi, γj , γk ≥ π, which means

that λ ≥ 6π2. If ω2 ≤ 8π4, then the inequality cannot
be satisfied. If γi = γj = γk = π, then γm = 3π and(
(3π)4 + ω2

)1
2 = 3

(
π4 + ω2

)1
2 , whereby we have the solu-

tion ω2 = 9π4.
Combination (2):

(
γ4
m + ω2

)1
2 =

(
γ4
i + ω2

)1
2 +
(
γ4
j + ω2

)1
2 −(

γ4
k + ω2

)1
2 . This combination has no solution. We can use the

analysis method from Combination (1); however, the symmet-
ric relationship means that equations with a negative sign have
no solution.
Combination (3):

(
γ4
m + ω2

)1
2 =

(
γ4
i + ω2

)1
2 −
(
γ4
j + ω2

)1
2 −(

γ4
k + ω2

)1
2 . This combination has no solution. We can use the

analysis method from Combination (1); however, the symmet-
ric relationship means that equations with two negative signs
have no solution.

Case (B) γm = −γi − γj + γk is the same as Case (A),
because m and k are symmetric.

Case (C) γm = γi + γj − γk has solutions, but when ω2 =
9π4, internal resonance cannot occur within any of the modes
with m = 1 ∼ 4.

Based on the above analysis, we can see that within the lim-
ited range of ω2 < 10π4, 1:3 internal resonance occurs only
in modes m = 1 and m = 3 when ω2 = 9π4. When m = 1,
ω1 =

√
γ4

1 + ω2 =
√
π4 + 9π4 =

√
10π2; when m = 3,

ω3 =
√
γ4

3 + ω2 =
√

(3π)4 + 9π4 = 3
√

10π2, which means
that 3ω1 = ω3. We need only consider the internal resonance
in the 1st and 3rd modes.

3.3. Frequency Responses in Beam System
without DVA

To analyze the frequency responses of the system and derive
the fixed point plots, we assume that the elastic beam is subject
to a uniform distributed force:

f̂me
irτ = f̂me

i(ωm+εσ)T0 = f̂m
(
eiεσT0eiωmT0

)
=

f̂me
iσT1eiωmT0 .

With regard to the 1st mode (m = 1), we must select the sec-
ular terms with harmonics ω1 and ω3 − 2ω1. Thus, from the

right side of Eq. (21), we select terms proportional to eiω1T0

and ei(ω3−2ω1)T0 (these are called secular terms):

− 1

2
Â

[
γ4

1

(∫ 1

0

cos2γ1xdx

)(
3B1B1B1e

−iζ1
)

+

γ2
1γ

2
3

(∫ 1

0

cos2γ3xdx

)(
2B1B3B3e

−iζ1
) ]

+

A21F 1 − 2iω1B
′
1(T1)e−iζ1 − 2ω1ζ

′
1B1(T1)e−iζ1 −

µiω1B1(T1)e−iζ1 −A31K

(
6B1B3B3

∫ 1

0

φ2
1φ

2
3dx e

−iζ1 +

3B2
1B1

∫ 1

0

φ4
1dx e

−iζ1 + 3B
2

1B3

∫ 1

0

φ3
1φ3dx e

i(2ζ1−ζ3)

)
.

(22)

In terms of the 3rd mode (m = 3), we must select the secular
terms with harmonics ω3 and 3ω1. Thus, from the right side of
Eq. (21) and let m = 3, we select terms proportional to eiω3T0

and ei3ω1T0 (these are called secular terms) as shown below:

− 1

2
Â

[
γ4

3

(∫ 1

0

cos2γ3xdx

)(
3B3B3B3e

−iζ3
)

+

γ2
1γ

2
3

(∫ 1

0

cos2γ1xdx

)(
2B3B1B1e

−iζ3
) ]

+

A23F 3 − 2iω3B
′
3(T1)e−iζ3 − 2ω3ζ

′
3B3(T1)e−iζ3 −

µiω3B3(T1)e−iζ3 −A33K

(
B3

1

∫ 1

0

φ3
1φ3dx e

−i3ζ1 +

6B1B1B3

∫ 1

0

φ2
1φ

2
3dx e

−iζ3 + 3B2
3B3

∫ 1

0

φ4
3dx e

−iζ3
)
.

(23)

The selected secular terms are designated as being equal to
0 in order to derive a solvability condition. Below, we dis-
cuss the conditions where we excite the 1st mode. We multi-
ply the secular terms of the 1st mode by eiζ1 and let f̂1e

irτ =
f̂1e

iσT1eiω1T0 , ΓA = σT1 + ζ1, and ΓB = 3ζ1 − ζ3. The
periodic solutions of the beam correspond to the constant so-
lutions (also called fixed points in nonlinear dynamics (see
Chapter 5 in Nayfeh and Pai book3), which correspond to
Γ′A = σ + ζ ′1 = 0, Γ′B = 3ζ ′1 − ζ ′3 = 0, and ∂B1

∂T1
= ∂B3

∂T1
= 0

in Eq. (23). Thus, the real part can be written as

− 1

2
Â

[
γ4

1

(∫ 1

0

cos2γ1xdx

)(
3B1B1B1

)
+

γ2
1γ

2
3

(∫ 1

0

cos2γ3xdx

)(
2B1B3B3

) ]
+ 2ω1σB1(T1)−

A31K

(
6B1B3B3

∫ 1

0

φ2
1φ

2
3dx+ 3B2

1B1

∫ 1

0

φ4
1dx+

3B
2

1B3 cos ΓB

∫ 1

0

φ3
1φ3dx

)
= −A21f̂1 cos ΓA; (24)

and the imaginary part as

− µω1B1(T1)−A31K

(
3B

2

1B3 sin ΓB

∫ 1

0

φ3
1φ3dx

)
=

−A21f̂1 sin ΓA. (25)

After calculating the sum of the squares of Eqs. (24) and (25)
and eliminating the terms associated with time, we obtain the
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following:{
− 1

2
Â

[
γ4

1

(∫ 1

0

cos2γ1xdx

)(
3B1B1B1

)
+

γ2
1γ

2
3

(∫ 1

0

cos2γ3xdx

)(
2B1B3B3

) ]
+ 2ω1σB1(T1)−

A31K

(
6B1B3B3

∫ 1

0

φ2
1φ

2
3dx+ 3B2

1B1

∫ 1

0

φ4
1dx+

3B
2

1B3 cos ΓB

∫ 1

0

φ3
1φ3dx

)}2

+

{
− µω1B1(T1)−

A31K

(
3B

2

1B3 sin ΓB

∫ 1

0

φ3
1φ3dx

)}2

= A2
21f̂

2
1 . (26)

We then multiple the secular terms of the 3rd mode (Eq. (23))
by eiζ3 . The real part can be written as

− 1

2
Â

[
γ4

3

(∫ 1

0

cos2γ3xdx

)(
3B3B3B3

)
+

γ2
1γ

2
3

(∫ 1

0

cos2γ1xdx

)(
2B3B1B1

) ]
+ 6ω3σB3(T1)−

A33K

[(
B3

1

∫ 1

0

φ3
1φ3dx

)
cos(−ΓB) +

6B1B1B3

∫ 1

0

φ2
1φ

2
3dx+ 3B2

3B3

∫ 1

0

φ4
3dx

]
= 0; (27)

and the imaginary part as

−µω3B3(T1)−A33K

[(
B3

1

∫ 1

0

φ3
1φ3dx

)
sin(−ΓB)

]
= 0.

(28)

We solve Eqs. (26) to (28) using numerical methods, which
enables us to plot the fixed points plots for amplitudes B1 and
B3 (since the solutions are corresponding to the fixed points of
∂B1

∂T1
= ∂B3

∂T1
= 0) and tuned frequency σ in the system in order

to observe the internal resonance. Due to limitations regarding
the length of the manuscript, we will not go into details of the
analysis where we excite the 3rd mode, which is similar to that
of the 1st mode.

3.4. Verification of Internal Resonance
Using the relationship between amplitude and frequency in

the nonlinear system without a DVA, we plotted the fixed point
plots to search for 1:3 internal resonance. The left part of Fig. 2
displays the fixed points plots when the 1st mode (lower mode)
is excited by a harmonic force. The horizontal axis measures
the tuned frequency near the natural frequency in this mode,
and the vertical axis measures the amplitude of vibration in the
beam. As can be seen in Fig. 2, multiple amplitudes may corre-
spond to a single frequency. A system that resides within this
unstable region for long periods of time can undergo fatigue
and damage. Figure 3 presents the fixed points plots of the 3rd

mode. When the 1st mode is being excited, the amplitudes of
the 1st mode (Fig. 2) are greater than those of the 3rd mode
(Fig. 3), which is normal. Fixed point plots of the 3rd mode
under excitation are presented in the left part of Fig. 4, and
the concurrent fixed point plots of the 1st mode are presented
in Fig. 5. A comparison of the two revealed that although it

was the 3rd mode that was being excited, the amplitudes in the
1st mode were greater than those of the 3rd mode, due to the
unique internal resonance associated with nonlinear systems.
This proves that 1:3 internal resonance occurs in the 1st and 3rd

modes of the system.

3.5. Numerical Verification
To ensure the internal resonance in the system, we employed

numerical calculations to verify the results in the fixed point
plots without the DVA (i.e., the solutions of Eqs. (26) to (28)).
Since Eqs. (26) to (28) are the solvability conditions from
Eq. (21), we substituted the vibration mode obtained using
Eq. (21) into Eq. (13) and employed the orthogonal properties
for its integration, the result of which was then used to excite
the 1st mode, thus producing

∗∗
ξ 1 + γ4

1ξ1 + µ
∗
ξ1 + ω2ξ1 +

k̂∫ 1

0
φ2

1dx
Γ1 +

1

2
γ2

1ξ1

∫ 1

0

(
γ2

1ξ
2
1 cos2γ1x+ γ2

3ξ
2
3 cos2γ3x

)
dx = F

∫ 1

0
φ1dx∫ 1

0
φ2

1dx
;

(29)

where

Γ1 =

∫ 1

0

(
ξ3
1φ

3
1 + 3ξ2

1φ
2
1ξ3φ3 + 3ξ1φ1ξ

2
3φ

2
3 + ξ3

3φ
3
3

)
φ1dx.

(30)
When it was used to excite the 3rd mode, the outcome was

∗∗
ξ 3 + γ4

3ξ3 + µ
∗
ξ3 + ω2ξ3 +

k̂∫ 1

0
φ2

3dx
Γ3 +

1

2
γ2

3ξ3

∫ 1

0

(
γ2

1ξ
2
1 cos2γ1x+ γ2

3ξ
2
3 cos2γ3x

)
dx = F

∫ 1

0
φ3dx∫ 1

0
φ2

3dx
;

(31)

where

Γ3 =

∫ 1

0

(
ξ3
1φ

3
1 + 3ξ2

1φ
2
1ξ3φ3 + 3ξ1φ1ξ

2
3φ

2
3 + ξ3

3φ
3
3

)
φ3dx.

(32)
For the integration coefficients, please refer to Appendix 2.
We used the Runge-Kutta (RK4) method to solve the dynamic
equations (Eqs. (29) and (31)) and then drew time response
graphs and Poincaré maps. The right side of Fig. 2 presents
the fixed point plot and the numerical verification graph of the
1st mode; the upper graph displays the time responses, and the
lower graph is the Poincaré map. The horizontal axis of a fixed
points plot represents the tuned frequency near the beam’s nat-
ural frequency. Since the external forcing function was de-
fined as f̂meirτ = f̂me

i(ωm+εσ)T0 = f̂m
(
eiεσT0eiωmT0

)
=

f̂me
iσT1eiωmT0 , we can see that when σ = 0, the dimension-

less forcing frequency r equals the beam’s mth natural fre-
quency ωm. Physically, the fixed point plot displays the nonlin-
ear steady-state (fixed point) frequency response near the sys-
tem’s natural frequencies. The upper graph of Fig. 2 displays
the time response graph obtained when σ = 4. The conver-
gence value in this figure is the same as that of the fixed point
plot in the left side in Fig. 2 when σ = 4. The Poincaré map
also displays unstable in this case (chaos). The right side of
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Figure 2. The 1st mode’s fixed point plots when the 1st mode is excited (No DVA).

Figure 3. The 3rd mode’s fixed point plots when the 1st mode is excited (No
DVA).

Fig. 4 presents the fixed point plot and the numerical verifica-
tion graph of the 3rd mode; again, the upper graph displays the
time responses, and the lower graph is the Poincaré map for
σ = 4. The convergence value of time response is the same
as in the left side in Fig. 4 when σ = 4. The Poincaré map
also displays unstable in this case (chaos). Both Figs. 2 and
4 show that the internal resonance predicted in the fixed point
plots with no DVA is reasonable.

4. VIBRATION REDUCTION ANALYSIS OF
DVA

This section expands on the results in Sections 2 and 3 by
analyzing the damping effects of a DVA on a suspended beam
or a beam supported on an elastic foundation. We examined

the effects of the DVA fixed at various locations according to
the frequency responses of the overall system. The results are
presented in Section 5.

4.1. Analysis of DVA Equation
We assumed that the DVA motions constitute a single-point

force (xD denotes the location of the DVA). To enhance the in-
fluence of the DVA and simplify the setup, we did not consider
the damping term of the DVA. Thus, the motion of equation
for ε1 can be written as

ε1 :
∂2W1

∂T 2
0

+
∂4W1

∂X4
+ ω2W 1 =

∂2W0

∂X2

(
1

2

∫ 1

0

(
∂W0

∂X

)2

dx

)
+ F − 2

∂2W0

∂T0∂T1
−

µ
∂W0

∂T0
− k̂W 3

0 − k̃
(
W0(x, t)−WD

)
δ(x−xD). (33)

The DVA equation is as follows:

m0

∗∗
WD(t)− k̃

[ ∞∑
m=1

Wm(x, t)−WD

]
= 0. (34)

In Section 3, we established that 1:3 internal resonance occurs
in the main body between the modes of m = 1 and m = 3
when ω = 3π2. Thus, we only discussed the 1st and the 3rd

modes (m = 1 and m = 3) of the system. It is noted that
the spring force of the DVA is decided by the relative motion
of the DVA (WD) and the beam (Wm). It can be expressed
as k̃ (Wm −WD). By using the Newton’s 2nd law, this force
can be added on the beam shown in Eq. (33). As the DVA is
considered an external force, we first solved the displacement
of the DVA and then substituted it into the equation of motion
for the main body in Eq. (33). With Eq. (34), let m = 1 and
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Figure 4. The 3rd mode’s fixed point plots when the 3rd mode is excited (No DVA).

Figure 5. The 1st mode’s fixed point plots when the 3rd mode is excited (No
DVA).

m = 3. Then, the equation can be expanded into

m0

∗∗
WD(t)−k̃

[
φ1(xD)ξ1(t)+φ3(xD)ξ3(t)−WD

]
= 0. (35)

Using Eq. (11), we can assume that the solutions for ξ10 and
ξ30 are

ξ10 = B1e
−iζ1eiω1T0 +B1e

iζ1e−iω1T0 ;

ξ30 = B3e
−iζ3eiω3T0 +B3e

iζ3e−iω3T0 ; (36)

which, when substituted into Eq. (35), produce the following:

∗∗
WD +

k̃

m0
WD =

k̃

m0
φ1(xD)B1e

−iζ1eiω1T0 +

k̃

m0
φ1(xD)B1e

−iζ1e−iω1T0 +
k̃

m0
φ3(xD)B3e

−iζ3eiω3T0 +

k̃

m0
φ3(xD)B3e

−iζ3e−iω3T0 . (37)

We can assume that the solution to WD is

WD = C1e
−iζ1eiω1T0 + C1e

iζ1e−iω1T0 +

C3e
−iζ3eiω3T0 + C3e

iζ3e−iω3T0 . (38)

After substituting Eq. (38) into Eq. (37) and comparing the
coefficients, we can derive the following:

Cn = Bn
k̃

m0
φn(xD)

/(
k̃ −m0ω

2
n

)
;

Cn = Bn
k̃

m0
φn(xD)

/(
k̃ −m0ω

2
n

)
; n = 1, 3; (39)

WD = C1e
−iζ1eiω1T0 + C1e

iζ1e−iω1T0 +

C3e
−iζ3eiω3T0 + C3e

iζ3e−iω3T0 . (40)

Therefore, we can substitute Eqs. (39) and (40) back into
Eq. (33) to determine the secular terms.

4.2. Frequency Response of The Beam
System

As before, we assumed that the external force is evenly dis-
tributed: f̂meirτ = f̂me

i(ωm+εσ)T0 = f̂m
(
eiεσT0eiωmT0

)
=

f̂me
iσT1eiωmT0 . In terms of the 1st mode (m = 1), we selected
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ω1 and ω3 − 2ω1 for the secular terms:

− 1

2
Â

[
γ4

1

(∫ 1

0

cos2γ1xdx

)(
3B1B1B1e

−iζ1
)

+

γ2
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2
3
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0
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)(
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) ]

+
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′
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0

φ2
1φ

2
3dx e
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3B2
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∫ 1

0

φ4
1dx e
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2

1B3
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0

φ3
1φ3dx e
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)
−
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{
B1φ1(xD)e−iζ1 −B1e

−iζ1

[
k̃φ1(xD)

m0

(
k̃ −m0ω2

1

)]} .
(41)

For the 3rd mode (m = 3), we selected ω3 and 3ω1 as the
secular terms:

− 1

2
Â
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γ4

3

(∫ 1

0

cos2γ3xdx

)(
3B3B3B3e

−iζ3
)

+

γ2
1γ
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3
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0
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)(
2B3B1B1e
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) ]

+

A23F 3 − 2iω3B
′
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µiω3B3(T1)e−iζ3 −A33K

(
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1

∫ 1

0

φ3
1φ3dx e

−i3ζ1 +

6B1B1B3

∫ 1

0

φ2
1φ

2
3dx e
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3B3
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0

φ4
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)
−
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−iζ3
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(
k̃ −m0ω2

3

)]} .
(42)

We then designated that the secular terms are equal to 0 in
order to derive a solvability condition. Below, we discuss
the circumstances when an external force excites the 1st mode
(f̂1e

irτ = f̂1e
iσT1eiω1T0 ). We multiplied all of the secular

terms of the 1st mode by eiζ1 and let ΓA = σT1 + ζ1 and
ΓB = 3ζ1 − ζ3. The real part can be written as

− 1

2
Â

[
γ4

1

(∫ 1

0

cos2γ1xdx

)(
3B1B1B1

)
+

γ2
1γ

2
3
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0

cos2γ3xdx

)(
2B1B3B3

) ]
− 2ω1ζ

′
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A31K

(
6B1B3B3

∫ 1

0

φ2
1φ
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3dx+ 3B2

1B1

∫ 1

0

φ4
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3B
2

1B3 cos ΓB

∫ 1

0

φ3
1φ3dx

)
− k̃1B1φ1(xD) +

B1
k̃1k̃φ1(xD)

m0

(
k̃ −m0ω2

1

) = −A21f̂1 cos ΓA; (43)

and the imaginary part can be written as

− 2ω1B
′
1(T1)− µω1B1(T1)−

A31K

(
3B

2

1B3 sin ΓB

∫ 1

0

φ3
1φ3dx

)
= −A21f̂1 sin ΓA. (44)

We multiplied all of the secular terms of the 3rd mode by eiζ3 .
The real part can be written as
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γ4
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(∫ 1

0

cos2γ3xdx

)(
3B3B3B3

)
+

γ2
1γ

2
3

(∫ 1

0

cos2γ1xdx

)(
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− 2ω3ζ

′
3B3(T1)−

A33K

[(
B3

1

∫ 1

0

φ3
1φ3dx

)
cos(−ΓB) +

6B1B1B3

∫ 1

0

φ2
1φ

2
3dx+ 3B2

3B3

∫ 1

0

φ4
3dx

]
−

k̃3B3φ3(xD) +B3
k̃3k̃φ3(xD)

m0

(
k̃ −m0ω2
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) = 0; (45)

and the imaginary part written as

− 2ω3B
′
3(T1)− µω3B3(T1)−

A33K

[(
B3

1

∫ 1

0

φ3
1φ3dx

)
sin(−ΓB)

]
= 0. (46)

To obtain the frequency responses of the system at the fixed
points, we let Γ′A = σ + ζ ′1 = 0 =⇒ ζ ′1 = −σ,
Γ′B = 3ζ ′1 − ζ ′3 = 0 =⇒ ζ ′3 = −3σ, and ∂B1

∂T1
= ∂B3

∂T1
= 0

before substituting them into the solvability condition. After
calculating the sum of the squares of the real and imaginary
portions of the solvability conditions for the 1st mode and elim-
inating the terms associated with time, we obtain{
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Â

[
γ4

1
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(∫ 1

0

cos2γ3xdx

)(
2B1B3B3

) ]
+ 2ω1σB1(T1)−

A31K

(
6B1B3B3

∫ 1

0

φ2
1φ

2
3dx+ 3B2

1B1

∫ 1

0

φ4
1dx+

3B
2

1B3 cos ΓB

∫ 1

0

φ3
1φ3dx

)
− k̃1B1φ1(xD) +

B1
k̃1k̃φ1(xD)

m0

(
k̃ −m0ω2

1

)}2

+

{
− µω1B1(T1)−

A31K

(
3B

2

1B3 sin ΓB

∫ 1

0

φ3
1φ3dx

)}2

= A2
21f̂

2
1 . (47)

The real part of the solvability conditions for the 3rd mode is

− 1

2
Â

[
γ4

3

(∫ 1

0

cos2γ3xdx

)(
3B3B3B3

)
+

γ2
1γ

2
3

(∫ 1

0

cos2γ1xdx

)(
2B3B1B1

) ]
+ 6ω3σB3(T1)−

k̃3B3φ3(xD)−A33K

[(
B3

1

∫ 1

0

φ3
1φ3dx

)
cos(−ΓB) +

6B1B1B3

∫ 1

0

φ2
1φ

2
3dx+ 3B2

3B3

∫ 1

0

φ4
3dx

]
+

B3
k̃3k̃φ3(xD)

m0

(
k̃ −m0ω2

3

) = 0; (48)
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(a) (b)

(c) (d)

Figure 6. Fixed point plots (with DVA), (a) The 1st mode’s plot, when the 1st mode is excited, (b) The 3rd mode’s plot, when the 1st mode is excited, (c) The 1st

mode’s plot, when the 3rd mode is excited, and (d) The 3rd mode’s plot, when the 3rd mode is excited.

and the imaginary part is

−µω3B3(T1)−A33K

[(
B3

1

∫ 1

0

φ3
1φ3dx

)
sin(−ΓB)

]
= 0.

(49)

Finally, we combine Eqs. (47) to (49) to get the numerical so-
lutions. We can thus draw fixed-point plots for amplitudes B1

andB3 and σ in order to observe the frequency responses. Due
to limitations regarding the length of the manuscript, we will
not go into details of the analysis of the 3rd mode, which is
similar to that of the 1st mode.

5. RESULTS AND DISCUSSION

5.1. Internal Resonance Analysis of Beam
System

Internal resonance occurs in vibration systems with modal
frequencies that are multiple integers of each other. When two

modes are strongly coupled in cases where internal resonance
exists, energy is transferred continuously during motion. The
case of no DVA we considered in Figs. 4 and 5, when the 3rd

mode is excited, the 1st mode’s amplitude is larger than the
3rd mode. This is a typical internal resonance phenomenon
in a nonlinear system. In the works of Wang and Kuo17 and
Wang and Tu18 for the hinged-free and fixed-free beams, the
1:3 internal resonance was found in the 1st and the 2nd modes.
In the present study, a different boundary condition was ex-
amined for a hinged-hinged nonlinear beam and a 1:3 internal
resonance was found in the 1st and the 3rd modes. The elas-
tic foundation dimensionless spring constant was found ana-
lytically to be 9π4 to trig the internal resonance. The effects
of various beam boundary conditions in the internal resonance
were shown evidently and should be studied individually. At-
taching a TMD introduces an additional frequency between the
two internal resonant modes to the beam-dampened system,
which breaks the multiple integer frequency relationship and
thereby mitigates the exchange of energy between the two cou-
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Table 1. Normalized maximum amplitude of the 1st mode.

m0 k̃ XD = 0.1 XD = 0.125 XD = 0.25 XD = 0.5

0.02 0.1 0.693029 0.652387 0.516591 0.424662
0.02 0.2 0.698114 0.652374 0.51657 0.426835
0.02 0.3 0.698111 0.65237 0.516564 0.424631
0.02 0.4 0.695346 0.652365 0.516559 0.424626
0.02 0.6 0.698107 0.652366 0.516557 0.424624
0.02 0.7 0.695345 0.652364 0.516557 0.424623
0.05 0.1 0.693113 0.652348 0.519716 0.424711
0.05 0.2 0.692806 0.651563 0.516551 0.42456
0.05 0.3 0.695348 0.65175 0.51651 0.424826
0.05 0.4 0.69299 0.651725 0.515925 0.424794
0.05 0.6 0.692987 0.651722 0.515917 0.424779
0.05 0.7 0.692984 0.651718 0.516463 0.424772
0.07 0.1 0.828863 0.779646 0.620958 0.509231
0.07 0.2 0.693079 0.653774 0.515912 0.424777
0.07 0.3 0.69303 0.65152 0.519795 0.424681
0.07 0.4 0.692987 0.652433 0.515934 0.426812
0.07 0.6 0.692982 0.652428 0.515919 0.424587
0.07 0.7 0.695312 0.652421 0.515907 0.42677
0.1 0.1 0.830796 0.780316 0.616474 0.506321
0.1 0.2 0.693703 0.65157 0.516605 0.424568
0.1 0.3 0.693088 0.652413 0.516048 0.424679
0.1 0.4 0.692999 0.65231 0.515911 0.424543
0.1 0.6 0.692989 0.651602 0.515879 0.424484
0.1 0.7 0.695312 0.651801 0.51662 0.424457
0.12 0.1 0.828966 0.779547 0.618058 0.506593
0.12 0.2 0.693809 0.652407 0.516627 0.426164
0.12 0.3 0.69366 0.65175 0.515989 0.424614
0.12 0.4 0.693019 0.651601 0.516551 0.42473
0.12 0.6 0.693004 0.651583 0.516505 0.424644
0.12 0.7 0.698082 0.655397 0.51609 0.426171
0.15 0.1 0.829058 0.780938 0.617327 0.506605
0.15 0.2 0.693002 0.651557 0.51656 0.424586
0.15 0.3 0.693782 0.651755 0.516527 0.424735
0.15 0.4 0.693064 0.652478 0.51659 0.424734
0.15 0.6 0.698139 0.65245 0.516517 0.424599
0.15 0.7 0.69301 0.652413 0.516082 0.424536

pled modes, thus resulting in a reduction in internal resonance.
We employed numerical analysis to solve Eqs. (47) through
(49), thereby obtaining the fixed points plots of the system.
Figure 6 (the fixed point plots including the DVA) shows that
when the 3rd mode is excited, the amplitudes of the 1st mode
(Fig. 6c) do not exceed those of the 3rd mode (Fig. 6d). Clearly,
internal resonance does not occur. By comparing Fig. 6 with
Figs. 2 through 5, we can see that the inclusion of the DVA
in the system prevents 1:3 internal resonance in the 1st and
3rd modes. It is possible that the damping effects of the DVA
are directly associated with the vibrations of the main beam.
In Eq. (7), the term k̃[W (x, τ) −WD]δ[x − lD] couples with
W (x, t), which then merges with terms W iv and w2 to influ-
ence (positively or negatively) the previous integer ratio of the
frequencies, 1:3. As a result, 1:3 internal resonance does not
occur.

5.2. Analyzing The Effectiveness of DVA
Damping

Using MOMS, eigen analysis, and fixed point plots, we es-
tablished that 1:3 internal resonance occurs in the 1st and 3rd

modes of a main body without a DVA. A comprehensive view
of the two modes show that regardless of whether the 1st or 3rd

mode is excited, the maximum amplitudes in the 1st and 3rd

modes are 0.598675 and 0.11921, respectively. We thus used
these amplitudes as the basis for comparisons used to evaluate
the effectiveness of damping. In previous sections, we already

Table 2. Normalized maximum amplitude of the 3rd mode.

m0 k̃ XD = 0.1 XD = 0.125 XD = 0.25 XD = 0.5

0.02 0.1 1.464852 1.728147 1.478419 1.778185
0.02 0.2 1.07284 1.229764 1.638418 2.274189
0.02 0.3 1.467375 1.726061 1.78791 2.119784
0.02 0.4 1.467676 1.725644 2.104751 2.481469
0.02 0.6 1.027626 1.228464 2.177923 2.555767
0.02 0.7 1.417364 1.725503 1.597176 2.685515
0.05 0.1 1.40992 1.770635 1.378139 1.668663
0.05 0.2 1.026374 1.26479 1.392248 1.772926
0.05 0.3 1.439894 1.747833 1.431815 1.72715
0.05 0.4 1.442745 1.74515 1.531946 1.839284
0.05 0.6 1.018009 1.255225 1.556726 1.864086
0.05 0.7 1.444224 1.744312 1.597176 2.048476
0.07 0.1 1.055878 1.606127 2.179459 2.278483
0.07 0.2 1.404675 1.296659 1.34855 1.663102
0.07 0.3 1.416868 1.765247 1.357211 1.646024
0.07 0.4 1.423382 1.759675 1.39794 1.691371
0.07 0.6 0.966909 1.274386 1.409035 1.702337
0.07 0.7 1.426958 1.757671 1.427694 1.722562
0.1 0.1 0.004963 0.001511 0.00313 0.001322
0.1 0.2 0.836822 1.365858 1.33042 1.579634
0.1 0.3 1.373034 1.797928 1.304739 1.588934
0.1 0.4 1.389869 1.783871 1.290711 1.573621
0.1 0.6 0.927665 1.305452 1.28927 1.572192
0.1 0.7 1.398384 1.779369 1.287593 1.570295
0.12 0.1 1.458676 1.184319 1.436823 1.59492
0.12 0.2 0.799082 1.437811 1.339805 1.548611
0.12 0.3 1.334119 1.824971 1.288543 1.571323
0.12 0.4 1.363762 1.801805 1.295016 1.527046
0.12 0.6 0.891536 1.327901 1.240718 1.520059
0.12 0.7 1.377175 1.794745 1.229752 1.508142
0.15 0.1 1.33262 1.341661 1.690585 1.822654
0.15 0.2 1.003977 1.6405 1.401304 1.521638
0.15 0.3 1.25403 1.879512 1.28088 1.563133
0.15 0.4 1.316419 1.832141 1.20584 1.481179
0.15 0.6 0.887034 1.364301 1.192195 1.467781
0.15 0.7 1.341841 1.819752 1.17053 1.444635

established that adding a DVA with another DOF to the model
damages the natural vibration frequency ratios of the various
modes, due to the fact that the additional DOF couples with the
equation of motion of the beam. As a result, internal resonance
does not occur. In this section, we examine various parameters
of the DVA, including mass ratio, spring constant ratio, and lo-
cation, to identify the combination with the optimal damping
effects. Using the solvability condition and fixed point plots in
Section 4, we derived the maximum amplitude in the 1st mode
when excited, and then normalized the results using the maxi-
mum amplitude obtained in cases without a DVA (0.598675).
To achieve this, we considered the mass ratio (the mass of the
DVA / the mass of the beam) and the spring constant ratio (the
spring constant of the DVA / the spring constant of the elas-
tic foundation). The normalized maximum amplitudes of the
1st mode are shown in Table 1. Similarly, we normalized the
maximum amplitude in the 3rd mode when excited by using
the maximum amplitude in cases without a DVA (0.11921).
Again, the results are shown in Table 2. To avoid the diffi-
culties associated with an excessive number of DVA parame-
ters in the tables, we used 3D maximum amplitude projections
(3DMACPs) to reveal the influence of parameters on damping
performance. The results of 3DMACPs will be shown in next
two paragraphs.

This study uses the 3D projections to project the maximum
amplitudes of various parameter combinations onto the mass-
spring constant plane and combine various locations into a 3D
maximum amplitude contour plot (3DMACP). Physically, the
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Figure 7. A 3D MACP chart of the 1st mode, XD = 0.1.

Figure 8. A 3D MACP chart of the 1st mode, XD = 0.125.

3DMACPs provide the information regarding the maximum
amplitudes of each combination of DVA’s mass ratio (m0) and
dimensionless spring constant (k̃) for a fixed DVA location
(XD). Different colors of the contour levels represent different
amplitude values. This is a novel technique to display a set of
complicated data and display a rather simple plot for better un-
derstanding. Figures 7 through 10 present the 3DMACPs con-
taining the normalized maximum amplitudes of the 1st mode
when the 1st mode is excited and the DVA is at XD = 0.1,
0.125, 0.25, and 0.5, respectively. To differentiate the damping
effects of the DVA at various locations, we drew the contour of
the four above combinations with the amplitude ranging from
0.425 to 0.82. Comparison of Figs. 7 through 10 shows that the
effectiveness of the DVA increased as it approached the center
of the beam. Furthermore, we selected the mass ratios between
0.02 and 0.15 because if the mass ratio were too small, it would
have no effect on the hinged beams. In most civil engineering
or mechanical structures, a mass ratio greater than 0.15 would
mean an excessive waste of materials on the DVA. In addition,
the spring constants considered in this study ranged from 0.1

Figure 9. A 3D MACP chart of the 1st mode, XD = 0.25.

Figure 10. A 3D MACP chart of the 1st mode, XD = 0.5.

and 0.7, in accordance with the function proposed by Samani
and Pellicano15 for the optimal DVA parameter combination of
linear hinged-hinged beams:

k̃ = m0

(
ω1

1 + µ

)2

; me =
mL

2 sin2(πd/L)
; µ = m0/me.

(50)
According to Samani and Pellicano,15 we can convert the DVA
mass ratio range from 0.02 to 0.15 into the elastic constant ra-
tio estimated by Samani and Pellicano.15 The range of m0 in
this study roughly corresponds to k̃ values between 0.4 and
0.55. However, the function in Eq. (50) is applicable to only
linear beams, as it does not consider the effects of stretching.
This effect can cause additional amplitudes in the transverse
direction of the beam. In theory, this situation would require a
DVA with greater damping effects in order to achieve accept-
able results. We therefore widened the range of the elastic con-
stant ratio from 0.4 ∼ 0.55 to 0.1 ∼ 0.7. As for the amplitudes
in the 1st mode when the 1st mode is excited, Figs. 7 through
10 show that the DVA being more effective when it is closer
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Figure 11. A 3D MACP chart of the 3rd mode, XD = 0.1.

Figure 12. A 3D MACP chart of the 3rd mode, XD = 0.125.

to the center of the beam a higher mass ratios do not actually
have significant damping effects. On the contrary, excessively
high mass ratios can magnify the amplitudes in transverse vi-
brations in the beam (because a DVA is included). We also
found that such DVA designs are more effective in damping
the 1st mode. Similarly, damping effects are better when the
DVA is closer to the center of the beam. Nonetheless, com-
binations with m0 between 0.05 and 0.15 and k̃ less than 0.2
must still be avoided.

For the 3rd mode (Figures 11 through 14), we created
3DMACPs for the various locations XD and set the range of
the maximum amplitude to between 1.0 and 2.4. Note that a
color closer to light green indicates that the maximum ampli-
tude is greater than 1 and that the damping effect is worse than
if there were no DVA. We also discovered that with mass ra-
tios of approximately 0.1 and elastic constants less than 0.2,
minimum amplitudes occur at each location. This means that
said combinations have optimal damping effects in terms of
the 3rd mode. In Figs. 7 through 10, we can also see that near
the end (XD = 0.1 in Fig. 7), a smaller m0 and a greater k̃

Figure 13. A 3D MACP chart of the 3rd mode, XD = 0.25.

Figure 14. A 3D MACP chart of the 3rd mode, XD = 0.5.

contribute to poorer damping performance. Of course, plac-
ing the DVA near the center of the beam is most effective, but
for the 3rd mode, this is not true. A comprehensive view of
Figs. 7 through 14 shows that if we take into account the op-
timal damping effects in both the 1st and 3rd modes, it is best
to place the DVA in the center of the beam with m0 and k̃ be-
ing approximately 0.1 and 0.2, respectively. Clearly, the linear
beam results (Eq. (50)) in Samani and Pellicano15 are not ap-
plicable to nonlinear beams. Furthermore, we considered the
coupling of the 1st and 3rd modes in our model, which compli-
cates the design of the DVA. Nevertheless, the optimal damp-
ing combination can still be identified using the 3DMACP. In
the next section, we verify the accuracy of 3DMACPs using
numerical methods.

5.3. Analysis of Numerical Verification
To conduct the numerical analysis of the beam equation in-

cluding the DVA, we can use the mode shape in Eq. (21), sub-
stituting it into Eq. (7), and integrating it using the orthogonal
properties to produce the following equations of motion to ex-
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(a)

(b)

Figure 15. Numerical verification, (a) m0 = 0.15, k̃ = 0.1, XD = 0.1, (b) m0 = 0.02, k̃ = 0.7, XD = 0.1.

cite the 1st mode:

∗∗
ξ 1 + γ4

1ξ1 + µ
∗
ξ1 + ω2ξ1 +

k̂∫ 1

0
φ2

1dx
Γ1 +

1

2
γ2

1ξ1

∫ 1

0

(
γ2

1ξ
2
1 cos2γ1x+ γ2

3ξ
2
3 cos2γ3x

)
dx

fs [ξ1φ1(XD) + ξ3φ3(XD)−WDφ(XD)] = F

∫ 1

0
φ1dx∫ 1

0
φ2

1dx
;

(51)

where

Γ1 =

∫ 1

0

(
ξ3
1φ

3
1 + 3ξ2

1φ
2
1ξ3φ3 + 3ξ1φ1ξ

2
3φ

2
3 + ξ3

3φ
3
3

)
φ1dx;

(52)

and to excite the 3rd mode:

∗∗
ξ 3 + γ4

3ξ3 + µ
∗
ξ3 + ω2ξ3 +

k̂∫ 1

0
φ2

3dx
Γ3 +

1

2
γ2

3ξ3

∫ 1

0

(
γ2

1ξ
2
1 cos2γ1x+ γ2

3ξ
2
3 cos2γ3x

)
dx

fs [ξ1φ1(XD) + ξ3φ3(XD)−WDφ(XD)] = F

∫ 1

0
φ3dx∫ 1

0
φ2

3dx
;

(53)

where

Γ3 =

∫ 1

0

(
ξ3
1φ

3
1 + 3ξ2

1φ
2
1ξ3φ3 + 3ξ1φ1ξ

2
3φ

2
3 + ξ3

3φ
3
3

)
φ3dx.

(54)
Please refer to Appendix 2 for the relevant integration coeffi-
cients. We employed the RK4 approach to calculate displace-
ments in the nonlinear beam with various parameter and loca-
tion combinations when excited by a given external frequency.

International Journal of Acoustics and Vibration, Vol. 22, No. 2, 2017 181



Y.-R. Wang, et al.: DAMPING PERFORMANCE OF DYNAMIC VIBRATION ABSORBER IN NONLINEAR SIMPLE BEAM WITH 1:3 INTERNAL. . .

(a)

(b)

Figure 16. Numerical verification, (a) m0 = 0.15, k̃ = 0.1, XD = 0.5, (b) m0 = 0.02, k̃ = 0.7, XD = 0.5.

To verify the results from 3DMACPs (Figs. 7 to 14), we per-
formed the numerical analysis and cross-referred the numeri-
cal results, fixed points plots and Poincaré maps (Figs. 15 to
18). The left part of Fig. 15a displays the fixed point plot of
Fig. 7 with m0 = 0.15, k̃ = 0.1, and XD = 0.1 lain over the
numerical results of the maximum amplitudes. The right upper
graph of Fig. 15a displays the numerical result of time response
and the lower graph is the numerical result of Poincaré map.
Figure 15b shows the same with m0 = 0.02, k̃ = 0.7, and
XD = 0.1. The left part of Fig. 16a exhibits the fixed point plot
of Fig. 10 with m0 = 0.15, k̃ = 0.1, and XD = 0.5 lain over
the numerical results of the maximum amplitudes. The right
upper graph of Fig. 16a displays the time response, and the
lower graph is the Poincaré map. Figure 16b shows the same
with m0 = 0.02, k̃ = 0.7, and XD = 0.5. As before, Fig. 17a
displays the fixed point plot of Fig. 11 withm0 = 0.1, k̃ = 0.1,
and XD = 0.1 lain over the numerical results of the maximum
amplitudes, and Fig. 17b shows the same with m0 = 0.02,
k̃ = 0.7, and XD = 0.1. Figure 18a displays the fixed point

plot of Fig. 14 with m0 = 0.1, k̃ = 0.1, and XD = 0.5
lain over the numerical results of the maximum amplitudes,
and Fig. 18b shows the same with m0 = 0.02, k̃ = 0.4, and
XD = 0.5. Comparing the 3DMACPs with the fixed point
plots and numerical method (time response), for each speci-
fied value of m0, k̃, and XD, the maximum value of the fixed
point plots agrees with the 3DMACP and the numerical results.
We can see that the results are consistent, thereby demonstrat-
ing the accuracy of the model developed in this study and the
concept of 3DMACPs.

6. CONCLUSIONS

In this study, we considered a hinged-hinged nonlinear beam
supported or suspended by nonlinear springs to simulate a sys-
tem that is suspended or placed on an elastic foundation. We
subjected the main body to a harmonic force. Both ends of
the nonlinear elastic beam are hinged; therefore, we had take
into account the effects of stretching. We added a DVA to
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(a)

(b)

Figure 17. Numerical verification, (a) m0 = 0.1, k̃ = 0.1, XD = 0.1, (b) m0 = 0.02, k̃ = 0.7, XD = 0.1.

the beam system and investigated its effectiveness in damping
when place in various locations. Using some elastic constant
combinations, 1:3 internal resonance occurred in the 1st and
3rd modes. Placing the DVA at suitable locations was shown
to prevent this, such that the damping effects of the DVA are
more apparent in the 1st mode than in the 3rd mode. Damping
performance was more significant when the DVA was closer
to the center of the beam; however, 3DMACPs showed that
optimal parameter combinations could also be found when the
DVA was placed in other locations. For the 1st mode, smaller
elastic constants and larger mass ratios are not recommended.
As for the 3rd mode, damping performance is better when the
DVA is near the center of the beam; however, the best results
are obtained when the mass ratio is approximately 0.1 and the
elastic constant is less than 0.2. For the best damping perfor-
mance in both the 1st and 3rd modes, the ideal combination
includes the DVA at the center of the beam with the mass ratio
and elastic constant of approximately 0.1 and 0.2, respectively.
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