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A fault diagnosis procedure based on r2PSO algorithm—a newly developed version of particle swarm optimization
(PSO)—is presented for detecting crack depth and location in a functionally graded material (FGM) cantilever
beam. The governing equation and boundary conditions are obtained by using the extended Hamilton’s principle,
and the characteristic equation is obtained as a function of position ratio and depth ratio of crack. Identification of
the crack is formulated as an optimization problem. The r2PSO algorithm is used to find the optimal solution of
the cost function, which is based on the summation of the absolute value of the characteristic equation for three
natural frequencies. The position ratio and depth ratio of crack are computed by algorithm, when three natural
frequencies of FGM beam are entered to algorithm as inputs. The obtained results confirm the applicability and
efficiency of r2PSO to calculate the parameters of crack with high accuracy and suitable convergence rate.

1. INTRODUCTION

The existence of a crack in a structural member would
change the dynamic behavior of the structure. Changes in over-
all dynamic of structure present serious threats to performance
of the structures such as structure failure. Therefore, many re-
searchers have proposed the different methods to detect and
localize the crack in the structures.1–7 One of the inhomoge-
neous composite structures is FGM, which have great applica-
tions in aerospace vehicles, nuclear reactors, power generators
and automobile structures. A crack has occurred in FGM struc-
tures and numerous researchers have investigated the fracture
analysis of these materials.3–7

The location and size of an open edge crack has been de-
termined in an FGM beam by Yu and Chu.8 They utilized the
p-version finite-element method to estimate the transverse vi-
bration of an FGM beam. The influences of crack size, crack
location and material gradients have been studied on the nat-
ural frequencies of the FGM beam. Numerical experiments
have demonstrated the efficiency of their proposed method.

Wei et al.9 studied free vibration of cracked FGM beams
with axial loading, rotary inertia and shear deformation. The
model of the crack was the rotational spring model. The in-
fluences of the location and total number of cracks, material
properties, axial load, inertia and end supports on the natural
frequencies of FGM beams have also been studied. Xiang et
al. have developed a combination of wavelet-based element
and genetic algorithm to detect the location and depth of the
crack in a rotating Euler-Bernoulli and Timoshenko beam.10

Some numerical and experimental results have indicated the
performance of their method.

Vakil Baghmishe et al. have proposed the crack identifica-
tion of a beam as an optimization problem.11 The cost function
of problem was based on the difference of measured and calcu-
lated natural frequencies. The binary and continuous genetic
algorithms were used to find the optimal location and depth of
crack. In order to validate the modeling and method, the re-
sults have been presented by some experimental results. An
improved particle swarm optimization was developed to detect
the damage of structures.12 The algorithm was a combination
of the particle swarm optimization and the artificial immune
system. Results have shown the feasibility and efficiency of
that improved algorithm.

Nonlinear vibration of the cracked FGM beams has been
studied by Kitipornchai and et al.13 A direct iterative method
has been used to find natural frequencies and mode shapes of
beam. The effects of crack location, crack depth, slenderness
ratio, material property, and boundary conditions were shown
on the nonlinear vibration characteristics of the FGM beam.

Fernando and et al.14 indicated the crack detection in struc-
tural elements by means of a genetic algorithm optimization.
The methodology has been applied to beam-like structures and
any other arbitrary shaped 3-D element. The input data in al-
gorithm has been obtained with a cantilever damaged beam in
physical experiments. Birman and Byrd15 examined free and
forced vibration of damaged FGM beam. They modeled the
damage to region with degraded stiffness adjacent to the root
of the beam, a single delamination crack and a single crack at

International Journal of Acoustics and Vibration, Vol. 22, No. 4, 2017 (pp. 431–438) https://doi.org/10.20855/ijav.2017.22.4488 431



M. Eftekhari, et al.: APPLICATION OF R2PSO ALGORITHM IN CRACK DETECTION OF FUNCTIONALLY GRADED BEAMS

the root cross section of the beam. Aydin16 investigated free
vibration of FGM beams containing any arbitrary number of
open edge cracks. Miguel and et al.17 have presented a hy-
brid stochastic/deterministic algorithm to detect the parame-
ters of crack in cantilever beam. The results were compared
to previous works in the literature and the new method was
more accurate than the previous methods such as genetic algo-
rithm (GA), harmony search algorithm (HAS) and PSO algo-
rithm. The estimation of a crack location and depth in a can-
tilever beam has been performed by a hybrid particle swarm
Nelder-Mead algorithm.18 This algorithm was a modified par-
ticle swarm optimization algorithm in which a Nelder-Mead
algorithm was utilized to perform the local search. The ob-
tained results were compared with the PSO algorithm, a hy-
brid GA and Nelder-Mead algorithm, and the neural network
method. The speed and accuracy of the proposed algorithm
was more efficient than the other algorithms. The location and
amount of crack has been determined using the neural network
by Sahoo and Maity.19 The neural network was trained by
considering the frequency and strain as input and location and
amount of crack as output. Robustness of the results proved the
good performance of the neural network. Moradi et al. applied
the bee algorithm to detect an open edge crack in a cantilever
beam.20 Results showed that the size and location of crack
can be predicted well through this algorithm. Multimodal opti-
mization (MO) techniques are a class of optimization methods
attempting to find multiple global and local optima of a func-
tion. Therefore, the user can have a better knowledge about the
search space and when needed, the current solution may be re-
placed by another optimal one. MO methods, due to their high
exploration power, are effective even when the aim is to find a
single global optimum. Niching is an important technique for
multimodal optimization that usually is incorporated in to a
standard Evolutionary Algorithm (EA). Such approaches pro-
mote the formation of multiple stable subpopulations within a
population and empower the EA to locate multiple optimal or
suboptimal solutions in parallel.21, 22 The success of EAs in
real-world applications has also been verified by their uses of
niching methods. For instance, a new mulching method was
used to solve two optimization applications such as varied-
line-spacing holographic grating design problem and the pro-
tein structure prediction problem on a lattice model.23 The ob-
tained results and the statistical analyses show the effectiveness
of multimodal approaches compared with other single-modal
methods. Three real world application examples were solved
using a PSO-based MO method, called CLPSO, and the results
indicated the ability of MO methods to locate the global opti-
mum solutions for the problems.24 EAs have also been applied
in mechanics as well.25

Many niching methods have been proposed in the EA lit-
erature. Among all, the method proposed by Li21 is a fast,
powerful and effective approach for solving multimodal opti-
mization problems. It involves a niching method incorporated
in to PSO algorithm to form several implicit subpopulations
within the main population, without the need to fix several ad-
ditional niche parameters. Moreover, a memory mechanism is

adopted to maintain found solutions during the search process.
In this paper, r2PSO algorithm, which is one of the PSO-

based algorithms introduced by Li, is applied to estimate the
location and size of an open edge crack in FGM cantilever
beam. No previous works have been done regarding the crack
identification by this method in FGM beams. The governing
equation and boundary conditions are obtained by using the
extended Hamilton’s principle. By employing the boundary
conditions, the characteristic equation is obtained as a func-
tion of position ratio of crack, depth ratio of crack, and the
Young modulus ratio. Three natural frequencies of beam are
evaluated from an analytic solution for a considered Young
modulus, once the location and depth of crack are determined.
Inversely, the first three natural frequencies are considered as
inputs to the r2PSO algorithm. The algorithm evaluated the lo-
cation and size of crack by minimizing the sum of the absolute
value of characteristic equation for three natural frequencies.

2. THE ROTATIONAL SPRING FGM BEAM
MODEL

The problem considered here a cantilever FGM beam of
length L and thickness h, containing an edge crack of depth a
located at position L1 from the clamped end is shown schemat-
ically in Fig. 1. Young modulus and density of beam vary in
the thickness direction according to exponential form as

E(z) = E1

√
ke[(z/h)Ln(k)];

ρ(z) = ρ1
√
ke[(z/h)Ln(k)]; ν = ν1; (2)

where E1, ρ1, ν1 are Young’s modulus, density, and Poisson’s
ratio at z = −h/2, respectively, and E2 is the Young’s modu-
lus at z = h/2. Moreover, k dictates the material variation pro-
file through the thickness of the beam and equals k = E2/E1.
For three values k 0.2, 1, and 5, the material distribution in the
thickness direction of the Exponentially Functionally Graded
Material beams is depicted in Fig. 1. As shown in Fig. 1, for
k = 1, the material properties are homogenous and isotropy.

Figure 2 shows the layout of an FGM cantilevered beam and
an edge crack is located at a distance of L1 from the clamped
end. The assumptions considered in this problem are that the
crack is perpendicular to the beam surface and always remains
open; the crack section is modeled as an elastic rotational
spring which has no mass and no length; the in-plane inertia
and rotary inertial effects of the beam are negligible; and the
entire beam is divided into two sub-beams, connected by the
rotational spring whose bending stiffness of the cracked sec-
tion is related to the compliance G by

kT =
1

G
; (2a)

where the expression of G is derived on the basis of Erdogan
and Wu’s study,26, 27 in terms of the crack depth ratio as

G =

ζ∫
0

72π(1− ν2)ζF 2(ζ)

E(ζh)h2
dζ; ζ =

a

h
; ζ ≤ 0.7; (2b)
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Figure 1. The variation of material properties in an E-FGM beam.

(a) FGM beam with an open edge crack

(b) Rotational spring model

Figure 2. Schematic of cantilever beam and crack model.

in which

F (ζ) = 395.919ζ7 − 971.767ζ6 + 1009.567ζ5 −
554.549ζ4 + 170.387ζ3 − 24.225ζ2 +

0.300ζ + 1.762; for
E2

E1
= 0.2; (2c)

F (ζ) = − 1031.750ζ7 + 2395.830ζ6 − 2124.310ζ5 +

909.375ζ4 − 192.451ζ3 + 21.667ζ2 −

1.662ζ + 1.150; for
E2

E1
= 1; (2d)

F (ζ) = − 122.978ζ7 + 296.701ζ6 − 249.533ζ5 +

94.003ζ4 − 12.567ζ3 + 0.860ζ2 +

0.300ζ + 0.605; for
E2

E1
= 5; (2e)

The bending stiffness of the cross section can be determined
from Eqs. (2a) and (2b).

3. GOVERNING EQUATIONS

Based on Euler-Bernoulli beam theory, the axial displace-
ment, u(x, y, z, t), and the transverse displacement of any
point of the beam, w(x, y, z, t), are given as

u(x, y, z, t) = u0(x, t)− z
∂w0(x, t)

∂x
;

w(x, y, z, t) = w0(x, t); (3)

where u0(x, t), w0(x, t) are displacement components on the
neutral axis. The strain-displacement and stress-strain rela-
tions could be given as

εxx = ε0xx + zε1xx; ε0xx =
∂u0
∂x

; ε1xx = −∂
2w0

∂x2
; (3a)σxxσyy

σzz

 =

Q11 Q12 0

Q21 Q22 0

0 0 Q66

εxxεyy
γxy

 ; (3b)

Q11 = Q22 =
E

1− ν2
; Q12 = Q21 =

Eν

1− ν2
;

Q66 =
E

2(1 + ν)
; (3c)

where ε0xx, ε1xx are strains due to mid-plane and bending, re-
spectively.

For the cracked FGM beam, variation of kinetic energy and
potential energy are of the form

δT = −
L1∫
0

h/2∫
−h/2

ρ(üδu+ ẅδw)b dz dx −

L∫
L1

h/2∫
−h/2

ρ(üδu+ ẅδw)b dz dx; (3d)

δV =

L1∫
0

h/2∫
−h/2

(σxxδεxx)b dz dx+

L∫
L1

h/2∫
−h/2

(σxxδεxx)b dz dx+

KT

(
∂w0(L

+
1 )

∂x
− ∂w0(L

−
1 )

∂x

)(
∂δw0(L

+
1 )

∂x
− ∂δw0(L

−
1 )

∂x

)
.

(3e)

Substituting Eqs. (3d) and (3e) in to the extended Hamilton’s
principle given in Eq. (3f), and noting the fact that δu0, δw0

are arbitrary, the governing equation of motion for ith segment
(i = 1, 2) are obtained in Eqs. (3g) and (3h)

t2∫
t1

(δT − δV ) = 0; δu0 = δw0 = 0; at t = t1, t = t2;

(3f)

δuoi : A11
∂2uoi
∂x2

−B11
∂3woi
∂x3

= 0; (3g)

δwoi :

(
D11 −

B2
11

A11

)
∂4woi
∂x4

+ I1ẅoi = 0; (3h)
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where subscript i = 1, 2 refer to the left sub-beam and right
sub-beam, respectively, which is divided by the crack. The
parameters I1, A11, B11, D11 are defined as

I1 =

h/2∫
−h/2

ρ(z)dz; (A11, B11, D11) =

h/2∫
−h/2

E(z)(1, z, z2)dz.

(3i)
The boundary conditions are

u0 = 0, w0 = 0,
∂w0

∂x
= 0 at x = 0; (3j)

Nxx = 0, Mxx = 0,
∂Mxx

∂x
= 0 at x = L; (3k)

u01 = u02, w01 = w02, Nxx1 = Nxx2, Mxx1 =Mxx2,

∂Mxx1

∂x
=
∂Mxx2

∂x
, KT

dw01

dx
−Mxx1 = KT

dw02

dx

at x = L1; (3l)

where the stress resultant Nxx (force per unit length) and the
stress moment Mxx (moment per unit length), are defined as
the following integral expressions:

Nxx =

h/2∫
−h/2

σxxdz; Mxx =

h/2∫
−h/2

zσxxdz. (3m)

4. FORWARD PROBLEM

In direct problems, the eigen solutions for the cantilevered
boundary conditions are derived using the following separable
solutions:

uoi(x, t) = Uoi(x)e
jωt; woi(x, t) =Woi(x)e

jωt; i = 1;

(4)
where ω is the natural frequency of the cracked FGM beam.
Substituting Eq. (4) into Eqs. (3g) and (3h), the displacement
solutions for two sub-beams are

Woi = ei1 sin(λx) + ei2 cos(λx) + ei3 sinh(λx) +

ei4 cosh(λx); i = 1, 2; (4a)

Uoi = λ(B11/A11)
[
ei1 cos(λx)− ei2 sin(λx) +

ei3 cosh(λx)− ei4 sinh(λx)
]
+ gix+ gi0; i = 1, 2;

(4b)

in which λ = 4
√
(I1ω2/d), d =

(
D11 − (B2

11/A11)
)
, the un-

known ei1, ei2, ei3, ei4 are to be determined from the compat-
ibility conditions at the intersections of sub-beams and bound-
ary conditions. Substituting Eqs. (4a) and (4b) into Eqs. (3j)–
(3l) yields a matrix equation as

[H]{q} = 0; (4c)

where H is a square matrix nonlinearly dependent on the natu-
ral frequency ω, q is a vector composed of 12 unknown param-
eters. The matrix H and the vector q are defined as Eq. (4d)
(written on the next page), where

J10 = sin(λL); J20 = cos(λL); J30 = sinh(λL);

J40 = cosh(λL); J11 = sin(λL1); J21 = cos(λL1);

J31 = sinh(λL1); J41 = cosh(λL1);

{q} =
{
e11 e12 e13 e14 g1 g10 e21 e22 e23 e24 g2 g20

}
;

(4e)

thus, the characteristic equation which ensures the non-trivial
solution is

det
(
[H(λ)]

)
= |H(λ)| = 0. (4f)

This equation can be solved analytically for certain values
of location and depth of crack and natural frequencies are ob-
tained in this solution. The beam is examined for various crack
depths at different locations to generate the test point. Each
test point represents the measured frequency, which are used
to evaluate the inverse algorithm to detect the depth and loca-
tion of crack. The first three natural frequencies are inputs of
the inverse algorithm.

5. INVERSE PROBLEM

For the inverse problem of the cracked system, the measured
frequencies based on the calculations of forward problem are
entered as input. These values are used instead of experimental
measurements. Several non-linear equation solving algorithms
can be used for this problem. In this paper, these unknown
parameters are solved by using the r2PSO algorithm.21

In crack detection process, the first three natural frequencies
are measured analytically from the characteristic equation by
considering the values for location and depth of crack which
is named as reference location and depth. Then for simulation
of experimental data, the error percentage is added to these
measured values, and are then entered as input to the inverse
algorithm. The ratio of natural frequency (ωci/ωoi)

∗ as input
of the inverse algorithm is expressed in Eq. (5) as,

(ωci/ωoi)
∗ = (ωci/ωoi)

c + err × εi; i = 1, 2, 3; (5)

where ε is a random number at interval [−0.5, 0.5], err is
the rate magnitude of error (0%, 1%, 2%) and (ωci/ωoi)

c is
the rate of measured natural frequency. The r2PSO algorithm
evaluated the location and depth of crack for different value
of (ωci/ωoi)∗. The obtained values of location and depth are
compared to the values of references. The objective function
based on characteristic equation is defined as

f = |H(λ)|λ=λ1 + |H(λ)|λ=λ2 + |H(λ)|λ=λ3 ; (5a)

where λi(i = 1, 2, 3) = 4
√
(I1ω2

ci/d), and ωci is obtained from
the natural frequency ratio (ωci/ωoi)

∗ expressed in Eq. (5).

5.1. Crack Detection in FGM Beam Using
R2PSO

In Li’s method, an lbest PSO using a ring topology was
used to induce stable niching behaviours. For each particle,
a neighborhood is considered to contain two or three mem-
bers of the population with their personal bests (memories), in
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[H] =



0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 J10 J20 −J30 −J40 B11

dλ2 0

0 0 0 0 0 0 −J20 J10 J40 J30 0 0
λB11

A11
J21 −λB11

A11
J11

λB11

A11
J41

λB11

A11
J31 L1 1 −λB11

A11
J21

λB11

A11
J11 −λB11

A11
J41 −λB11

A11
J31 −L1 −1

J11 J21 J31 J41 0 0 −J11 −J21 −J31 −J41 0 0

0 0 0 0 1 0 0 0 0 0 −1 0

−J11 −J21 J31 J41
B11

dλ2 0 J11 J21 −J31 −J41 B11

dλ2 0

−J21 J11 J41 J31 0 0 J21 −J11 −J41 −J31 0 0

J21− λd
KT

J11 −J11− λd
KT

J21 J41+
λd
KT

J31 J31+
λd
KT

J41
−B11

KTλ
0 −J21 J11 −J41 −J31 0 0



;

(4d)

which the best member acts as the best neighborhood in order
to update velocity and position of corresponding neighborhood
members. The velocity and position of ith particle is updated
according to Eqs. (5b) and (5c)

~vi = ξ
(
~vi + ~R1[0, ϕ1]⊗ (~Pi − ~xi) +
~R2[0, ϕ2]⊗ (~Pn,i − ~xi)

)
; (5b)

~xi ← ~xi + ~vi; (5c)

where ~Pn,i denotes the neighborhood best (or a local leader) of
ith particle found in its corresponding neighborhood. ~R1[0, ϕ1]

and ~R2[0, ϕ2] are two separate functions each returning a
vector comprising random values uniformly generated in the
ranges [0, ϕ1] and [0, ϕ2], respectively. χ is a constant and ϕ1

and ϕ2 are commonly set to ϕ/2 (where ϕ is a positive con-
stant). The symbol⊗ denotes point-wise vector multiplication.

Depending on how the neighborhoods are formed and in-
teracted in lbest PSO, four variants of this method are pre-
sented:21 (1,2) r2PSO and r3PSO, in which each neighbor-
hood contains 2 or 3 particles of contiguous indices in PSO
population respectively, and after formation of such neighbor-
hoods, they are considered to be overlapped. It means that dif-
ferent neighborhoods can share some members; (3,4) r2PSO-
lhc and r3PSO-lhc, where the neighborhoods are formed with
2 or 3 members, respectively without overlap between neigh-
borhoods. In these variants each neighborhood acts like a local
hill climber to explore the search space and no information
is exchanged between different neighborhoods. The number
of members of each neighborhood and overlap between them
controls the tendency of algorithm to find global or local op-
tima. More members and overlapping neighborhoods lead the
algorithm to tend toward locating more dominant peaks over
other less dominant peaks. If the goal of optimization is to
locate both global and local peaks, removing the overlapping
neighborhoods in the ring topology can cause finding local op-
tima as well as global optima of the search space.

In this paper, the goal is to find a global optimum solution
for the problem. Therefore, the overlapped variants of local
best variants seem more appropriate. Thus, we used the r2PSO
variant using the following settings: number of iterations =

Table 1. The pseudo code of lbest PSO using a ring topology (with three
neighbors).21

Randomly generate an initial population

repeat
for i = 1 to Population Size do
if fit(~xi) > fit(~pi) then ~pi ← ~xi

end
for i = 1 to Population Size do
~pn,i ← neighborhoodBest(~pi−1, ~pi, ~pi+1);

end
for i = 1 to Population Size do
Equation (4f);

Equation (5);

end
until termination criterion is met;

Table 2. Fundamental frequency ratio ω1/ω01 of an isotropic homogenous
cantilevered beam (L/h = 4.0, ν = 0.3, a/h = 0.2).

L1/L = 0.2 L1/L = 0.4 L1/L = 0.6

This paper This paper This paper
Ref.28 (analytical Ref.28 (analytical Ref.28 (analytical

solution) solution) solution)
0.94101 0.96556 0.96667 0.98563 0.99583 0.99637

100, population size = 100, max velocity = 0.4, min velocity =
-0.4, and . Table 1 shows the pseudo code of lbest PSO.

6. NUMERICAL RESULTS

6.1. Forward Solution Verification

In order to validate the accuracy of analytical solution of
direct problem, the fundamental frequency ratio ω1/ω10 of a

Table 3. First three dimensionless natural frequencies of intact FGM can-
tilevered beams (E1 = 70 GPa, ν = 0.33, ρ = 2780 kg/m3).

ω1 ω2 ω3

L/h E2/E1 Ref.8
Analytical

Ref.8
Analytical

Ref.8
Analytical

solution solution solution
0.2 0.83 0.83 5.18 5.18 14.49 14.49

20 1 0.88 0.88 5.51 5.51 15.42 15.42
5 0.83 0.83 5.18 5.18 14.49 14.49

0.2 3.30 3.30 20.70 20.70 57.97 57.97
10 1 3.52 3.52 22.03 22.03 61.70 61.70

5 3.30 3.30 20.70 20.70 57.97 57.97
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Table 4. Comparison of reference crack parameters with the predicted values
obtained by inverse algorithm (E2/E1 = 0.2) and r2PSO (average of best
solutions found in ten independent runs).

Reference crack Predicted crack by r2PSO

a/h L1/L err (%) a/h
Rate of

L1/L
Rate of

error error
0 0.3025 0.86 0.2008 0.41

0.2 1 0.2971 0.93 0.2019 0.99

0.3
2 0.2958 1.38 0.2031 1.58
0 0.3009 0.32 0.4027 0.68

0.4 1 0.3021 0.71 0.4030 0.76
2 0.3025 0.84 0.4032 0.82
0 0.5011 0.23 0.1991 0.41

0.2 1 0.4956 0.87 0.2140 0.72

0.5
2 0.4954 0.91 0.2023 1.16
0 0.5028 0.56 0.4007 0.19

0.4 1 0.4968 0.62 0.4022 0.56
2 0.5034 0.69 0.4039 0.98
0 0.6981 0.25 0.2010 0.53

0.2 1 0.7051 0.74 0.2011 0.55

0.7
2 0.6936 0.90 0.2020 1.01
0 0.6948 0.74 0.4039 0.90

0.4 1 0.6942 0.82 0.4051 1.27
2 0.6934 0.93 0.4067 1.67

cracked cantilevered isotropic beam is computed at different
locations. Moreover, ω10 is the first natural frequency of the
intact beam. Table 2 shows the fundamental frequency ratio
of an isotropic homogenous cantilevered beam with the prop-
erties L/h = 4.0, ν = 0.3, a/h = 0.2. This example was
previously analyzed by Yokoyama and Chen28 using the finite
element method and Bernoulli–Euler beam theory. As shown
in Table 2, our analytical solutions are compatible with the fi-
nite element results.

In Table 3, the lowest three modal frequencies of the intact
FGM cantilevered beam are calculated by the r2PSO method
and compared with those reported by Yu and Chu.8 In the
Yu and Chu’s work the p-FEM was used for the calculation
of frequencies and the modal frequencies were normalized as
ωn = ωn/(

√
d0/I0), where d0 and I0 are the correspond-

ing values of d0 and I0 of an isotropic homogeneous beam
E2/E1 = 1. Table 3 shows that the obtained results are in
conformity with the results of the paper.8

6.2. Crack Identification by R2PSO
Algorithm

The cracked cantilever FGM beam is made of a material
with properties E1 = 70 GPa, ν = 0.33, ρ = 2780 kg/m3

and with geometric data L = 2 m, h = 0.1 m.
The location and depth of crack is calculated by r2PSO algo-

rithm for three cases E2/E1 = 0.2, E2/E1 = 1, E2/E1 = 5

as shown in Tables 4–6, respectively.
In crack detection process for three cases, by selecting the

reference location and depth of crack, the first three natural
frequencies are obtained from the direct solution and subse-
quently the ratio of measured natural frequencies (ωci/ωoi)

∗

is computed. Then, by estimating random number (ε) for 10
times in Eq. (5), the 10 ratio of natural frequencies (ωci/ωoi)∗

are entered as inputs to the r2PSO algorithm. The algorithm
was run 10 times to compute the location and depth of crack.

Table 5. Comparison of reference crack parameters with the predicted val-
ues obtained by inverse algorithm (E2/E1 = 1) and r2PSO (average of best
solutions found in ten independent runs).

Reference crack Predicted crack by r2PSO

a/h L1/L err (%) a/h
Rate of

L1/L
Rate of

error error
0 0.2997 0.073 0.2010 0.53

0.2 1 0.3007 0.23 0.2015 0.78

0.3
2 0.3035 1.19 0.1970 1.48
0 0.3020 0.68 0.4033 0.83

0.4 1 0.3033 1.13 0.4044 1.12
2 0.2946 1.77 0.3946 1.33
0 0.4958 0.82 0.2014 0.71

0.2 1 0.5046 0.92 0.2023 1.16

0.5
2 0.4937 1.25 0.2027 1.36
0 0.4978 0.43 0.3979 0.50

0.4 1 0.5061 1.23 0.4035 0.88
2 0.4909 1.80 0.4073 1.82
0 0.7015 0.21 0.1987 0.64

0.2 1 0.6932 0.96 0.2014 0.72

0.7
2 0.6884 1.65 0.2038 1.93
0 0.6984 0.22 0.4031 0.78

0.4 1 0.6948 0.77 0.4052 1.32
2 0.6932 0.96 0.4054 1.36

Table 6. Comparison of reference crack parameters with the predicted val-
ues obtained by inverse algorithm (E2/E1 = 5) and r2PSO (average of best
solutions found in ten independent runs).

Reference crack Predicted crack by r2PSO

a/h L1/L err (%) a/h
Rate of

L1/L
Rate of

error error
0 0.2973 0.89 0.2010 0.52

0.2 1 0.3031 1.03 0.2018 0.93

0.3
2 0.2963 1.22 0.2019 0.96
0 0.3006 0.23 0.4024 0.61

0.4 1 0.2923 0.25 0.4025 0.64
2 0.2991 0.27 0.4050 1.25
0 0.5028 0.56 0.1990 0.47

0.2 1 0.5039 0.79 0.2012 0.60

0.5
2 0.5042 0.84 0.2022 1.10
0 0.4990 0.19 0.3989 0.25

0.4 1 0.5054 1.08 0.4027 0.68
2 0.4940 1.18 0.4035 0.89
0 0.6975 0.35 0.2001 0.05

0.2 1 0.7038 0.54 0.2004 0.22

0.7
2 0.6949 0.72 0.1992 0.37
0 0.7007 0.10 0.4028 0.72

0.4 1 0.6945 0.78 0.4036 0.90
2 0.6936 0.90 0.4046 1.15

By averaging the 10 obtained best values, the predicted loca-
tion and depth values of crack are acquired.

Tables 4–6 present the comparisons between reference crack
parameters with obtained crack parameters for different error
measurements in various scenarios. As shown in Tables 4–6,
when the measurement and modeling error are increased, the
precision of position and depth of crack is decreased.

In order to illustrate the performance of r2PSO algorithm
compared to the other algorithms in terms of the convergence
speed, the averaged best so far diagrams of three algorithms,
namely PSO, GA, and r2PSO. These three are depicted over
10 independent runs in Fig. 3 and provided that E1/E2 = 0.2,
a/h = 0.7, L1/L = 0.2, err = 0%. Similar diagrams for
two other scenarios: E1/E2 = 1, a/h = 0.7, L1/L = 0.2,
err = 0%, and for E1/E2 = 5, a/h = 0.7, L1/L = 0.2,
err = 0% are shown in Figs. 4 and 5.
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Figure 3. Convergence diagram forE1/E2 = 0.2, a/h = 0.7,L1/L = 0.2,
err = 0%.

Figure 4. Convergence diagram for E1/E2 = 1, a/h = 0.7, L1/L = 0.2,
err = 0%.

Figure 5. Convergence diagram for E1/E2 = 5, a/h = 0.7, L1/L = 0.2,
err = 0%.

7. CONCLUSIONS

The r2PSO algorithm has been implemented in this article
to detect the crack in a cantilever FGM beam. The Euler-
Bernoulli beam theory was considered for modeling the beam
and the open edge crack was replaced by a linear rotational
spring. The natural frequencies of FGM beam were obtained
from analytical solution. Knowing the natural frequencies, the
crack location and depth are calculated in inverse problem. The
inverse problem was defined as an optimization problem. The
objective function was based on the absolute value of charac-
teristic equation. Summation of first, second and third charac-
teristic equation corresponding to first, second and third natural
frequencies was the cost function. Then this cost function was
considered as the fitness function in r2PSO algorithm. Com-
paring the results obtained by r2PSO with those achieved by
GA and PSO reveals the applicability and efficiency of r2PSO
in finding optimal solutions within a reasonable time.
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