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An analysis with numerical results is presented for non-linear thermally induced forced vibrations of rectangular
plate of variable thickness on the basis of classical plate theory. The thickness of the plate is considered as linearly
varying in x-direction. Approximate formulae are proposed for estimating the maximum deflection of a rectangular
plate subject to a uniformly distributed harmonic lateral load. The effect of structural parameters such as thermal
constant and taper constant with different aspect ratios on vibration of simply supported-free-simply supported-
free plate for maximum deflection for the different values of the fundamental frequency of vibration is studied.
Results are presented in tabular form.

1. INTRODUCTION

Non-linear thermal vibration for mechanical device has been
one of the hot research topics. A forced vibration device with
variable thickness and non-linear thermal effect led by harmful
vibration reduction is undoubtedly more economical means.
The study of forced vibration behaviour of plates in the pres-
ence of non-linear thermal gradient for rectangular plates is re-
quired due to its practical importance because machines very
often operate under varied temperature conditions. The tem-
perature effects are overlooked in majority of cases though this
may be a major concern for the reason that during heated up
periods, structures are exposed to high intensity heat fluxes and
the material properties undergo significant changes; hence, the
thermal effect on modulus of elasticity of material cannot be
neglected. In modern times, such materials find application
because of their reduction of weight and size, low expenses,
and enhancement in effectiveness and strength.

Designing and fabrication of various structures requires ac-
curacy and perfection technically as well as economically.
Though plates of variable thickness are frequently used, best
fitted and suitably tapered structures are appreciated by struc-
tural engineers. It is also important for engineers to find a suit-
able type of tapering for their mechanical structure as variety
of tapered plates are required for various types of structures
and for different purposes. Therefore, the thickness variation
of the plates plays a vital role in the manufacturing of the struc-
ture. Further, tapering saves weight by removing unnecessary
weight of the structure. Thickness tapering is desirable since
stresses tend to vary significantly within the structure.

The materials are developed depending upon the require-
ment and durability so that these can be used to give better
strength, flexibility, weight effectiveness, and efficiency. Thus,
so some new materials and alloys are utilized in making struc-
tural parts of equipment used in modern technological indus-
tries like space craft, jet engine, earth quake resistance struc-
tures, telephone industry etc. It is important that first few fre-

quencies of structure be known before finalizing the design of
a structure. The study of vibration of plate structures is im-
portant in a wide variety of applications in engineering design.
Elastic plates are widely employed nowadays in civil, aero-
nautical, and marine structural designs. Complex shapes with
variety of thickness variation are sometimes incorporated to re-
duce costly material, lighten the loads, provide ventilation, and
alter the resonant frequencies of the structures.

In the recent past, a considerable amount of work has been
done on vibration of plates having variable thickness, owing
to their continually increasing use in the dynamic design of
various engineering structures. However, no work is available
on the vibration of rectangular plates of thickness variable with
non-linear temperature in the presence of external force. So far
only few papers have been devoted to vibration of rectangular
plate of variable thickness in presence of external force. Vi-
bration of plates of various shapes, homogeneous, orthotropic
or isotropic, with or without variation in thickness, have been
studied by various authors, with or without considering the ef-
fect of external force.

Akiyama and Kuroda1 discussed the fundamental frequen-
cies of rectangular plates with linearly varying thickness. Bam-
bill et al.2 have studied the transverse vibrations of rectan-
gular, trapezoidal, and triangular orthotropic cantilever plates.
Civalek3 discussed the fundamental frequency of isotropic and
orthotropic rectangular plates with linearly varying thickness
by discrete singular convolution method. Grossi and Laura4

discussed the transverse vibrations of circular plates of lin-
early varying thicknesses. Gupta et al.5, 6 studied the thermal
effect on vibration of parallelogram plate of linearly varying
thickness and bi-directional linearly varying thickness. Gupta
et al.7 studied the thermal gradient effect on vibration of
a non-homogeneous orthotropic rectangular plate having bi-
directional linearly thickness variation. Gupta et al.8 did the
vibration analysis of visco-elastic rectangular plate with thick-
ness varying linearly in one and parabolically in other direc-
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tion. Gupta et al.9 did the vibration study of visco-elastic
parallelogram plate of linearly varying thickness. Gupta and
Kaur10 studied the effect of thermal gradient on free vibration
of clamped visco-elastic rectangular plates with linear thick-
ness variation in both directions. Gupta and Khanna11 stud-
ied the vibration of visco-elastic rectangular plate with linear
thickness variations in both directions. Gupta et al.12 ob-
served the thermal effect on vibration of non-homogeneous
orthotropic rectangular plate having bi-directional paraboli-
cally varying thickness. Gupta and Ansari13 studied the ef-
fect of elastic foundation on asymmetric vibration of polar
orthotropic linearly tapered circular plates. Lal et al.14 dis-
cussed the Chebyshev polynomials in the study of vibrations
of non-uniform rectangular plates. . Laura and Duran15 wrote
a technical note on forced vibrations of a clamped rectan-
gular plate. Laura and Gutierrez16 carried out the vibration
analysis on a rectangular plate subjected to a thermal gradi-
ent. Liew and Lim17 have studied the free transverse vibration
analysis of symmetric trapezoidal plates with linearly varying
thickness. Liew and Lam18 worked on the vibration response
of symmetrically laminated trapezoidal composite plates with
point constraints. Transverse vibrations of clamped trapezoidal
plates having rectangular orthotropy were studied by Narita et
al.19 Oniszczuk20 studied the forced transverse vibrations of
an elastically connected complex rectangular simply supported
double-plate system.

Qatu21 presents the natural frequencies for laminated com-
posite angle-ply triangular and trapezoidal plates with com-
pletely free boundaries. Qatu et al.22 have worked on the
natural frequencies of trapezoidal plates with completely free
boundaries. Raju23 studied the vibration of thin elastic plates
of linearly variable thickness. Saha et al.24 discussed the
nonlinear free vibration analysis of square plates with various
boundary conditions. Sakata and Sakata25 studied the forced
vibrations of a non-uniform thickness rectangular plate with
two free sides. Sakata26 discussed the forced vibration of
a rectangular plate with non-uniform thickness. Tomar and
Gupta27, 28 studied the effect of thermal gradient on frequen-
cies of orthotropic rectangular plate of variable thickness in
one and two directions.

Here vibrations of rectangular plate of linearly varying
thickness with non-linear temperature in the presence of ex-
ternal force have been studied. The thickness of the plate is
assumed to vary linearly along x axis. The plate is simply
supported along two opposite sides and is free along the other
sides. Approximate formulae are proposed for estimating the
maximum deflection of a rectangular plate subject to a uni-
formly distributed harmonic lateral load. Maximum deflection
for the different values of fundamental frequency of vibration
is computed for a simply supported-free-simply supported-
free plate for various values of thermal constant, taper con-
stant, and aspect ratios. Numerical results are shown in tabular
form.

2. EQUATION OF MOTION

Consider a plate that is symmetrical in nature and of rectan-
gular form. Let a be the length of the plate and b be the width

of the plate. The rectangular plate to be dealt with here is sim-
ply supported along the two opposite sides y = 0 and y = b,
and is free along the remaining sides x = 0 and x = a.

Assuming that the plate under consideration is subjected
to steady one dimensional temperature distribution along the
length, one can take T as

T = T0

(
1− 1

2

(
x

a
+
x2

a2

))
; (1)

where T denotes the temperature excess above the reference
temperature at any point at distance x/a and T0 denotes the
temperature excess above reference temperature at the end i.e.
x = 0.

Temperature dependence of the modulus of elasticity for
most of engineering materials can be expressed in the form29

E = E0 (1− γT ) ; (2)

where E0 is the value of the Young‘s modulus at reference
temperature i.e. T = 0 and γ is the slope of the variation of E
with T . Thus, modulus variation becomes

E = E0

(
1− α

(
1− 1

2

(
x

a
+
x2

a2

)))
; (3)

where α = γT0 (0 ≤ α < 1), a parameter known as thermal
constant.

The thickness h of the plate at an arbitrary point is assumed
to vary linearly in x-direction as

h = h0

(
1 + β

x

a

)
; (4)

where h0 is the thickness of the plate at the side x = 0, and β
is a constant know as taper constant. The governing differen-
tial equation of motion of an isotropic elastic plate of variable
thickness for forced vibration in Cartesian coordinates is

∇2
(
D∇2w

)
− (1− ν) (D,yyw,xx − 2D,xyw,xy+

D,xxw,yy) + ρhw,tt = q; (5)

where ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 is a two-dimensional Laplacian op-

erator, D = Eh3

12(1−ν2) is a flexural rigidity, w is deflection, h
is thickness of plate, E is modulus of elasticity, t is time, ρ
is mass density per unit volume, ν is Poisson‘s ratio (which is
taken constant for simplicity otherwise equation become more
critical), and q is lateral load.

A comma followed by a suffix denotes partial differentiation
with respect to that variable.

Since thickness varies in x-direction only, so flexural rigidity
D of the plate becomes a function of x only. As plate undergo-
ing free vibration with radian frequency ω, so one has

w(x, y, t) =W (x, y) sinωt; (6a)

q(x, y, t) = Q(x, y) sinωt. (6b)

Using Eqs. (3), (4), and (6) in Eq. (5), differential equation
governing the forced vibration of the plate when it is subjected
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to a harmonic lateral load comes out as

C

[(
∂4W

∂x4

)
+ 2

(
∂4W

∂x2∂y2

)
+

(
∂4W

∂y4

)]
+2

(
∂C

∂x

)[(
∂2W

∂x3

)
+

(
∂3W

∂x∂y2

)]
+

(
∂2C

∂x2

)[(
∂2W

∂x2

)
+ ν

(
∂2W

∂y2

)]
−
(
ρh0ω

2

(
1 +

βx

a

)
W

D0

)
=

Q

D0
; (7)

where D0 is the flexural rigidity at the side x = 0
and is given by E0h

3
0/12(1 − ν2) and C =(

1− α
(
1− 1

2

(
x
a + x2

a2

))) (
1 + β xa

)3
.

3. SOLUTION

The solution of Eq. (7) is expressed as a double trigonomet-
ric series,

W =

K∑
k=1

L∑
l=1

Wkl

[
sin

(
kπx

a

)
+ Ckl1x

3 + Ckl2x
2+

+Ckl3x+ Ckl4] sin

(
lπy

b

)
. (8)

Here, the deflection W satisfies the boundary conditions

W =
∂2W

∂y2
= 0 on y = 0, b. (9)

The constants Ckli(i =1, 2, 3, 4) are determined when the
deflection satisfies the boundary conditions(

∂2W

∂x2

)
+ ν

(
∂2W

∂y2

)
=

(
∂3W

∂x3

)
+ (2− ν)

(
∂3W

∂x∂y2

)
= 0 on x = 0, a.

(10)

The lateral load Q(x, y) can be expanded as

Q(x, y) =

K∑
k=1

L∑
l=1

Qkl sin

(
kπx

a

)
sin

(
lπy

b

)
. (11)

Substituting Eqs. (8) and (11) into Eq. (7) gives

K∑
k=1

L∑
l=1

Wkl

[
Fkl1 −

(
ρh0ω

2

D0

)
Fkl2

]
sin

(
lπy

b

)
=

=

K∑
k=1

L∑
l=1

(
Qkl
D0

)
sin

(
kπx

a

)
sin

(
lπy

b

)
; (12)

where the quantities Fkli (i = 1, 2) are functions of x, β, α and
a/b only. Hence, it can be expanded in trigonometric series
form as

Fkli =

K∑
m=1

Bklmi sin
(mπx

a

)
. (13)

Substituting Eq. (13) into Eq. (12) then gives

K∑
k=1

Wkl

[
Bklm1 −

(
ρh0ω

2

D0

)
Bklm2

]
=
Qml
D0

,

m = 1, 2, . . . ,K; (14)

Table 1. Values of the maximum deflection Wmax for different values of
taper constant β and for fixed value of aspect ratio a/b = 1.0, thermal constant
α = 0.5, x/a = 0.1, and y/b = 0.5.

β Wmax

ω = 0.0 ω = 0.3 ω0 ω = 0.5 ω0 ω = 0.8 ω0

0.0 0.01120 0.01280 0.01635 0.02084
0.2 0.01227 0.01360 0.01700 0.02155
0.4 0.01301 0.01436 0.01765 0.02228
0.6 0.01377 0.01517 0.01844 0.02289
0.8 0.01458 0.01588 0.01918 0.02363
1.0 0.01523 0.01653 0.02082 0.02411

Table 2. Values of the maximum deflection Wmax for different values of
thermal constantα and for fixed value of aspect ratio a/b = 1.0, taper constant
β = 0.5, x/a = 0.1, and y/b = 0.5.

α Wmax

ω = 0.0 ω = 0.3 ω0 ω = 0.5 ω0 ω = 0.8 ω0

0.0 0.01708 0.01825 0.02196 0.02635
0.2 0.01530 0.01671 0.02038 0.02475
0.4 0.01378 0.01544 0.01910 0.02351
0.6 0.01226 0.01441 0.01783 0.02235
0.8 0.01072 0.01335 0.01658 0.02120
1.0 0.00966 0.01234 0.01542 0.01992

for each l. Thus, one can compute the deflection W satisfy-
ing both the governing Eq. (7) and the boundary conditions,
Eqs. (9) and (10), by substituting the coefficientsWkl obtained
from Eq. (14) into Eq. (8).

4. RESULTS AND DISCUSSION

Numerical calculations were performed for thermally forced
rectangular plate subjected to a uniformly distributed lateral
load Q(x, y) = Q0 with number of term in series for K and L
as 60. Poisson ratio ν is taken as 0.3. Let the fundamental nat-
ural frequency and maximum deflection in x and y direction
be denoted by ω0 and Wmax, respectively. Maximum deflec-
tion Wmax is given by W/(Q0a

4/D0) and calculated for four
typical case ω = 0.0, 0.3 ω0, 0.5 ω0, and 0.8 ω0 for differ-
ent values of taper constant β, thermal constant α and aspect
ratio a/b with two combinations of x/a and y/b for simply
supported-free-simply supported-free rectangular plate of lin-
early variable thickness with thermal constant. Results are dis-
played in Tables 1–6.

Table 1 displays variation of maximum deflection Wmax

with taper constant β. Thermal constant has to be taken as
α = 0.5 for aspect ratios a/b = 1.0 and x/a = 0.1, y/b = 0.5.
It has been observed from the table that when taper constant
increases, maximum deflection also increases for all the four
values of fundamental frequency. It is interesting to note that
as fundamental frequency increases, maximum deflection also
increases.

Table 2 contains numerical results for maximum deflec-
tion Wmax verses thermal constant α. Value of taper con-
stant β = 0.5 has been taken for aspect ratios a/b = 1.0 and
x/a = 0.1, y/b = 0.5 for all the four values of fundamental
frequency. It is clear from the table that when thermal constant
increases, maximum deflection decreases. Also, when funda-
mental frequency increases, maximum deflections increase.

Table 3 show variation of maximum deflection with aspect
ratio. A combination of taper constant and thermal constant

464 International Journal of Acoustics and Vibration, Vol. 22, No. 4, 2017



A. K. Gupta, et al.: NON-LINEAR THERMALLY INDUCED VIBRATIONS OF NON-HOMOGENEOUS RECTANGULAR PLATE OF LINEARLY. . .

Table 3. Values of the maximum deflection Wmax for different values of
aspect ratio a/b and for fixed value of taper constant β = 0.5, thermal constant
α = 0.5, x/a = 0.1, and y/b = 0.5.

a/b Wmax

ω = 0.0 ω = 0.3 ω0 ω = 0.5 ω0 ω = 0.8 ω0

0.5 0.01432 0.01599 0.01925 0.02380
1.0 0.01335 0.01479 0.01810 0.02265
1.5 0.01246 0.01359 0.01695 0.02154
2.0 0.01138 0.01245 0.01540 0.02053
2.5 0.01031 0.01132 0.01430 0.01945
3.0 0.00925 0.01028 0.01316 0.01839

Table 4. Values of the maximum deflection Wmax for different values of
taper constant β and for fixed value of aspect ratio a/b = 1.0, thermal constant
α = 0.5, x/a = 0.5, and y/b = 0.1.

β Wmax

ω = 0.0 ω = 0.3 ω0 ω = 0.5 ω0 ω = 0.8 ω0

0.0 0.01112 0.01269 0.01623 0.02073
0.2 0.01219 0.01349 0.01689 0.02145
0.4 0.01291 0.01424 0.01752 0.02217
0.6 0.01367 0.01507 0.01832 0.02278
0.8 0.01457 0.01578 0.01907 0.02352
1.0 0.01513 0.01643 0.02072 0.02402

Table 5. Values of the maximum deflection Wmax for different values of
thermal constantα and for fixed value of aspect ratio a/b = 1.0, taper constant
β = 0.5, x/a = 0.5, and y/b = 0.1.

α Wmax

ω = 0.0 ω = 0.3 ω0 ω = 0.5 ω0 ω = 0.8 ω0

0.0 0.01702 0.01818 0.02187 0.02624
0.2 0.01524 0.01663 0.02029 0.02465
0.4 0.01371 0.01535 0.01900 0.02341
0.6 0.01219 0.01430 0.01773 0.02226
0.8 0.01065 0.01325 0.01649 0.02111
1.0 0.00958 0.01224 0.01533 0.01984

has been considered with x/a = 0.1, y/b = 0.5 for all the four
values of fundamental frequency. It has been observed that
when aspect ratio increases, maximum deflection decreases for
all the four cases of fundamental frequency.

Table 4 contains variation of maximum deflection Wmax

with taper constant β. Thermal constant has to be taken as
α = 0.5 for aspect ratios a/b = 1.0 and x/a = 0.5, y/b = 0.1.
It has been observed from the table that when taper constant
increases, maximum deflection also increases for all the four
values of fundamental frequency. It is interesting to note that
as fundamental frequency increases, maximum deflection also
increases.

Table 5 contains numerical results for maximum deflection
Wmax verses thermal constant α. One value of taper con-
stant β = 0.5 has been taken for aspect ratios a/b = 1.0 and
x/a = 0.5, y/b = 0.1 for all the four values of fundamental
frequency. It is clear from the table that when thermal constant
increases, maximum deflection decreases. Also, when funda-
mental frequency increases, maximum deflections increase.

Table 6 contains variation of maximum deflection with as-
pect ratio. A combination of taper constant and thermal con-
stant has been considered with x/a = 0.5, y/b = 0.1 for all
the four values of fundamental frequency. It has been ob-
served that when aspect ratio increases, maximum deflection
decreases for all the four cases of fundamental frequency. It
is evident from the tables that on increasing the values of x/a
and decreasing value of y/b, maximum deflection decreases.

Table 6. Values of the maximum deflection Wmax for different values of
aspect ratio a/b and for fixed value of taper constant β = 0.5, thermal constant
α = 0.5, x/a = 0.5, and y/b = 0.1.

a/b Wmax

ω = 0.0 ω = 0.3 ω0 ω = 0.5 ω0 ω = 0.8 ω0

0.5 0.01426 0.01591 0.01915 0.02368
1.0 0.01328 0.01471 0.01800 0.02253
1.5 0.01235 0.01350 0.01684 0.02143
2.0 0.01129 0.01236 0.01529 0.02042
2.5 0.01023 0.01122 0.01418 0.01935
3.0 0.00916 0.01018 0.01304 0.01829

5. CONCLUSIONS

It can be concluded from the results that deflection increases
with increase in taper constant and decreases with increase in
thermal constant sharply as compared to linear temperature.
Also, when aspect ratio a/b increases, deflection decrease. It is
also clear from the tables that when y/b is more in comparison
to x/a, then deflection is large.
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