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In this hydroelasticity study, the fluid added-mass effect on a hemispherical shell structure under flexural vibration
is investigated. The vibration response of the hemisphere is solved by using a commercial finite element software
(ABAQUS) coupled with an in-house boundary element code that models the fluid as potential flow. The fluid-
structure interaction is solved as a fully-coupled system by modal superposition to reduce the number of degrees
of freedom. The need for an iterative scheme to pass displacement/force information between the two solvers
is avoided by direct coupling between the fluid and structure equations. The numerical results on the downward
shift in natural frequencies due to added-mass effect compare well with vibration measurements conducted on a
stainless-steel bowl with interior and exterior fluid. For water and soap-water solution used in the experiments, the
fluid viscosity (varying over a wide range) did not have any significant effect on the wet natural frequencies. This is
due to the small viscous boundary layer (milimetre scale) compared to the nominal size of the bowl in centimetres.
For such cases, the fluid-added mass only depends on the density of the fluid and the use of potential flow in the

numerical model is applicable.

1. INTRODUCTION

A solid structure moving in contact with a fluid is subjected
to additional resistance force. A part of this fluid inertia force is
in phase with the motion of the structure, which is associated to
the so-called added mass or apparent mass, while the other part
is out of phase and associated to added damping.'= These two
parameters are also reported as velocity-coupling and inertia-
coupling fluid force coefficients, which relate the added mass
and damping to the displaced mass of the fluid by the structure.

Fluid added mass is the key factor in various fields such
as underwater energy converters based on flow-induced vibra-
tion,*> design of hydraulic turbine runners*»®7 and dynamic
response of floating offshore vessels.!*®? Although analyti-
cal expressions were derived for simple geometries, the added
mass estimation for complex geometries requires proper mod-
elling and assumptions. Experimental measurements are ulti-
mately conducted to validate the results of the numerical mod-
615.3’6’ 10,11

Analytical studies have provided the added mass values for
other shapes such as ellipse, square, circle (2D geometries) and
sphere, cube and ellipsoid (3D geometries), but only for the
objects in rigid body translation.'? For slender bodies such as
some designs of ships or submarines, the strip theory is used
to calculate the added mass for a thin and narrow section of
the exterior surface along the length, and the total added-mass
is the sum from all the cross sections.!:* 1> However, the strip
theory was only valid for rigid body translation of the objects.!

The limitations of the analytical methods are overcome by
numerical methods such as finite element and boundary ele-
ment methods for solving added mass problem, especially for
cases like flexural vibration of a solid structure, also known
as hydroelasticity, with an arbitrary geometry.'*'® One way
to capture the fluid-solid interaction was to integrate finite el-
ement and boundary element methods into a fully coupled nu-
merical method at the formulation level.”!%2° However, this
method is computationally expensive since the augmented sys-
tem matrices such as stiffness matrix are no longer sparse ma-

trices and become larger than matrices of each method individ-
ually.

The alternate approach, known as partitioned iterative solu-
tion, is to use decoupled numerical algorithms by transferring
data back and forth between the structure vibration solver (fi-
nite element method) and the fluid flow solver (boundary ele-
ment method).?!?? In this iterative algorithm,?? the termina-
tion criterion is convergent frequency for free vibration. De-
spite being straight forward and easy to implement, the itera-
tive algorithms are computationally expensive, and their con-
vergence is not guaranteed.zl’22

To avoid the numerical challenges of both the fully coupled
FEM-BEM method and the iterative algorithm, the modal su-
perposition was applied.'*!> For a structure in contact with a
fluid, the superposition principle allows the fluid loading con-
tributions from various dry mode shapes to be added up to give
the total fluid effect. Writing the mode shapes of the wet struc-
ture as a linear combination of a subset of dry mode shapes,
the fluid-structure interaction algorithm does not need any it-
eration and the total number of degrees of freedom is also re-
duced.

This study aims to calculate the fluid inertia effects in terms
of added mass on a hemispherical shell (open curved shell) un-
dergoing flexural vibration. The fluid inertia effect is reported
as the downward shift of the wet natural frequencies from the
original dry natural frequencies. The numerical algorithm uses
a commercial finite element software for the structural vibra-
tion analysis and an in-house boundary element code for the
fluid loading. A fully-coupled system of equations are formed
for the fluid-structure interaction by the superposition of the
selected dry mode shapes, reducing the number of degrees of
freedom and providing accurate results for the leading wet nat-
ural frequencies and mode shapes. For experimental valida-
tion, vibration measurements are conducted on a steel bowl
under two loading configurations: partially immersed in a tank
of water (exterior fluid loading or Test (A)) and partially filled
with fluid (interior fluid loading or Test (B)).
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2. THEORETICAL FORMULATION
2.1. Modal Superposition

The vibration equation of a structure subjected to fluid load-
ing is given by:

[m]{u} + [K]{u} = {fi} + {fc}; ¢))

where [ m] and [K] are the structural mass and stiffness ma-
trices, respectively, {u} is the displacement vector, {f}} rep-
resents the force exerted on the solid structure due to the fluid
loading, and {f.} is any other external loading. For free vibra-
tion analysis, the external loading {f.} is taken to be zero. For
a discretized finite element model, the structural matrices are
square with size ¢ corresponding to the total number of degrees
of freedom.

First, we consider the dry structure without the fluid loading
in equation (1) and solve for its free vibration response {u} =
{d} exp~it:

(—w?[m] + [K]) {d} = {0}; )

where w and {d} are the dry-mode natural frequency and mode
shape, respectively. This equation has ¢ number of solutions
with w; and {d}; for the ith mode of vibration. Using modal
superposition, the structure response {u} in equation (1) can
be approximated by:

Q
{u} => L;{d}; = [DI{L}; 3)

J=1

where [D] = [{d}1,{d}s, - ,{d}g] is the modal matrix
with @ the number of selected mode shapes, and {L} is the
vector of principal coordinates which contains the contribution
factor of each and every dry mode-shape in the response of the
structure to a given external loading.

For each dry mode shape {d};, the fluid loading {f}, on
the structure is calculated using a boundary element code (de-
scribed in the next section). By applying the modal superpo-
sition, the total fluid force {fj} acting on the structure with
displacement profile given by Equation (3) is:

Q
{fi} = Z Li{f}; = [F]{L}, &)

where [F] = [{f}1,{f}2,---{f}q,] is the interaction force
matrix (similar to [D]) that is formed by the assembly of the
terms {f};.

By substituting equations (3) and (4) into (1) and pre-
multiplying equation (1) by the transpose of the modal matrix
[D]T, one can write a strongly-coupled but reduced system of
equations:

(D" [m] [DI{L} + [D)" [K] [D}{L} = [D]" [F]{L}. (5)

It is noted that the fluid-structure force matrix [F'] depends on
the dry mode shapes of the structure, and the unknowns in the
above equation are the principal coordinates {L} in terms of
the dry mode shapes.

2.2. Potential Flow Theory

To model the fluid loading on the structure, the potential
flow theory is used to account for the mass density of the fluid.
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Figure 1. (a)Floating hemispherical shell in a semi-infinite fluid domain and
(b) its discretized model of 10 cm radius r an thickness ¢. [ is the immersion
depth.

The solid structure is assumed to be partially submerged in a
semi-infinite fluid domain, as shown in Fig. 1, and the vibra-
tional motion of the structure interacts with fluid domain at its
interface. The governing equation for potential flow, neglect-
ing the fluid viscosity, is given by:

V?¢ = 0; (©6)

p=—pod+ pgz; ©)

where ¢ is the velocity potential and v = V¢, p is the to-
tal dynamic pressure, p is the fluid density and g is the grav-
ity acceleration constant. Equation (7) is known as linearized
Bernoulli’s equation and derived from the momentum conser-
vation equation. The first term on the right-hand side of the
Bernoulli’s equation is to account for the oscillation of the
interface about its mean position whereas the second term is
associated to the change in the buoyancy force. By writing
¢ = Pe ™! equation (6) is solved for the amplitude of the
velocity potential ® with the following boundary conditions:
(i) prescribed surface velocity for the jth mode shape at the
fluid-structure interface, (ii) vanishing fluid velocity at infin-
ity, and (iii) zero dynamic pressure at the free surface of the
fluid. It is convenient to introduce a new variable d for the
displacement potential such that —iw® = ®. This gives:

0P
o d; - n; ®)
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where n is the unit normal vector to the interface between the
fluid and structure (pointing away from the fluid), and d; is the
displacement of the interface. Equation (6) can be written in
the form of boundary integral equation as follow:

OG (x4;X5)

e®(x) —|—/F<i>(xs) o dl =

od(xs) ., .
/F ) G )T )

where c is the solid angle which depends on whether the target
point is inside the domain or on the boundary, and T" is the wet
interface surface. The second and third boundary conditions
are taken care of by choosing the proper Green’s function:

1 1

T dnlx, — x| dnx - %3]

(10)

G(x4;Xs)

where x; is the position vector of the target point, x, and X
are the position vectors of a boundary point and its image with
respect to the free-surface plane, respectively.

The flexural vibration of the structure is solved at the static
equilibrium state at which the buoyancy force balances its
weight. Displacement in the vertical direction z results in har-
monic changes of the buoyancy force, also known as buoyancy
spring. Without loss of generality, this buoyancy spring that
affects only translational motion can be neglected when we are
solving for the flexural modes. The buoyancy spring stiffness
only contributes to the total stiffness of the system involving
rigid body motion due to changes in the hydrostatic pressure.

After solving for ®, one can write the pressure as:

p = —iwpPe ™t = 2 pde L, an

For the jth mode, the surface force at node k, calculated from
dynamic pressure, is:

(k) _ 2 &) (k)p(k).

fj = wpd ' n'" T, (12)

where T'(%) is the area of the fluid element at node k. The force

is only calculated for nodes on the wet interface and is zero

at other nodes. By Newton’s third law, the interaction force

vector acting on the structure for the jth mode is:

(B}, = —w?p [$OnOTO ... §epep@]" =
W p{Pi}; (13)

where {P;} is the vector containing of the force contribution
(—d®nFT*)) at each element & for mode j.

2.3. Wet Natural Frequency

After computing {f}; for all the  dry mode shapes, equa-
tion (5) can be rewritten as:

(= (DI [m] (D] - w2 (DI [(P1). - . (Po)]

+[D]" [K][D] ){L} = {0}. (14)
The modal added mass matrix is thus given by:
(M) = p[DI" (P} (P2}, {Po}];  (U5)

¥
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Figure 2. Hemispherical test specimen and its dimensions.

resulting in the final system of equations to solve for the wet-
mode frequency w:

(- (1] - 22 01, + [R]) {L} = {0},

Here, [M] = [D]" [ m] [D] is the modal structural mass, and

[K] = [D]" [K][D] is the modal structural stiffness. After &;
and {L}; are obtained, the jth wet mode shape can be obtained
by:

(16)

{d}; = [D]{L};.

2.4. Computational Aspects

a7

According to the modal superposition theory, the selected
dry mode shapes can be viewed as shape functions to approx-
imate the vibration response of the system, since they are lin-
early independent functions. By keeping these shape functions
throughout the numerical analysis, there is no need for itera-
tions as used in partitioned iterative solvers.?? The accuracy of
this method is studied by increasing the number of selected dry
modes for the modal superposition.

In this algorithm, the in-vacu free vibration of the structure
was performed by the commercial FEM package, ABAQUS
6.14. The mass and stiffness matrices and the mode shapes
for the entire model and the wet subset of nodes are extracted
out for solving the free vibration of the wet structure. Af-
ter the fluid loading is calculated from the boundary element
solver, the wet natural frequencies and mode shapes are ob-
tained simultaneously. The size of the matrices in equation
(16) is the same as the number of selected modes, which is
much smaller than the number of the nodes of the discretized
structure. Hence, there is a tremendous speed-up in solving
the eigenvalue problem. The calculation of fluid pressure for
each mode shape is the most time consuming; however, it can
be done in parallel for all the selected dry modes to reduce the
overall computation time.

3. EXPERIMENTAL VALIDATION

To validate the numerical model, an experiment was con-
ducted on a hemisphere bowl made of stainless steel (Fig. 2).
The bowl has a flat bottom and its radius varies from 0.11 m
(near the bottom surface) to 0.10 m at the rim. The thickness of
the bowl, which is denoted by shell thickness in Fig. 2, varies
from 0.5 mm (just below the rim) to 1.00 mm (at the bottom
surface of the bowl). From the measurement at 25 different
points along the circumference, the minimum, mean, and max-
imum values of the rim thickness are 1.65 mm, 1.72 mm, and
1.85 mm, respectively. By considering the mass of the bowl
and volume of the material, the rim thickness was estimated
to be 1.6 mm, which is close to the minimum measured value.
The rim height was found to be approximately 5 mm.
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Figure 3. Schematics of setups showing (a) immersion depth d; and water
height inside the tank h in Test (A) and (b) fluid depth df in Test (B). The
height of the bowl is 9 cm.

Measurement of natural frequencies of the bowl was per-
formed in two configurations (schematics shown in Fig. 3). In
Test (A), the bowl was hung from an aluminium bar and im-
mersed in water contained in a large tank. The purpose of this
measurement is to study the added mass effect induced by an
exterior fluid. In Test (B), the bowl was fixed at its bottom
surface and filled in turn with water and a soap-water solution.
Both fluids have the same mass density but significantly differ-
ent dynamic viscosity. The soap-water solution has a viscosity
of 10 dPa-s, which is about thousand times larger than that of
water. The purpose of this measurement is to study the added
mass effect induced by an interior fluid and investigate any sig-
nificant effect of fluid viscosity on the added mass effect.

Figure 3 shows the schematics of the setups and the parame-
ters that were varied in the experiments. For the first configura-
tion, two parameters, namely immersion depth (d;) and water
height (h), were varied. Four values of d; (4.5, 5.0, 6.5, and
7.5 cm) and four values of h (17, 25, 33, and 41 cm) were used
in the measurement. For the second configuration, the fluid
depth (dy) was varied. Similar to the first configuration, four
values of d¢ (4.5, 5.0, 6.5, and 7.5 cm) were used.

For both Tests (A) and (B), an impact force, via a sharp
knock that excites frequencies up to 3000 Hz, was exerted in
the horizontal plane along the radial direction at a point on
the rim of the bowl. The vibration response of a point on the
bowl near the rim was measured by using a Polytec’s PDV 100
portable digital vibrometer. The setting parameters for the vi-
brometer are as follows: frequency span = 2000 Hz, sampling
frequency = 5120 Hz, frequency resolution = 0.15625 Hz, win-
dow function = exponential, and number of averages = 10.
For each round of the test, the bowl was hit 10 times and
the recorded responses were averaged out by the software of
the vibrometer. Before each round of test, it was ensured that
the water free-surface was settled and there was no additional
movement in the setup. The experiment was repeated five to
six rounds to obtain the mean, maximum and minimum values
of measured frequencies. The error bound of the experimental
results was estimated to be +10%.

From frequency spectrum of the vibration response, the nat-
ural frequencies of the bowl were identified by the observed
peaks in the spectrum. This procedure was repeated for all
fluid levels illustrated in Fig. 3.

4. RESULTS

The numerical results are compared against the experimen-
tal results of the stainless-steel bowl. In the numerical simu-
lations, the density and Young’s modulus of the hemispherical
shell are taken as p, = 7800 kg/m® and E, = 210 GPa, re-
spectively. The density of the fluid is p = 1000 kg/m®. The
structural vibration analysis was performed using the finite ele-
ment software (ABAQUS 6.14), and linear shell elements (S4)
with six degrees of freedom at each node were used. Conver-

ﬁ
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Figure 4. Averaged frequency spectrum of the bowl’s vibration response.

gence tests were carried out to obtain a suitable fine mesh for
accurate results. For potential flow simulation, boundary ele-
ments were chosen to be constant panels with linear geometry.
The finite element and boundary element models share a com-
mon interface mesh so that surface displacement is transferred
easily between the two solvers.

4.1. Dry Natural Frequency

The dry natural frequencies of the bowl were first measured
and then compared with the results from the finite element
model for benchmarking. For this set of measurements, the
bowl was placed on a very soft sponge (negligible stiffness) to
provide as close to a free boundary condition at the rim as pos-
sible. The averaged frequency spectrum of the bowl’s vibration
response is shown in Fig. 4.

Four peaks are observed from 0 to 700 Hz in in the frequency
spectrum, as shown in Fig. 4. From the magnified views shown
in Fig. 4, it can be seen that there are actually two peaks sep-
arated by a small gap at the frequencies 92 Hz, 300 Hz, and
635 Hz. These are repeated natural frequencies due to the
axisymmetric nature of the bowl. Therefore, the first seven
natural frequencies of the bowl were identified. The last six
frequencies are associated with bowl’s flexural mode shapes
while the first frequency correspond to the rigid body motion
of the bowl bouncing on the sponge support (as shown later in
Table 1).

To confirm the frequencies associated with the flexural mode
shapes, numerical simulation of the free vibration of the bowl
was conducted using ABAQUS 6.14. Figure 5a shows the fi-
nite element model of the bowl which was obtained by 3D
scanning. The bowl is approximately a hemisphere (radius
r ~ 0.1 m) with a flat bottom (height ~ 0.09 m). The red
region indicates the rim of the bowl which is modelled with
three different values of thickness (¢,.), namely 1.65, 1.72, and
1.85 mm to correspond to the minimum, mean, and maximum
values of the rim thickness obtained from measurements. The
thickness of other region of the bowl was set to vary linearly
from 0.5 mm to 1.0 mm. Stress free boundary condition was
imposed to simulate a free vibration behavior. The first six nat-
ural frequencies corresponding to the flexural mode shapes of
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Figure 5. (a) Finite element model of the bowl. (b) Flexural mode shapes of
the bowl obtained from the simulation. The mode shapes are paired due to the
symmetry of the geometry used in the simulation.

the bowl (as shown in Fig. 5b) were obtained in the frequency
range of 0 to 700 Hz. It is again noted that the repeated natural
frequencies and mode shapes are due to the nearly symmet-
ric geometry of the bowl. For mode 1 and mode 2, there is no
nodal circle and two nodal diameters; this pair of modes are re-
ferred to as mode 0C2D. Similarly, modes 3 and 4 are referred
to as mode OC3D (with three diameter nodal lines) and modes
5 and 6 as mode 0C4D (with four diameter lines). The val-
ues of the repeated frequencies obtained from simulation are
tabulated together with the experiment data obtained from the
experimental measurements of the bowl in Table 1.

From this table, it can be deduced that the first natural fre-
quency obtained from the experiments corresponds to the rigid
body motion of the bowl on the sponge since this is not ac-
counted for in the numerical simulation. For the other six
frequencies, the simulation results are relatively close to the
experiment data. The relative difference with respect to the ex-
perimental values is found to be less than 15% for all the cases,
except the frequencies of mode 2 and mode 3 for the case of
t, = 1.85 mm.

4.2. Wet Natural Frequency with Exterior
Fluid

The wet natural frequencies for the bowl partially immersed
in water (first configuration) were measured following the
same procedure described earlier. Figure 6 shows the fre-
quency spectra of the bowl’s vibration response for different

10 ‘
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—d;
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E
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Figure 6. Frequency spectra of the bowl’s vibration response measured for
different values of d; and h = 41 cm for exterior fluid configuration.

values of d; and h = 41 cm. The frequency range of the spec-
trum excludes the resonance peaks associated with rigid body
pendulum mode below 50 Hz and only shows the peaks corre-
sponding to the flexural vibration. As expected, the peaks shift
to the left as the immersion depth increases. This indicates the
decrease of the bowl’s natural frequencies which reflects the
effect of fluid added mass on the bowl vibration.

To better illustrate the frequency downshift observed in
Fig. 6, the numerical model was used to calculate the corre-
sponding wet natural frequencies and compared with the ex-
perimental data for different values of d; (Fig. 7). As seen in
the figure, the numerical results are in good agreement with the
experiment data, with the largest relative difference being less
than 15%. This reflects the accuracy of the numerical model in
predicting wet natural frequencies of a structure in contact with
a fluid. Both the numerical results and experiment data show
that the frequency downshift increases as immersion depth d;
increases.

4.3. Wet Natural Frequency with Interior
Fluid

The natural frequencies of the bowl with interior fluid (Test
(B)) are reported in this section. Two fluids (water and soap-
water) of similar mass densities but significantly different vis-
cosities were used in turn. Figure 8 shows the frequency spec-
tra of bowl’s vibration response measured for fluid filled to dif-
ferent levels d;. Similar to the case of exterior fluid, the peaks
indicating natural frequencies of the system shift to the left as
the fluid level (dy) increases for both water and soap-water so-
lution.

The wet natural frequencies for water as the interior fluid are
compared with the measurements obtained for Test (A) (Ta-
ble 2). It can be seen that the two sets of wet natural frequen-
cies are relatively close, since the largest relative difference be-
tween the results of Tests (A) and (B) is less than 10%, when
dy = d;. This indicates that the fluid added mass effects in
both configurations are the same when the bowl’s wetted area
is kept the same despite the large difference in the volume of
water used in both configurations. This behaviour is also pre-
dicted by the numerical model as the same fluid loading acts
on the bowl for both the internal and external fluid when the
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Table 1. Natural frequencies of the bowl obtained from both simulation and experiment on a sponge.

Natural frequencies (Hz)

Method T 3 3 3 3 6 7
Simulation (¢, = 1.65 mm) - 99.42 99.42 28297 28298 550.79 550.83
Simulation (¢, = 1.72 mm) - 102.36 102.38 29343 29346 572.07 572.11
Simulation (¢, = 1.85 mm) - 107.76 ~ 107.78  312.00 312.03 60891  608.96

Bowl on sponge 8.02 91.88 92.50 299.06 301.09 634.29 637.50

Table 2. Wet natural frequencies of the bowl measured in both configurations
1 and 2 when it was in contact with water.

. ral fr ncies (Hz
dy = d; | Configuration ()I(\jI;g a Oqu;Ig ¢ eSO(C 41))
4.5 cm Test (A) 84.22 29325 633.25
Test (B) 85.00 293.70 632.90
5.0 cm Test (A) 80.31 286.82  627.95
Test (B) 81.82  288.78 629.17
6.5 cm Test (A) 70.63  264.22  600.40
Test (B) 68.96  259.45 594.57
75 em Test (A) 63.38 23935 559.24
’ Test (B) 59.22  225.74  535.70

Table 3. Natural frequencies of the bowl for different values of d .

. Natural frequencies (Hz)
ds (em) Fluid 0C2D OCq3D 0C4D
45 Water 84.69 29385 632.50
’ Soap-Water | 83.59 29195 631.40
5.0 Water 81.72  288.55 628.90
Soap-Water | 80.78  287.45  627.80
6.5 Water 69.06  259.45  594.70
’ Soap-Water | 67.81  256.00 589.50
75 Water 59.22 22570  535.80
) Soap-Water | 59.53  226.10  538.80

wetted area is the same. Figure 9 shows a comparison of the
experimental data with the numerical simulation results for in-
ternal fluid. Both experimental measurements using water and
soap-water give data that are close to the natural frequencies
predicted by the numerical model, with the largest relative dif-
ference being less than 17%. It is noted that the numerical
simulation results are exactly the same for internal and exter-
nal fluid.

In Table 3, the natural frequencies of the bowl filled with
water are compared with those measured when the bowl was
filled with soap-water solution. The frequencies measured in
both cases are very close to each other, despite the soap-water
having a viscosity a thousand times that of water; the largest
relative difference between the two sets of results is less than
2%. This confirms that the wet natural frequencies are only
dependent on the fluid added-mass or fluid density. The fluid
viscosity has insignificant effects on the measured wet natural
frequencies. The good agreement between the experimental
and numerical results in Fig. 9 also confirms the negligible ef-
fect of fluid viscosity when predicting the added mass effect of
the fluid.

The negligible effect of viscosity in this study can be ex-
plained by the small length scale of the boundary layer in the
fluid, which is of the order O(y/v/w) where v is the kine-
matic viscosity of the fluid. For the present study, the viscous
boundary layer length-scale ranges from 0.1 to 1 mm for the
extreme case of frequency down to 100 Hz and viscosity up to
10~3 m?/s for the soap-water solution. Compared to the cen-
timetre length-scale of the hemispherical bowl, the boundary
layer is too small to have any significant influence on the wet
frequencies of the bowl. Hence, for structures in the length-
scale of centimetres or larger, such as ships or other offshore
marine structures, the use of potential flow is applicable to
model the fluid added-mass effect, and subsequently wet natu-
ral frequencies.

5. CONCLUSION

The effect of fluid loading on a vibrating hemispherical
shell has been studied both theoretically and experimentally.
The proposed numerical scheme uses the modal superposition
method to apply direct coupling between the structural and
fluid solvers, avoiding the need for iterations in passing the dis-
placement and force information between the two solvers. The
numerical scheme provides accurate results for the wet natural
frequencies and mode shapes. Experiments were conducted for
two configurations of a steel bowl (with exterior fluid and inte-
rior fluid) to validate the numerical results. It was also shown
that the wet natural frequencies, being dependent only on the
fluid added-mass, are not affected by drastic change in vis-
cosity of the fluid. This is due to the small viscous boundary
layer compared to the nominal size of the structure. Hence,
the potential flow is an applicable model for predicting the wet
natural frequencies and fluid added-mass effects for vibrating
structures interacting with a fluid medium in such cases.
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