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A combined numerical-experimental technique has been implemented using the finite element model updating
technique to estimate a set of proportional viscous damping parameters for determining the global responses of
fibre reinforced plastic (FRP) plates over a chosen frequency range of interest. The experimentally determined
frequencies and mode shapes are used to update the homogenised anisotropic in-plane material constants, before
estimating the damping parameters from the directly observed frequency response functions (FRFs). Gradient
based inverse sensitivity method has been implemented for the parameter estimation. Existing FRP structures may
degrade considerably due to environmental effects over the long period of existence—changing the material and
damping properties significantly compared to their initial values after fabrication—thus requiring updating. The
estimated viscous damping parameters using the current technique reproduces higher values of modal damping
factors for FRP plates. For nonviscous damping, estimation of a set of relaxation factors produces a more realistic
estimate of modal damping factors. Increased value of the relaxation factors make the model coincide with the
viscous one. A numerically simulated plate problem has been presented along with the experimental validation.

1. INTRODUCTION

Dynamical responses of Fibre Reinforced Plastic (FRP)
plates are functions of geometry, material properties, exist-
ing boundary conditions, and damping. The initial material
properties used for modelling the dynamical responses of such
plates come from the material characterisation tests on sepa-
rately prepared samples. However, development of an accurate
damping matrix is far more difficult, even at the initial stage of
existence of the plate, because the global damping matrix is
usually formulated directly from the global stiffness and mass
information. It is extremely difficult to form a damping ma-
trix from constituent level damping parameters, taking care of
all the complex individual phenomena and their combinations,
such as material damping, joint friction, and environmental ef-
fects. Gaul provided excellent guidelines to understand the
damping of materials and structural members, including lam-
inated parts.1 Making assumptions about small damping al-
lows linear damping models to approximate the actual nonlin-
ear damping behaviour. In proportional damping—where the
viscous effects are dominant—the damping matrix is formed
by weighted sum of mass and stiffness matrices.2 Thus, pro-
portional damping or Rayleigh damping is mathematically ex-
pressed as

C = a0M + a1K. (1)

Here, M , C, and K are the mass, viscous proportional damp-
ing, and stiffness matrices of the FRP plate considering the
plate as a multiple degrees of freedom system. The coefficients
a0 and a1 are the Rayleigh damping coefficients. The Rayleigh
damping model has enjoyed an almost universal acceptance
because the modal transformation of the proportional damping
matrix—with respect to the undamped normal mode shapes—
produces a diagonal damping matrix. However, a more gener-
alised viscous proportional damping matrix has been proposed

by Caughy and Caughey and Kelly3, 4

C = M

N−1∑
n=0

an
[
M−1K

]n
. (2)

In fact, the value of n can be chosen as an integer between−∞
and +∞, but practically this is taken very low (e.g., n = 2) for
Rayleigh damping.5 Woodhouse emphasised the importance
of accurate predictions of physical mechanisms for estimat-
ing an appropriate damping matrix.6 Adhikari incorporated
frequency variations of damping factors to determine a gener-
alised proportional damping model.7 Adhikari and Phani ob-
tained a generalised proportional damping matrix from a single
driving point frequency response function (FRF) only.8

Several investigators have used measured FRFs for damping
identification.9–13 Arora et al. implemented a two-step damp-
ing identification methodology in which the stiffness and mass
matrices are updated first from the measured FRFs, followed
by identification of the damping matrix.14 Friswell identified
a generalised viscous proportional damping matrix along with
the stiffness matrix from measured FRFs.15 More recently, Pan
and Wang used a FRF based iterative model updating approach
to identify an exponential damping model.16 Kausel proposed
methodology to construct families of nonproportional damping
matrices.17

Extensive investigations have been carried out by Dalen-
bring on laminated aluminium and Plexiglas plates, con-
strained viscoelastic layers of aluminium and carbon fibre
epoxy laminate, and bonded aluminium polymethyl methacry-
late plates to identify damping parameters.18–21 Dovstam for-
mulated a linear three-dimensional material damping mod-
elling technique using an augmented Hooke’s law (AHL) in the
frequency domain, and recently investigated interface damping
in built-up structures.22, 23
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Literature related to modelling of damped FRP structures
is limited. Crocker and Li presented reviews on damping of
composites including sandwich composites.24 Gelman et al.
used a FRF-based diagonalization of damping matrix, Akrout
et al. investigated the vibroacoustic behaviour of thin film-
laminated glass panels in the presence of fluid layers, and Wu
and Huang studied the natural frequency and the damping of
laminated composites plates.25–27

Identification of damping using a finite element model up-
dating is an active area of research.28 All existing methods
of damping estimation usually assume availability of accurate
mass and stiffness matrices; in reality, these requirements are
hard to achieve for existing FRP structures, since uncertain-
ties will grow both for stiffness and damping parameters as the
structure deteriorates over time. As a result, most of the pro-
posed techniques in literature for estimation of damping are
not directly applicable to real existing structures unless a stiff-
ness identification exercise is carried out prior to or in conjunc-
tion with the damping identification. Since the phenomenon of
damping is complex, a proper, regularised, well-posed inverse
approach is the only solution to forming a reliable damping
matrix from measured modal or FRF responses.

The objective of the present investigation is to apply a model
updating technique to estimate a set of globally equivalent
viscous damping parameters and stiffness parameters for pul-
truded FRP plates using the Inverse Eigensensitivity Method
(IEM) so that the predicted responses matches exactly with
observed responses.29 The procedure includes detailed exper-
imental modal testing and subsequent data analysis, precise
finite element modelling with appropriate discretization, cor-
relating finite element results to the experiment, and updating
selected parameters using a robust gradient-based optimization
technique.30 The methodology is established by a numerically-
simulated example, followed by a real experimental case study
on a pultruded FRP plates under free-boundary conditions. A
set of relaxation parameters has been defined to model nonvis-
cous damping for FRP plates. Increased values of these relax-
ation factors make the model coincide with the viscous one.

2. MATHEMATICAL FORMULATION

2.1. Estimation of Viscous Damping
Parameters

The equation of motion of the FRP plate in time domain can
be written as

Mẍ(t) + Cẋ(t) +Kx(t) = f(t). (3)

Here, x(t) is the displacement vector. The undamped eigen-
values and eigenvectors are computed from the eigensolutions
of the equation

Kφ = ω2Mφ. (4)

The undamped eigenvalues, eigenvectors and the modal damp-
ing factors can be related through the expression of accelerance
FRFs as

Hpq(ω) = −ω2
N∑
n=1

φpnφqn
(ωn − ω + 2iωωnξn)

; (5)

where Hpq is acceleration response at point p due to excitation
at point q.31 The modal damping factor ξn for nth mode of the
FRP plate can be expressed as

ξn =
1

2

(
a0
ωn

+ a1ωn + a2ω
3
n + . . .+ aN−1ω

2N−3
n

)
. (6)

For proportional damping, N can be taken as 2. Thus, Eq. (6)
reduces to

ξn =
1

2

(
a0
ωn

+ a1ωn

)
. (7)

Here, a0 and a1 are the Rayleigh damping coefficients. When
N > 2 in Eq. (6), the damping matrix is a fully populated
matrix,32 whereas the stiffness and mass matrices still remain
sparse and banded. Substituting the values of Rayleigh damp-
ing coefficients, Eq. (5) can be expressed as

Hpq(ω) = −ω2
N∑
n=1

φpnφqn(
ωn − ω + iω (a1ω2 + a0)

) . (8)

Out of all three system matrices, the mass matrix has less un-
certainty. Moreover, the magnitude of the coefficients of the
damping matrix is an order lower in comparison to the mass
and stiffness matrices in a consistent formulation. Thus, for
estimating the damping parameters of the FRP plate, a two-
stage model updating approach needs to be implemented by
updating the stiffness matrix in the first phase, then updating
modal damping coefficients—only parameters a1 and a0—in
the damping matrix during the second phase.

The objective function can be formed as the summation of
the weighted differences of the measured and computed FRFs
(used to estimate damping parameters) or the frequencies and
mode shapes (used to estimate stiffness parameters) of the FRP
plate. The objective function can be expressed as

E =

n∑
p=1

wpp ||Hexp −Hnu||2; or

E =
n∑
p=1

wpp ||(ω, φ)exp − (ω, φ)nu||2; (9)

where wpp are the weights and p is the number of frequencies
or FRFs considered sensitive enough with respect to the elastic
parameters or modal damping coefficients. The sensitivities
of the frequencies, mode shapes, or the FRFs with respect to
the material parameters or damping parameters are computed
using first-order finite difference approximation

S =

[
∂(ω, φ or H)

∂rn

]
. (10)

Here, rn is the material or damping parameters for which sen-
sitivity is calculated. The relationship between changes in
measured modal properties (e.g., frequencies, mode shapes, or
FRFs) and the changes in the parameters to be updated (e.g.,
material constants, a0, and a1) of the FRP plate can be related
through the first-order sensitivity matrix

{∆f} = [S]{∆r}. (11)

Suitable changes (∆r) are made to the initial guesses of the pa-
rameters within reasonably selected bounds, and the finite el-
ement model of the pultruded FRP plate is updated iteratively,

International Journal of Acoustics and Vibration, Vol. 23, No. 1, 2018 17



S. Mondal, et al.: ESTIMATION OF VISCOUS DAMPING PARAMETERS OF FIBRE REINFORCED PLASTIC PLATES USING FINITE ELEMENT. . .

minimizing the objective function in a weighted least-square
sense. Such changes implement the IEM

{r}p+1 = {r}p + {∆r}p. (12)

The similarity of experimental modes with the numerically
computed modes is quantitatively verified during each step
of iteration through Modal Assurance Criteria (MAC); Val-
ues close to 1 indicate good correlation.33 The experimental
FRFs are compared with the numerical FRFs using Signature
Assurance Criteria (SAC).31 The above correlations are vector
correlations, whereas the FRF magnitudes are compared using
Cross Signature Assurance Criteria (CSAC) and Cross Signa-
ture Scale Factor (CSF).33, 34

2.2. Estimation of Relaxation Factors from
Updated Viscous Damping Parameters

For nonviscous damping, the equation of motion (Eq. (3))
can be written as35

Mẍ(t) +

∫ t

0

G(t−τ)ẋ(τ) dτ +Kx(t) = 0. (13)

Here, the dissipative force depends on the time-history of mo-
tion. This can be represented by a convolution integral between
the velocities and a decaying kernel function. One promising
expression for G(t) is exponential damping model35

G(t) = Cµe−µt. (14)

Here, C is the damping matrix with real coefficients and µ
is the relaxation factor. The viscously-damped system can be
expressed as a special case of exponential nonviscous damping
when µ → ∞. The Laplace transformation of the dynamical
equation can be expressed as

s2Mz + sL(s)z +Kz = 0. (15)

Here, L(s) is the Laplace transformation ofG(t), z is the com-
plex mode, and s is the complex frequency of the FRP plate.
Assuming small damping and first-order perturbation theory,
the qth complex natural frequency and mode shape can be ap-
proximated as6

λq = ±ωq + i
L′qq(ω)

2
;

zq = φq + i

N∑
n=1
n6=q

ωqL
′
nq(ω)ωq

(ω2
q − ω2

n)
φn. (16)

The imaginary part of the above equation can be written as16

L′nl(ωq) = φTnL(ωq)φl;

L′nl(ωq) =
µC ′nl

(µ+ iωq)
=
µ(µ− iωq)C ′nl

(µ2 + ω2
q )

=
µ2C ′nl

(µ2 + ω2
q )
− i µωqC

′
nl

(µ2 + ω2
q )

; (17)

where
C ′nl = φTnCφl. (18)

In the above equation, phi is the real part of the complex mode
shapes. Assuming that

G(t) =
(
a0M + a1K

)
µe−µt = C0µe

−µt + C1µe
−µt; (19)

the Laplace transform of the equation can be written as16

L′nl(ωq) =

{
µ2
0C
′
0,nl

(µ2
0 + ω2

q )
+

µ2
1C
′
1,nl

(µ2
1 + ω2

q )

}
−

i

{
µ0ωqC

′
0,nl

(µ2
0 + ω2

q )
+
µ1ωqC

′
1,nl

(µ2
1 + ω2

q )

}
(20)

Here

C ′0,nl = a0φ
T
nMφl;

C ′1,nl = a1φ
T
nMφl; (21)

λq = ±ωq +

{
a0
2

µ0ωq
(µ2

0 + ω2
q )

+
a1ω

2
q

2

µ1ωq
(µ2

1 + ω2
q )

}
+

i

{
a0
2

µ2
0

(µ2
0 + ω2

q )
+
a1ω

2
q

2

µ2
1

(µ2
1 + ω2

q )

}
. (22)

The complex natural frequency corresponding to the elastic
modes can be written as

λq = ωq + iωqξq. (23)

Here, ξq is the modal damping of qth mode. Comparing the
imaginary parts of the above two equations, the value of the
modal damping factor can be correlated to the relaxation pa-
rameter as shown16

ξq =
a0

2ωq

1(
1 +

ω2
q

µ2
0

) +
a1ωq

2

1(
1 +

ω2
q

µ2
1

) ; (24)

where a0 and a1 are values of updated damping parameters
with respect to the measured FRFs. When the value of µ0,
µ1 are comparatively higher, then the exponential damping
closely matches with the Rayleigh damping.

3. NUMERICALLY SIMULATED EXAMPLE

Consider a rectangular FRP composite plate of dimensions
400 mm × 300 mm and with a thickness of 10 mm. This
numerically-simulated example deals with the estimation of
the in-plane stiffness properties and global damping parame-
ters of a pultruded FRP composite plate. A 12 × 12 mesh
division using the isoparametric element (S8R) in ABAQUS
was found to be adequate for the convergence of eigenproper-
ties within selected frequency ranges, and is used throughout
this present investigation. The experimental frequency, mode
shapes, and FRF data are generated using the same finite ele-
ment model. The in-plane material elastic constants are taken
as Ex = 35 GPa, Ey = 30 GPa, Gxy = 5 GPa; the Poission’s
ratio is taken as υxy = 0.17. Here, x and y, respectively, are
the longitudinal and transverse in-plane directions of the FRP
plate. The data is similar to the actual experimental case study
reported later. The transverse shear moduli, Gxz and Gyz both
are assumed to be 5 GPa. The direction z implies direction
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Table 1. Numerically simulated “experimental” frequencies and assumed
modal damping factors.

Mode Frequency (Hz) Modal damping factor (%)
1 159.56 2.0E-2
2 286.18 0.75E-2
3 431.35 1.5E-2
4 553.60 1.0E-2
5 631.44 1.1E-2
6 793.82 1.20E-2
7 898.91 0.8E-2
8 917.55 0.8E-2

Table 2. Initial value of Rayleigh damping parameters for the numerical
model.

Mode considered Mode considered
for average values for average values a0 a1

of ω1 and ζ1 of ω1 and ζ1
Trial 1 1,2 3,4 3.91 3.71E-5
Trial 2 1,2,3 4,5,6 6.28 1.92E-5
Trial 3 1,2,3,4 5,6,7,8 6.76 1.40E-5
Trial 4 — — 40 8.0E-6
Trial 5 — — 50 15.0E-6

perpendicular to the plane of the plate. Since the in-plane
Poission’s ratio can only be estimated properly when sufficient
numbers of torsional modes are included as information, this
factor was removed from scope of the experimental investiga-
tion. The mass density is assumed to be 1500 kgm−3. The
assumed experimentally measured modal damping parameters
and natural frequencies are given in Table 1.

The parameter estimation exercise was carried out using the
inverse eigensensitivity method (IEM) to estimate the material
parameters first. The convergences from a few initial values
to the correct material constants are shown in Fig. 1. As ex-
pected, changes in modal damping values had little effect on
the estimation of the in-plane material constants.

In Fig. 1, s 40,37,10 is a set of initial values of the material
constants Ex = 40 GPa, Ey = 37 GPa, and Gxy = 10 GPa
used in the model updating exercise. The solutions were
unique in all cases.

The estimate of the damping coefficients a0 and a1 is sen-
sitive to the FRF magnitudes. Simulated “experimental” fre-
quencies and modal damping parameters from Table 1 were
used to choose sets of initial values of a0 and a1 for use in
the model updating program. Equation (7) gives a set of initial
values of a0 and a1, which differ considerably depending upon
the modes selected, as shown in Table 2.32 The first three sets
show the variations of these two parameters due to the incor-
poration of varying number of modes—at most, eight modes
here. To check the robustness of this FRF based inverse algo-
rithm, two additional arbitrary sets of a0 and a1 values were
chosen, which did not immediately correspond to any combi-
nation of modes; this is shown in Table 2.

Figure 2, shows the convergence curves for both the param-
eters which are found to be monotonic and unique. The val-
ues are a0 = 2.53E1 and a1 = 4.27E-6 respectively. The
updated mass-proportional damping coefficient converged to a
higher value while the stiffness proportional damping coeffi-
cient converged to a somewhat lower value. Similar instances
have been reported in current literature, demonstrating that a
higher value of mass-proportional damping coefficients indi-
cates a trend towards more viscous damping.16 Also, similar
observations have been made for FRP beams.30

The regenerated FRF curves—as shown in Fig. 3—

(a) Convergence of Ex

(b) Convergence of Gxy

Figure 1. Typical convergence curves for material parameters from selected
initial values.

continually matched as additional modes were added into the
simulation, indicating that the updated parameters of the iden-
tified damping matrix are globally representative. Thus, the
response prediction of the plate became much more accurate.
The degree of improvement was judged by comparing im-
proved values of MAC and SAC between the simulated “ex-
perimental” observation and the observations made using the
updated model.

Figure 4 shows the FRF curve with 2% random noise in FRF
data; here, the damping parameters were updated to the values
a0 = 2.55E1 and a1 = 4.3E-6, which can be compared with
the previous values obtained in the FRF data without noise.
Thus, the noise sensitivity of the algorithm was observed to be
low.

4. EXPERIMENTAL INVESTIGATION

A rectangular FRP composite plate of the same size—
400 mm × 300 mm, with a thickness of 10 mm, as described
in the numerically simulated example—was fabricated out of
woven roving glass fibres and epoxy matrix using the pul-
trusion process. In fact, the plate has been extracted from a
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(a) Convergence of a0

(b) Convergence of a1

Figure 2. Convergence curves for the damping coefficients.

much bigger plate fabricated for the purpose of experimenta-
tion on beam samples as well as for the plate.30 The aver-
age thickness and the mass density of the plate was 10.12 mm
and 2012 kgm−3 respectively.30 Modal testing was carried
out on the FRP plate under free-boundary conditions, using
impact excitation imparted through an impact hammer; Re-
sponses were picked up by an accelerometer. The Frequency
Response Functions (FRFs) were directly measured, and fre-
quencies and mode shapes were extracted using modal anal-
ysis software MEScope. Such modal testing is standard in
current practice—details of similar modal testing on pultruded
FRP composite beam may be obtained from investigations car-
ried out earlier.30, 31 Figure 5(a) shows the modal test setup, in
which the free boundary condition was realised by suspending
the FRP plate using soft elastic strings from a rigid support.
Figure 5(b) shows the position of the accelerometer (point 16),
and a few selected points of excitations of the plate with the
impact hammer. All 49 points were used as excitation points.

The finite element modelling of the plate was performed us-
ing the same shell element (S8R) with adequate discretization

(a) Comparison of FRF obtained using modal damping
and FRF obtained using damping parameters (Trial 1)

(b) Comparison of FRF obtained using modal damping
and FRF obtained using damping parameters (Updated)

Figure 3. Comparison of trial and regenerated FRFs using updated parameters
for a typical cross FRF.

to get converged values of the modal properties. The numerical
FRFs were synthesized from the undamped modal properties,
using the modal damping factors from experimental observa-
tion. The mode shapes and initial MAC values for correla-
tions between modes are not shown for brevity. Differences
in modal and FRFs between the experimental observation and
the finite element model were resolved through model updat-
ing after selecting appropriate sets of parameters. The most
likely parameters affecting the results are 1) the in-plane mate-
rial constants affecting the resonant frequency shifts and 2) the
damping factors affecting the response amplitude sharpness of
the FRF curves of the pultruded FRP plate.

First, the material parameters were updated using the IEM
considering the experimental modal data, viz. frequencies and
mode shapes. The convergence curves from a set of selected
initial values of the parameters are shown in Fig. 6.

Frequencies obtained using updated elastic material param-
eters along with the experimental frequencies are shown in
Table 3. The experimental modal damping factors are also
shown.

The final MAC values indicate good correlations between
the updated mode shapes and the observed mode shapes. Since
MAC is a global vector correlation function at resonant fre-
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Figure 4. Comparison of actual FRF (with 2% noise) and regenerated FRF
using updated parameter values.

(a) Modal testing set up for free-free plate

(b) Grid point for measurement of FRFs

Figure 5. (a) Experimental setup for modal test, (b) Grid points for measure-
ment of FRFs of the plate.

quencies, it does not immediately indicate the level of varia-
tions of FRF magnitudes at intermediate frequencies. To gain
insight into the benefit of the global updating process, CSAC
and CSF were plotted (Fig. 7) with respect to the frequencies,
which indicate excellent correlations except near a few anti-
resonant points.

The average material constants determined experimentally,
were Ex = 33.05 GPa, Ey = 31.80 GPa, Gxy = 5.73 GPa,
and υxy = 0.15; the updated material constants were found
to be Ex = 35.64 GPa, Ey = 32.31, and Gxy = 7.12 GPa
respectively. The updated material parameters differed only
slightly from the results obtained by updating a beam speci-

(a) Convergence of Ey

(b) Convergence of Gxy

Figure 6. Typical convergence curves for material parameters from selected
initial values.

Table 3. Updated and measured eigenvalues and damping.

Updated freq. (Hz) Exp. freq. (Hz) Measured damping (%)
164.11 164.15 3.247
256.53 256.59 1.8351
418.57 420.1 1.7126
481.92 482.27 1.1702
576.47 577.30 1.2725
710.41 710.9 1.0058

men, and can be attributed to the size effects of the beam sam-
ple. The updated parameters obtained from the updating ex-
ercise of the plate specimen are believed to be more accurate.
Table 3 shows the regenerated frequencies, experimentally ob-
served frequencies, and the experimental modal damping fac-
tors.

Next, the damping parameters were updated. The initial
values of these parameters were selected again from Eq. (7),
following the methodology outlined in the numerically simu-
lated example. The two sets of estimated damping coefficients
shown in Table 4, along with two arbitrary values, were used
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(a) MAC for FE modes and experimentally obtained modes

(b)
Variation of CSAC and CSF

Figure 7. (a) MAC value of different mode, (b) CSF and CSAC along
frequency.

Table 4. Initial value of damping coefficients from experimentally obtained
modal damping.

Mode considered Mode considered
for average for average a0 a1

of ω1 and ζ1 of ω1 and ζ1
Trial 1 1,2 3,4 10.69 2.95E-5
Trial 2 1,2,5 3,4,5 12.54 1.40E-5
Trial 3 – — 100 3.00E-6
Trial 4 — — 90.00 4.00E-6

to test the robustness of the algorithm.
FRFs using a typical set of trial values and updated values

of damping parameters are shown in Fig. 8. The regenerated
responses using the updated damping parameters matched well
with the experimentally obtained FRFs and added confidence
to the updating procedures. In Fig. 9, the comparison be-
tween the regenerated FRFs using modal damping values and
the updated damping parameters were found to be almost ex-
actly matching. The SAC value also approaches 1, indicating
favourable global correlations.

The corresponding values of the real and imaginary parts of
the FRFs computed using updated Rayleigh damping coeffi-
cients are shown in Fig. 10(a) and 10(b) respectively.

The convergence curves of the damping parameters are
shown in Fig. 11, and were found to be monotonically con-
verging in all cases, with the final updated parameters being
a0 = 72.3 and a1 = 0.38E-5 respectively. Altogether, 6
modes were considered. It was immediately apparent that the

(a) Comparison of FRF obtained experimentally and FRF
obtained using damping parameters (Trial 1)

(b) Comparison of FRFs obtained experimentally and FRF
obtained using damping parameters (Updated)

Figure 8. Comparison between experimental FRF and FRF using Rayleigh
damping parameters.

Table 5. Updated damping coefficients for different frequency ranges.

Frequency range up to Updated a0 Updated a1
450 Hz 7.97E1 2.29E-6
650 Hz 7.45E1 3.93E-6

parameters converged to values much different from the ini-
tial estimate in Eq. (7); this can be attributed to the effect of
incorporating more than two frequencies at a time.

As a verification exercise, experimentally observed FRFs
that had not been used for updating were compared with corre-
sponding regenerated FRFs using the updated parameters. The
correlations were also found to be favourable, though these re-
sults are not shown for brevity. The results of this exercise help
confirm the robustness of the current algorithm.

The question not yet resolved is the acceptable number of
modes to include in the determination of a globally represen-
tative set of damping parameters. Convergence of the damping
parameters with increasing numbers of modes—up to 8 modes
in the current model updating exercise—indicated fewer vari-
ations amongst themselves as shown in Table 5. There were
difficulties in accurately measuring higher modes during this
investigation, thus results are hence not shown here.

A higher value of the mass-proportional coefficients in
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(a) Comparison of FRFs obtained experimentally and FRFs
obtained using modal damping

(b) Comparison of FRFs obtained experimentally and FRFs
obtained using damping parameters (Updated)

Figure 9. Comparison between experimental FRF and FRFs obtained using
modal damping factor and Rayleigh damping parameters.

Rayleigh damping indicates that the equivalent viscous damp-
ing effect is predominating and can be modelled conveniently
with assumptions about velocity proportional damping. On the
other hand, higher values in stiffness proportional coefficients
indicate that damping is mainly due to internal material damp-
ing, and may be nonviscous in nature. In this experimental in-
vestigation, the updated mass proportional damping coefficient
a0 was indeed found to be of a much higher order than the stiff-
ness proportional damping coefficient. Subsequently, the up-
dated damping parameters a0 and a1 can be used to compute
the modal damping coefficients. In the present investigation,
the modal damping factor was overestimated in comparison to
the measured one (Fig. 12). Estimations of relaxation factors
corresponded to the measured modal damping. The value of
µ0 was found to be 95 s−1 and the value of µ1 was estimated
as 150000 s−1, which closely resembles viscous damping in
the present case study. Additionally, estimated lower values of
µ0 reaffirm the viscous damping model.16 For a structure in
which internal material damping force is dominant, the damp-
ing coefficients of the present model can conveniently be ad-
justed through model updating to produce accurate vibration
responses.

(a) Variation of real part of FRF

(b) Variation of imaginary part of FRF)

Figure 10. (a) Real and (b) Imaginary part of the FRF computed using updated
Rayleigh damping coefficients.

5. CONCLUSIONS

A finite element model updating algorithm was imple-
mented to estimate proportional damping parameters of a fi-
bre reinforced plastic plate over a large frequency range from
experimentally-observed modal and frequency response func-
tions. In most practical cases of existing fibre reinforced plastic
structures, it will be mandatory to update the uncertain material
parameters first, followed by estimation of damping parame-
ters. The number of frequencies to include will be decided
depending upon the frequencies of interest, but includes all
frequencies contributing effectively to the response functions.
For updating material parameters, information from frequen-
cies and mode shapes is convenient; alternatively, for updating
damping parameters, frequency response functions are more
appropriate.

In this study a numerically-simulated example was pre-
sented, followed by a detailed experimental investigation of an
FRP composite plate under free-boundary conditions for the
correct estimation of the elastic parameters and damping coef-
ficients together. The results were verified using measured re-
sponses which are not used during updating, thereby eliminat-
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(a) Convergence of a0

(b) Convergence of a1

Figure 11. Convergence curve for damping parameter.

ing the possibility of the updating methodology being biased
towards limited measured observations. Finally, the updated
material parameters were checked through static characteriza-
tion tests.

The relationship between the viscous damping and nonvis-
cous damping was also established through an estimation of a
pair of relaxation parameters using model updating. The ac-
tual damping effect for this experimental case study was found
to be predominantly viscous. The methodology used in this
study can easily be applied to model the damping effects of
plates where internal material damping is dominating, instead
of the viscous effects by adjustment of the damping relaxation
parameters through model updating.
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