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In this paper, the flutter characteristics of a functionally graded cantilever pipe conveying flow are presented. The
functionally graded structural model is based on the classical thin-walled beam theory. The governing equations
and boundary conditions are determined via Hamilton’s variational principle. Then, the pipe partial differential
equations are converted into a set of ordinary differential equations using the extended Galerkin method. Finally,
having solved the resulting structural-fluid eigenvalue system of equations, we shed lights on the effects of volume
fraction index and mass ratio on flutter speeds and frequencies. A validation of the selected result in comparison
to the previous published literatures is also supplied.

1. INTRODUCTION

Cantilever pipes conveying fluids are of considerable inter-
est and widely used in many applications. In the classification
of dynamical systems, the cantilever pipe conveying fluid is
found to be a non-conservative system, in which the work done
by fluid on the pipe does not vanish. Therefore, in some oscil-
lation cycles, the pipe will gain energy from the flow and may
lose stability under high flow velocity by flutter. The transfer
of energy between the flowing fluid and pipe was discussed
by Benjamin.1, 2 Flutter of cantilevered continuous pipes con-
veying fluid was examined by Gregory and Paı̈doussis theo-
retically and experimentally.3, 4 Bert and Chen analyzed the
vibration modes in orthotropic as well as isotropic pipes con-
veying fluid.5 Paı̈doussis and Li reviewed and compiled the
exhaustive literature available on the studies related to the dy-
namics of pipes conveying fluids.6 Contributions by Paı̈doussis
on dynamics of pipes conveying fluid are enormous and one
can find a host of problems and solutions associated with fluid
flowing through slender structures in these books.7, 8 Ryu et
al. described the relationship between the eigenvalue branches
and the corresponding unstable modes associated with flutter
of cantilevered pipes conveying fluid.9 Jayaraj et al. carried
out elaborate parametric studies on various composite cylin-
drical shells conveying fluids.10 For thin composite shells, they
could predict the divergence as well as coupled mode flutter in-
stabilities, and more importantly, established that the buckling
mode due to the lowest critical velocity of the fluid coincides
with the lowest natural frequency mode. Zhang et al. inves-
tigated the vibration characteristics of orthotropic cylindrical
shells and tubes with initial tension and conveying fluid.11, 12

In order to investigate free vibration and buckling behavior of
composite cylindrical shells conveying hot fluid, Kadoli and
Ganesan presented a semi-analytical finite element method.13

Figure 1. Pipe geometry and coordinate system.

In addition to the linear analysis, some nonlinear studies have
dealt with cantilever pipes conveying fluid.8, 14 Yoon and Son
investigated the effects of a tip mass and fluid flow on the dy-
namic behavior of a rotating cantilever pipe conveying fluid.15

Modarres-Sadeghi and Paı̈doussis used the complete nonlinear
model developed by Paı̈doussis8 to evaluate the possibility of
post-divergence instabilities in pipes supported at both ends.16

The concept of functionally graded material (FGM) was first
introduced by a group of Japanese scientists to address the ag-
gressive environment of thermal shock.17 Since then, FGMs
have received more and more attention in engineering com-
munities, especially in applications for high-temperature medi-
ums such as space planes, petrochemical plants, and nuclear re-
actors.18–25 Sheng and Wang investigated the vibration of func-
tionally graded cylindrical shells with flowing fluid. The first-
order shear deformation theory was employed and the fluid ve-
locity potential for the governing equation was developed.26

To the best of the author’s knowledge, there are no stud-
ies dealing with the flutter analysis of FGM cantilever pipes
conveying fluid. In the present paper, the completed model of
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FGM cantilever pipes operating under a fluid flow pressure is
developed. Furthermore, discussions about the combined ef-
fects of the fluid mass ratio and FGM volume fraction index
on the flutter speed and frequency are presented.

2. PROBLEM DESCRIPTION

2.1. Pipe Geometrical Model
Consider a straight pipe conveying flow with velocity U of

length L with a uniform thickness h and middle cord radius a
in the x− y plane as shown in Fig. 1. The origin of the Carte-
sian coordinate system is located at the geometric center of the
pipe cross section. It should be remarked that (s, n, z) repre-
sents another local coordinates, where s and n, −h2 ≤ n ≤

h
2 ,

are mid-line circumferential and thickness coordinates, respec-
tively.

Components of the three-dimensional displacement vector
are expressed as:22

u(x, y, z; t) = uo(z; t); v(x, y, z; t) = vo(z; t);

w(x, y, z; t) = θx(z; t)

(
y(s)−ndx

ds

)
+ θy(z; t)

(
x(s)+n

dy

ds

)
;

(1)

where uo(z; t) and vo(z; t) are translations along the x and y
axes, and θx(z; t) and θy(z; t) are rigid body rotations about
the x and y axes. Based on the classical theory one can obtain

θx(z; t) = −∂vo
∂z

; θy(z; t) = −∂uo
∂z

. (2)

The position vector of a point M(x, y, z) belonging to the de-
formed structure is:

{R(x, y, z; t)} = (x+u)i + (y+v)j + (z+w)k. (3)

By deriving the position vector, one obtains the velocity vector
of an arbitrary point M(x, y, z) of the pipe in the form,

{Ṙ} = vpxi + vpyj + vpzk. (4)

Their components are

vpx = u̇; vpy = v̇; vpz = ẇ. (5)

The velocity of the fluid is approximated as

{v} = vfxi + vfyj + vfzk; (6)

where

vfx = u̇o + U
∂uo
∂z

;

vfy = v̇o + U
∂vo
∂z

;

vfz = yf θ̇x + xf θ̇y + U. (7)

Here, subscripts p and f describe the quantities associated with
the pipe and fluid, respectively. The following strain displace-
ment relation can be assumed as

εzz =
∂w

∂z
. (8)

It is assumed that the original cross section of the pipe is pre-
served; therefore,27

εxx = εyy = γxy = 0. (9)

2.2. The FGM Model
On the macroscopic scale, FGMs are anisotropic, heteroge-

neous, and possess spatially continuous mechanical properties.
For a ceramic/metal FGM model the material properties vary
continuously across the pipe thickness according to the law
given by Praveen and Reddy,19

Peff = PcVc + PmVm; Vm = 1− Vc; (10)

where Peff is material property, and Vm and Vc denote the
volume fractions of metal and ceramic, respectively. Herein,
subscripts m and c are quantities associated with metal and ce-
ramic, respectively. The simple power law definition for the
volume fraction of the ceramic-metal FGM is given as

Vc(n) =

(
n

h
+

1

2

)k
; (11)

where k, 0 ≤ k ≤ ∞, is the volume fraction parameter. This
suggests that the material properties vary continuously from
fully ceramic at the inner surface of the pipe to fully metal at
the outer surface.

2.3. Constitutive Relations
Since the material used is isotropic, the corresponding elas-

tic constitutive law adapted to the case of thin-walled structures
is expressed as:28[

σss
σzz

]
=

[
Q11 Q12

Q12 Q11

] [
εss
εzz

]
; (12)

where

Q11 =
E

1− ν2
; Q12 =

Eν

1− ν2
. (13)

Here, E and ν are the Young’s modulus and Poisson’s ratio,
respectively.

3. GOVERNING EQUATIONS

The governing equations and boundary conditions can be
derived via the extended Hamilton’s principle for an open sys-
tem with in-flow and out-flow of mass and momentum. This
can be formulated as:7

δ

∫ t2

t1

`o dt −
∫ t2

t1

MU
(
ṘL + UτL

)
.δRL dt = 0;

δuo = δvo = 0 at t = t1, t2; (14)

in which `o = To−Vo is the Lagrangian of the open system and
To and Vo denote the kinetic and strain energies, respectively.
Next, t1 and t2 are two arbitrary instants of time and δ is the
variation operator. Further, RL and τL are the position vector
to a point on the free end of the pipe and tangential vector to
the free end of the pipe, respectively.

The kinetic energy of the system is as follows:

To = Tp + Tf

=
1

2

∫ L

0

(
b1{Ṙ}.{Ṙ}

)
dz +

1

2

∫ L

0

M{vf}.{vf} dz; (15)

where b1 and M are mass per unit length of the pipe and fluid,
respectively.
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Also, the variation of strain energy based on the classical
deformation theory of beams can be written as:

δV = −
∫ L

0

{
∂2My

∂z2
δuo +

∂2Mx

∂z2
δvo

}
dz +

[
∂My

∂z
δuo +

∂Mx

∂z
δvo −Myδ

∂uo
∂z
−Mx

∂vo
∂z

]∣∣∣∣∣
L

0

; (16)

where (Mx,My) are 1-D stress couples about x- and y-axis,
respectively. Expressing 1-D stress couple in terms of 1-D dis-
placement and substituting Eq. (15) and Eq. (16) into Eq. (14),
using the integration by part, and noting the fact that the vari-
ations (δuo, δvo) are independent and arbitrary, the equations
of motion and the related boundary conditions can be obtained
as,

δuo : − a22
∂4uo
∂z4

−MU2 ∂
2uo
∂z2

− 2MU
∂2uo
∂t∂z

−

(M+b1)
∂2uo
∂t2

+ (Mr2+b5+b15+2b27)
∂4uo
∂t2∂z2

= 0;

(17)

δvo : − a33
∂4vo
∂z4

−MU2 ∂
2vo
∂z2

− 2MU
∂2vo
∂t∂z

−

(M+b1)
∂2vo
∂t2

+ (Mr2+b4+b14−2b23)
∂4vo
∂t2∂z2

= 0;

(18)

where stiffness quantities aij = aji and reduced mass terms
bi are defined in Librescu et al.22 The corresponding boundary
conditions result for a cantilever pipe are as:
at z = 0:

uo =
∂uo
∂z

= 0; (19)

vo =
∂vo
∂z

= 0; (20)

and at z = L:

δuo : a22
∂3uo
∂z3

− (Mr2+b5+b15+2b27)
∂3uo
∂t2∂z

= 0; (21)

δvo : a33
∂3vo
∂z3

− (Mr2+b4+b14−2b23)
∂3vo
∂t2∂z

= 0; (22)

δ
∂uo
∂z

: −a22
∂2uo
∂z2

= 0; (23)

δ
∂vo
∂z

: −a33
∂2vo
∂z2

= 0; (24)

where r is the internal gyration radius of the cross-sectional
area of the pipe flow passage. It should be noted that the two
partial differential equations (Eqs. (17) and (18)) are decouple.
Therefore, because of symmetry for the cross section of the
pipe with respect to the x and y axis, we can use only Eq. (17)
with the associated boundary conditions (Eqs. (19), (21), and
(23)).

For simplicity, the following dimensionless quantities are in-
troduced:

uo =
uo
h

; ζ =
z

L
; r =

r

L
;

β1 =
b1

M+b1R
; β5 =

b5
L2(M+b1R)

; β15 =
b15

L2(M+b1R)
;

β23 =
b23

L2(M+b1R)
; β27 =

b27
L2(M+b1R)

;

τ = t

√
a33R

(M+b1R)L4
; ω = ω

√
(M+b1R)L4

a33R
;

µ =
M

M+b1R
; U = U

√
ML2

a33R
; M

T

y =
MT
y L

2

a33Rh
. (25)

Therefore, the dimensionless equation of motion is obtained as
follows:

a22
a33R

u′′′′o + U
2
u′′o + 2µ1/2Uu̇

′
o + (µ+β1)üo −

(µr2+β5+β15+2β27)ü
′′
o = 0; (26)

where ˙(.) and (.)′ denote the ∂(.)
∂τ and ∂(.)

∂ζ , respectively.
Herein, the subscript R denotes properties of the fully metallic
pipe. Consequently, the dimensionless boundary condition is
given below:
at ζ = 0:

uo = u′o = 0; (27)
and at ζ = 1:

a22
a33R

u′′′o − (µr2+β5+β15+2β27)ü
′
o = 0;

a22
a33R

u′′o = 0. (28)

4. SOLUTION METHODOLOGY
Due to the intricacy of the governing equations, the solution

is sought using an approximate solution procedure. The par-
tial differential Eq. (26) is converted into a set of linear ordi-
nary differential equations according to the Galerkin’s method.
The non-dimensional lateral deflection uo is expanded in a se-
ries of modes that satisfy the appropriate boundary conditions
(Eqs. (27) and (28)). For a clamped-free pipe the following
equation has been chosen

uo(ζ, τ) =

N∑
n=1

Φn(ζ)qn(τ); (29)

where

Φ(ζ) = cosh(λiζ)− cos(λiζ)− σi
(

sinh(λiζ)− sin(λiζ)
)
;

σi =
sinh(λi)− sin(λi)

cosh(λi) + cos(λi)
; (30)

and λi can be obtained from the following equation:

cosh(λi) cos(λi) + 1 = 0; (31)

where {q} = {q1, q2, . . . , qN}T is the overall vector of gen-
eralized coordinates and N is the number of used modes. Ap-
plying the extended Galerkin procedure on the governing equa-
tion (Eq. (26)), with the modal expansion (Eq. (29)), and us-
ing the orthogonal properties in the required integrations, the
discretized form of the governing equation of motion for the
cantilever pipe conveying flow is obtained as:

[M ]{q̈(τ)}+ [G]{q̇(τ)}+ [K]{q(τ)} = 0; (32)

where [M ], [G], and [K] denote the symmetric mass matrix,
the non-symmetric damping matrix and the non-symmetric
stiffness matrix, respectively, whose elements are given by

Mij = (µ+β1)δij + (µr2+β5+β15+2β27)ϑij ;

Gij = 2µ1/2Uξij ;

Kij =
a22
a33R

ψij + U
2
ζij ; (33)
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Table 1. Material properties of metal (SUS304) and ceramic (Si3N4).20

Material E (Pa) ν ρ (kg/m3)
SUS304 207.79× 109 0.32 8166
Si3N4 322.27× 109 0.24 2370

where

δij =

{
1 i = j

0 i 6= j
;

ϑij =


σiλi

(
2+σiλi

)
i = j

4
λiλj

λ2
i−λ2

j

(
(−1)i+j

(
σjλ

3
i−σiλ3j

)
−λiλj

(
σiλi−σjλj

))
;

i 6= j

ψij =

{
λ4i i = j

0 i 6= j
;

ξij =

{
2 i = j

4
λ2
j

λ4
i−λ4

j

(
λ2i − (−1)i+jλ2j

)
i 6= j

;

ζij =

{
σiλi

(
2−σiλi

)
i = j

4
λ2
j (σiλi−σjλj)

λ4
i−λ4

j

(
(−1)i+jλ2j + λ2i

)
i 6= j

; (34)

The Eq. (32) can be expressed in the first order variable form
as

{Ż(τ)} = [A]{Z(τ)}; (35)

where the state vector {Z(τ)} and the 2N × 2N state matrix
[A] are defined as

{Z(τ)} =
{
{q}T {q̇}T

}T
; (36)

[A] =

[
[0] [I]

−[M ]−1[K] −[M ]−1[G]

]
; (37)

while [I] is the unitary matrix. Upon expressing {Z(τ)} in
Eq. (35) as

{Z(τ)} = {X} exp(Ωτ); (38)

a standard eigenvalue problem is obtained(
[A]− Ω[I]

)
{X} = 0; (39)

where {X} is a constant vector and Ω is a constant-valued
quantity. The eigenvalues or natural frequencies of the
structural-fluid system can be obtained from the resulted equa-
tion. In general, the eigenvalues are complex; therefore,

Ωn = δn ± iωn; n = 1, 2, . . . , N. (40)

The nature of the dynamic response to any specified initial con-
dition is strongly contingent on the sign of each δn. It should
be noted that the real part of the eigenvalue, δn, is sometimes
called the modal damping of the nth mode, and ωn is called the
modal frequency. It is also possible to classify these motions
from the stability standpoint. Typical response behavior can
arise for positive, zero, and negative values of δn when ωn is
nonzero.

The convergent oscillations when δn < 0 are termed dynam-
ically stable and the divergent oscillations for δn > 0 are dy-
namically unstable. The case of δn = 0 represents the bound-
ary between the two and is often called the “stability bound-
ary.”

Figure 2. Validation of the flutter instability boundary of the fully metal can-
tilever FGM pipe, (k = 100).

5. NUMERICAL RESULTS

The functionally graded straight pipe, considered as a thin-
walled beam, has a uniform circular cross section with the fol-
lowing geometric characteristics,22

a = 0.127 m; L = 2.032 m; h = 0.01 m. (41)

The numerical study is carried out to supply information on
the flutter boundary with different material properties. Also,
the first six terms of mode expansion in Galerkin’s procedure
are used in the numerical simulations.

The functionally graded materials are composed of silicon
nitride and stainless steel, referred to as Si3N4/SUS304 and
their properties are listed in Table 1 (from Reddy and Chin20).

As the first step, for a fully metal case (k = 100) that ex-
poses an isotropic property, the accuracy of the method is veri-
fied against those reported by Paı̈doussis7 and good agreement
is obtained as shown in Fig. 2. As shown in this figure, the crit-
ical flow velocities have few differences from those presented
by Paı̈doussis. This deviation is due to the rotary inertia term
that is considered here in Eq. (26).

Throughout the numerical simulation the following dimen-
sionless frequency parameters are considered

ωi =
ωi
ω̂1

; i = 1, 2, . . . , N. (42)

where ω̂1 is the first natural frequency of the fully metallic pipe
without fluid flow. In the obtained results, Uf and ωf are non-
dimensional flutter velocity fluid flow and non-dimensional
flutter frequency parameters, respectively.

Figure 3 shows the influence of the non-dimensional fluid
mass ratio on the flutter velocities for various volume fraction
indexes of FGMs.

It is found out that the cantilever pipe is stable for the flow
velocities lower than the critical value and is unstable over
the critical value. As it is shown in this figure, increasing
the ceramic constituent of the FGMs pipe increases the non-
dimensional critical flow velocities. This improves the can-
tilever pipe dynamic behavior due to the expansion of the sta-
bility domain. This is due to the fact that the increase of the
ceramic constituent of the FGMs pipe increases the bending
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Figure 3. Critical flutter velocities of the cantilever FGM pipe in terms of
mass ratio (µ) for selected values of volume fraction index (k).

Figure 4. Critical flutter frequencies of the cantilever FGM pipe in terms of
mass ratio (µ) for selected values of volume fraction index (k).

stiffness of the whole pipe. Therefore, the stability domain of
the pipe expands more than the other in the same condition, but
with higher volume fraction index.

In Fig. 4, the corresponding non-dimensional frequency pa-
rameters are presented vs. the mass ratios. As expected, an in-
crease in volume fraction indexes causes the flutter frequency
parameter to be reduced.

The non-dimensional flow velocities and corresponding fre-
quency parameters as a function of volume fraction index are
plotted in Fig. 5 and Fig. 6, respectively.

The non-dimensional flow velocity and frequency parame-
ter vary more gradually beyond k ≈ 5. Increasing the volume
fraction of the ceramic base increases the flutter frequency. Al-
though the ceramic constituent part tends to increase the stabil-
ity zones, it may yield premature failure by fatigue, which is
an adverse effect due to the increase in flutter frequencies.

6. CONCLUSIONS

The stability analysis for a cantilever FGM pipe conveying
fluid flow is investigated. Moreover, the analysis is performed,

Figure 5. Critical flutter velocities of the cantilever FGM pipe in terms of
volume fraction index (k) for selected values of mass ratios (µ).

Figure 6. Critical flutter frequencies of the cantilever FGM pipe in terms of
volume fraction index (k) for selected values of mass ratios (µ).

and the influence of some physical parameters of the system,
such as mean flow velocity, mass ratios, and volume fraction
index of FGM pipes on the regions of stability are discussed.
Mass ratios and volume fraction index of FGM pipes imposed
a noticeable effect on the non-dimensional flutter velocities
and on the flutter frequency parameters. An increase in the
volume fraction index results in the condensation of stable do-
mains and so leads to a reduction of flutter frequency parame-
ters.
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