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This paper presents the use of multilayer perceptron (MLP) for fault diagnosis through a histogram feature ex-
tracted from vibration signals of healthy and faulty conditions of single point cutting tools. The features were
extracted from the vibration signals, which were acquired while machining with healthy and different worn-out
tool conditions. Principle component analysis (PCA) used to select important extracted features. The artificial neu-
ral network (ANN) algorithm was applied as a fault classifier in order to know the status of cutting tool conditions.
The accuracy of classification with MLP was found to be 82.5 %, which validates that the proposed approach is an
effective method for fault diagnosis of single point cutting tools.

NOMENCLATURE
λ Eigen values
ξi Input vector
θj Threshold of the jth neuron of the hidden layer
u Eigen vector
ANN Artificial neural network
BP Back propagation
DAQ Data acquisition
FP False positive
HSV Hue saturation value
i Input layer
j Hidden layer
k Output layer
MLP Multilayer perceptron
MSE Mean square error
NI National instruments
PCA Principle component analysis
TP True positive
Wij Weight vector connecting the ith neuron of the

input layer to the jth neuron of the hidden layer
Wjk Weight vector connecting the jth neuron of the

hidden layer to the kth neuron of the output layer

1. INTRODUCTION

Automated tool condition monitoring systems improves
product quality and reduce defects and result in increased pro-
ductivity. Automated tool monitoring systems prevents abrupt
failure of the cutting tools and are extremely useful for modern
automated machine tools.1 There are various machine learning
techniques which have been applied for fault diagnosis in ma-
chinery systems. Ravikumar et al. used machine learning ap-
proaches for automated visual inspections of machine compo-
nents.2 Sugumaran and Ramachandran studied the effects of a
number of features on the classification of roller bearing faults,
using both support vector machines and proximal support vec-
tor machines in their study.3 Indira et al. found a method for

the calculation of optimum data and bin size of histogram fea-
tures by employing fault diagnosis in a monoblock centrifugal
pump.4 Taheri et al. used intelligent approach for a cooling
radiator fault diagnosis, which was based on an infrared ther-
mal image processing technique.5 Liu et al. presented a fog
level detection method-based on an image hue saturation value
(HSV) histogram — through an analysis of different HSV in-
formation contained in different weather images.6 Sakthivel
et al. reported the use of histogram features for decision tree-
based fault diagnosis in a monoblock centrifugal pump.7 Sug-
umaran and Ramachandran carried out fault diagnosis in roller
bearing by using a fuzzy classifier and histogram features, with
a focus on automatic rule learning.8

1.1. Vibration Mode of a Turning Tool
In a turning process, three different types of mechanical vi-

brations are present due to a lack of dynamic stiffness/rigidity
of the machine tool system, which comprises the tool, tool
holder, workpiece, and machine tool itself, as explained by
Tobias.9 These are free, forced, and self-excited chatter vi-
brations. Free vibrations are induced by shock and forced vi-
brations are due to an unbalanced effect in machine tool as-
semblies like gears, bearings, and spindles. Free and forced
vibrations can be easily identified and eliminated. However,
self-excited chatter vibrations are still not fully understood due
to their complex nature. They are harmful for any machin-
ing process, including turning. Self-excited chatter vibrations
are generally classified into either primary chatter or secondary
chatter.10 Primary chatter is caused by friction between tool-
workpiece, thermo-mechanical effects, or by mode coupling.
Secondary chatter is caused by the regeneration of wavy sur-
faces on the workpiece. Regenerative vibration is the most de-
structive among the different vibrations. Bhuiyan et al. inves-
tigated tool wear, chip formation and the surface roughness of
workpieces, each under different conditions while machining-,
and used acoustic emission (AE) and vibration signature anal-
ysis in turning.11 They found that the AE and vibration com-
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ponents can effectively respond to different occurrences in tool
wear and surface roughness. Sevilla et al. presented a reconfig-
urable system using the vibration signals generated from ma-
chining tests, which were performed under different tool con-
ditions, and cut parameters for tool condition monitoring in
the high-speed machining (HSM) process.12 Patra et al. de-
veloped a tool condition (flank wear) monitoring system using
the vibration signals of the machining process.13 They showed
that the fuzzy radial basis function based neural network can
recognize the features extracted from the time domain by ap-
plying the wavelet packet approach, which underlies the vi-
bration signals more effectively than other methods (e.g. back
propagation neural network, radial basis function network, and
normalized radial basis function network). Kilundu et al. inte-
grated signal processing methodology and different machine
learning methodologies (e.g. decision trees, Bayesian net-
works, k-Nearest Neighbour and neural network) to handle the
computational complexities in monitoring the tool-wear by us-
ing cutting vibration signals.14 Jemielniak et al. studied the
force, vibration, and acoustic emission signals while turning a
specific material and extracting some features from the time,
frequency, and time-frequency domains of signals detecting
the tool wear.15 Scheffer and Heyns, reported the simultane-
ous use of vibration and strain measurement for wear monitor-
ing in turning operation.16 Rao et al. analysed the workpiece
roughness, vibration of the workpiece, and volume of the metal
removal rate through a laser Doppler vibrometer and a high
speed FFT analyser in a boring process.17 Rao and colleagues
observed that the amplitude of vibration increased as the tool
wear increased and that the feed rate was the significant param-
eter for affecting surface roughness. Scandiffio et al. inves-
tigated the influence of toolpath direction and tool-workpiece
surface contact on the machining force, surface roughness, tool
wear, and tool life in freeform milling by a ball end cutting tool
when milling hard-quenched and tempered AISI D6 steel.18

They identified that the most influential factor for tool life was
tool vibration.

2. TOOL FAILURE MODES

It is important to identify the different tool failure modes in
order to select appropriate operating conditions for machin-
ing. The most widely studied tool failure modes are flank
wear, breakage (fracture), crater wear, and plastic deforma-
tion. Only a few researchers reported tool failure because of
notching (groove wear), cracking, and chipping. Notching and
chipping changes the tool nose curvature. Figure 1, shows the
tool failure modes, as depicted by Rao et al.19 Flank and crater
wear are generally accepted as the normal tool failure modes,
because the other failure modes can be avoided by selecting the
proper machining parameters. The growth of flank and crater
wear is directly related to the cutting time (or length of cut), un-
like some of the other failure modes such as notching (groove
wear), cracking, and chipping, which can occur unexpectedly,
even with a new tool.

2.1. Flank Wear
Flank wear is mainly caused by the friction between the

newly machined work piece surface and the tool flank face.
Flank wear is marked on the cutting tool and is shown in
Fig. 1a. It is responsible for a poor surface finish, a decrease

Figure 1. Different tool failure modes (a–c).19

in the dimension accuracy of the tool, and an increase in cut-
ting force, temperature, and vibration. The width of the flank
wear-land is usually taken as a measure of the amount of wear,
and the threshold value of the width is defined as a tool reshape
criterion.

2.2. Crater Wear
Crater wear normally forms on rake face. It conforms to

the shape of the chip’s underside and reaches the maximum
depth at a distance away from the cutting edge – where the
highest temperature occurs. At high cutting speeds, crater wear
is the main factor that determines the life of the cutting tool,
due to a weakened tool edge which results in severe cratering
and eventually fractures. Crater wear is improved by selecting
suitable cutting parameters and using coated tools or ultra-hard
material tools. Crater and flank wear are shown in Fig. 1a and
are the most common wear types.

2.3. Notch Wear
Notch wear is a single groove formation that occurs simul-

taneously on the face and flank of the tool at the depth of the
cut. Machining parts with severe (hard or oxidized) surfaces
will cause notch wear. Figure 1a shows the depth of the cut
due to notch wear.

2.4. Chipping
Figure 1b shows the chipping that occurred on the cutting

edge. Chipping is the result of an overload of mechanical ten-
sile stresses. These stresses can be due to a number of reasons,
such as chip hammering, depth of cut or high feed rate, sand
inclusions in the workpiece material, built-up edge, vibrations,
or excessive wear on the insert.

2.5. Thermal Cracks
Thermal cracks appear on the rake face perpendicular to the

cutting edge, as shown in Fig. 1b. Thermal cracking occurs
when inserts go through rapid heating and cooling cycles. This
failure mode is caused by interrupted cutting and by poor ap-
plication of cutting fluids.

2.6. Breakage
Breakage is a mode of failure characterized by a breakaway

of material on the tool edge. Breakage occurs when the feed-
rate is too high or when a tool is used with too low fracture
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Figure 2. Different types of worn-out tool inserts.

Figure 3. Flow chart of the fault diagnostic system.

strength. The usual pattern of wear of turning inserts is shown
in Fig. 1c.

The different wornout conditions of the tool inserts con-
sidered in this present study are as follows: breakage, ther-
mal cracks, notch wear, and rake face chipping, which are all
shown in Fig. 2.

Vibration signals are widely used in the condition monitor-
ing of rotating elements in machines. However, the classifi-
cation of tool conditions for single point cutting tools using
histogram features has not yet been attempted. In this present
study, vibration signals were acquired with healthy and in-
dustrial wornout inserts. Histogram features were extracted
from vibration signals to identify the status of the tool’s con-
dition. Fault detection is possible by comparing the signals of
a machine running in both normal and faulty conditions. The
methodology involved in the fault diagnosis of single point cut-
ting tools, using a machine learning approach, is illustrated in
Fig. 3. The vibration signals from the cutting tools, which were
mounted on an engine lathe, was acquired using an accelerom-
eter. Forty vibration signal samples were collected for each
class of tool conditions. Histogram features were extracted
from each of the collected samples using cboxMicrosoft Ex-
cel. The most important features out of those extracted were
selected using principle component analysis (PCA) as well as
fault classification by use of multilayer perceptron (MLP).

Figure 4. Schematic diagram of experimental setup.

3. EXPERIMENTAL STUDIES

The experiments were conducted on an engine lathe. Fig-
ure 4 shows a schematic diagram of the experimental setup.
An accelerometer was used along with a data acquisition sys-
tem for acquiring. A National Instruments (NI) piezoelectric
accelerometer and its accessories formed the core equipment
for vibration measurement and recording. The output from
the accelerometer was connected to the NI-9234 data acqui-
sition (DAQ) system and analysed by using LabVIEW soft-
ware from NI. The vibration signals were acquired from single
point cutting under healthy conditions (new) and by consid-
ering four different wornout inserts’ conditions at a constant
cutting speed of 236 m/min. The sampling frequency used in
the study was 25.6 kHz and each signal (sample) had a length
of 25,600 data points. For each condition of the cutting tool,
40 samples were considered and recorded carefully.

One randomly selected vibration signal in time domain for
each tool condition is shown in Fig. 5. From time domain sig-
nals, it was observed that the acceleration level increased with
different fault conditions of cutting tools. A time domain tech-
nique for vibration signal analysis gave an overall vibration
level, but it did not provide any diagnostic information.

4. HISTOGRAM FEATURES

A histogram is a graphical representation of the distribution
of numerical data. To construct a histogram, the first step is to
select data bin values, that is, divide the entire range of values
into a series of small intervals and then count how many values
fall into each interval. The histogram features were extracted
from the time domain vibration signals. From the magnitude of
the signal, it was found that the range varied from class to class.
Corresponding histogram plots for different tool conditions are
shown in Fig. 6.

The bin range should be from the lowest value of minimum
amplitude (-20) to the highest value of maximum amplitude
(+20) of all five classes. The number of bins for the fault di-
agnosis of single point cutting tools was obtained by carrying
out a series of experiments using MLP with a different num-
ber of bins. At first, range of bins was divided into two equal
parts. That is to say, number of bins used was two. The two
histogram features, namely F1 and F2, were extracted and the
corresponding classification accuracy was also obtained by us-
ing MLP. A set of similar experiments were carried out with a
different number of bins — from two, three, four ... 97 — and
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Figure 5. Acceleration observed with healthy and faulty cutting tool inserts in
time domain.

the corresponding results are shown in Fig. 7. Upon careful ob-
servation of the results, the best classification accuracy of 94 %
is obtained when the number of bins is 15, with a bin width of
seven. Hence, these F1 to F15 histogram features were chosen
as the bin parameters.

Table 1 shows the histogram features from F1 to F15. Out of
40 samples, only two samples pertaining to each class of tool
condition are shown in Table 1. All extracted histogram fea-
tures, F1 to F15 extracted from the vibration signals may not
contain the information required for classification. The rele-
vant features were selected using PCA.

5. DIMENSIONALITY REDUCTION USING
PRINCIPLE COMPONENT ANALYSIS

Principal component analysis (PCA) is one of the most
widely used multidimensional features reduction tools. PCA is
the preferred choice because it is a simple and nonparametric
method of extracting relevant information from complex data
sets. The goal of PCA is to reduce the dimensionality of the
data while retaining as much as possible of the variation in the
original data sets. Elangovan et al. discuss the use of PCA with
various classifiers — mainly to reduce the data dimensionality
and report improvement in classifier efficiency.20 A similar ap-
proach for dimensionality reduction is attempted in this work.
The basic workings of a PCA are presented below:
Let F1, F2, ... Fn be N × 1 vectors.
Step 1: Mean value is calculated using the equation:

F =
1

N

N∑
i=1

Fi. (1)

Figure 6. Histogram plots of signals.

Figure 7. Number of bins vs. classification accuracy.

Step 2: Each feature is used to subtract the mean value:

φi = Fi − F . (2)

Step 3: Matrix A = [φ1, φ2, ...φN ] is generated by N × N
matrix and covariance matrix C with the same dimension size,
which is computed as follows:

C =
1

M

N∑
i=1

φiφ
T
i = AAT . (3)

The covariance matrix characterizes the distribution of the
data. Step 4: Eigenvalue is computed as:

C = λ1 > λ2 > · · ·λN (4)
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Table 1. Histogram features extracted from the vibration signals for different tool conditions.

Class Sample No.
Histogram features

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

Healthy
1 0 0 0 0 0 0 599 12965 12036 0 0 0 0 0 0
2 0 0 0 0 0 0 809 12978 11813 0 0 0 0 0 0

Breakage
1 0 0 0 0 1 37 1507 11260 11220 1518 57 0 0 0 0
2 0 0 0 0 2 34 1190 11548 11596 1206 24 0 0 0 0

Thermal cracks
1 0 0 0 0 0 0 111 12651 12705 133 0 0 0 0 0
2 0 0 0 0 0 0 141 12843 12467 149 0 0 0 0 0

Notch wear
1 0 0 0 0 0 2 596 12279 12122 597 4 0 0 0 0
2 0 0 0 0 0 2 570 12212 12226 589 1 0 0 0 0

Rake face chipping
1 0 0 2 2 1 20 830 11944 11842 935 21 1 1 0 1
2 0 0 1 3 3 27 897 11865 11813 951 34 5 0 1 0

Step 5: Eigenvector is computed as:

C = µ1, µ2, · · ·µN (5)

Since C is symmetric µ1, µ2, · · ·µN form a basis, and ((F1 −
F ) can be written as a linear combination of the Eigenvectors):

Fi − F = b1u1 + b2u2 + · · · + bNuN =

N∑
i=1

l. (6)

Step 6: For dimensionality reduction, it keeps only the terms
corresponding to the K largest Eigen values:

Fi − F =

K∑
i=1

biui, whereK << N. (7)

The representation of E.E into the basis u1, u2, · · ·uK is thus,
b1
b2
· · ·
bK

 . (8)

6. ARTIFICIAL NEURAL NETWORK
An artificial neural network (ANN) is modelled on biolog-

ical neurons and nervous systems. ANN’s have the ability
to learn and have the processing elements known as neurons,
which perform their operations in parallel. ANN’s are charac-
terized by their topology, weight vector, and activation func-
tions. They have three layers: an input layer (which receives
signals from the external world), a hidden layer (which does
the processing of the signals), and an output layer (which gives
the result back to the external world).

6.1. Multilayer Perceptron (MLP)
The MLP is a unidirectional network, which has an input

layer, hidden layer, and output layer, as shown in Fig. 8. The
number of neurons in the input and output layers is equal to the
number of input and output variables. Generally, one hidden
layer is sufficient to map the problem in a correct way. The
more complex the problem is: the more neurons are desirable.

As shown in Fig. 8, all input signals are received first by the
input layer and then transmitted to other neurons in the hidden
layer, where the processing task occurs. The information is
then received by the output layer.

Each neuron in the hidden and output layer consists of an
activation function, which is generally a nonlinear function like
the logistic function, given by:

f(x) =
1

1 + e−x
, (9)

Figure 8. MLP network structure.

where f(x) is differentiable and

x =
∑
i=1

Wijξi + θj , (10)

where Wij is the weight vector connecting the ith neuron of
the input layer to the jth neuron of the hidden layer, and ξi is
the input vector and θj is the threshold of the jth neuron of the
hidden layer. Similarly, Wjk is the weight vector connecting
jth neuron of the hidden layer with the kth neuron of the out-
put layer: i-represents the input layer, j-represents the hidden
layer, and k-represents the output layer. The weights that are
important in predicting the process are unknown. The weights
of the network to be trained are initialized to small random
values. The choice of value selected obviously affects the rate
of convergence. The weights are updated through an iterative
learning process known as the Error Back Propagation (BP) al-
gorithm. The Error Back Propagation process consists of two
passes through the different layers of the network — a forward
pass in which input patterns are presented into the input layer
of the network and its effect propagates through the network
layer by layer. Finally, a set of outputs is produced as the ac-
tual response of the network. During the forward pass, the
synaptic weights in the networks are all fixed. The error value
is then calculated, which is the mean square error (MSE), given
by

Etot =
1

n

n∑
n=1

En, (11)

whereEn = 1
2

∑m
k=1 (ξnk −On

k )2 andm is the number of neu-
rons in the output layer;
ξnk is the kih component of the desired or target output vector
and
On

k is the kih component of the output vector.
The weights in the links connecting the output and the hidden
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layer Wjk are modified as follows:
∆Wjk = η(−∂E/∂Wjk) = ηδjyj , where η is the learning
rate. Considering the momentum term (α) ∆Wjk = αηδjyj
andW old

jk + ∆Wjk. Similarly, the weights in the links connect-
ing the hidden and input layer Wjk are modified as follows:

∆Wjk = αηδjξj , (12)

where,

δj = yj(1 − yj)

m∑
k=1

δkWjk, (13)

Wnew
ij = W old

ij + ∆Wij , (14)

δk = (ξk −Ok)Ok(1 −Ok), (15)

for output neurons and for hidden neurons,

δj = yj(1 − yj)

m∑
k=1

δkWjk (16)

The training process is carried out until the total error reaches
an acceptable level (threshold). If Etot < Emin, the train-
ing process is stopped and the final weights are stored, which
is used in the testing phase for determining the performance
of the developed network. The sigmoid transfer function was
used in the hidden and output layers.

7. RESULTS AND DISCUSSIONS

The histogram features discussed in section three are con-
sidered as features to serve as the input for the algorithm. The
corresponding condition, or status, of the categorized data will
be the essential output of the MLP algorithm.

7.1. Feature Extraction and Selection
From the obtained vibration signals, 15 histogram features

(f1, f2 ... f14 and f15) were extracted. The process of select-
ing relevant features is known as feature selection and it was
carried out by using PCA.

These selected features serve the purpose of classification
using the MLP classifier algorithm. Classification accuracy of
the MLP classifier algorithm is presented in the form of a con-
fusion matrix, as shown in Table 2. The meaning of confusion
matrix is explained as follows:

In the first row, the first element shows the number of data
points belonging to the ‘healthy’ class and classified by the
classifier as ‘healthy’. The total number of data points in the
first row is 40; 3l of them are correctly classified. In the first
row, the other elements are zero except for in the fifth column,
which means that nine of the healthy conditions are misclassi-
fied as rake face chipping.

The second row represents the total number of data points
corresponding to the breakage condition; the first column rep-
resents misclassification of those data points as the healthy
condition, which in this case is one. The second row, second
column entry represents how many of the breakage samples
are correctly classified as breakage by the classifier. Out of 40
samples, 37 are correctly classified. In this case, two samples
are misclassified as the thermal crack condition. In the second
row, other elements came out to zero. This means none of the
breakage conditions are misclassified as notch wear, rake face
chipping, and so on.

Misclassifications are among the healthy as well as faulty
conditions, and they are about 17.5 %. However, the misclas-
sification of healthy conditions as rake face chipping is about
4.5 %. The misclassification percentages of breakage as of
healthy and thermal crack conditions are 0.5 % and 1 %, re-
spectively. The misclassification percentages of notch wear as
breakage and rake face chipping conditions are 1.5 % and 2 %,
respectively. The misclassification percentages of rake face
chipping as healthy, thermal cracks, and notch wear conditions
are 3.5 %, 0.5 %, and 4 %, respectively. The MLP classifier
performs absolutely well in classifying thermal crack samples.
The performances differ slightly when classifying the healthy
and faulty conditions. The misclassification in the MLP classi-
fier is 17.5 %. Out of 200 samples, 35 samples were incorrectly
classified by the MLP, with a classification accuracy of 82.5 %
for vibration signals.

Table 3 shows the detailed class-wise accuracy of the multi-
layer perceptron. In Table 3, ‘TP rate’ and ‘FP rate’ are very
important. The ‘TP rate’ stands for true positive; its value
should be close to ‘1’ for better classification accuracy. The
‘FP rate’ stands for false positive, and its value should be close
to ‘0’ for better classification accuracy. From the study, one
can recognize the closeness of ‘TP rate’ to ‘1’ and ‘FP rate’
to ‘0’. Both values confirm that the model built is acceptable.
From the obtained results, the classification accuracy can be
appreciated.

8. CONCLUSION

This paper discusses the fault diagnosis of single point cut-
ting tools using the machine learning approach based on vi-
bration signals. This methodology involved collecting 40 ac-
celeration vibration signal samples for five different classes of
industrial wornout conditions. Histogram features were ex-
tracted from acquired vibration signals pertaining to all classes
of fault categories. PCA was used for important feature se-
lection. The ANN algorithm was used for fault classification.
Classification accuracy was found to be 82.5 %. Thus, MLP
classifier can be practically utilized to monitor the condition of
tungsten carbide inserts while machining die steel.
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