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For over 60 years, the torsional vibration of reciprocating aircraft engines has been controlled by centrifugal pen-
dulum vibration absorbers. Loose weights attached to an engine’s crankshaft act as tuned-mass absorbers by
oscillating at a frequency in proportion to rotational speed. More recently, similar loose masses have been attached
to the flywheels of automobile engines. The need to achieve increased power from fewer cylinders, while reducing
weight and improving economy, has exacerbated torsional vibration of the drive train. The dynamics of a wheel
carrying many centrifugal pendulums of bifilar design has been the subject of a growing literature, but much less
has been written about roller-type pendulums and about overall system performance. This paper is a new analysis
of bifilar and roller systems and their design requirements. The current state of knowledge about practical design
limitations is explained and the need for further research discussed.

1. INTRODUCTION
The use of a tuned-mass absorber to reduce harmonic vi-

bration of fixed frequency is well-known. In the 1930s, this
principle was extended to reducing the torsional vibration of
machinery where there is excitation whose frequency increases
with speed. Loose masses moving in a curved track or con-
strained by rollers to move in a curved path allow the irregular
firing torque of a reciprocating engine to be resisted, at least
in theory. There is a good introduction in Den Hartog’s classic
textbook.3 The bifilar or Sarazin type of centrifugal pendulum
is used widely, while the roller or Salomon type still finds new
applications. Examples are shown in Figs. 1(a) and 1(b).

These devices are basically tuned-mass absorbers. They
serve to reduce the amplitude of a troublesome resonance by
generating negative reaction forces at the pendulums’ resonant
frequency. Because centrifugal force acts to hold the pendulum
or roller in its equilibrium position, their natural frequency is
speed dependent. Each pendulum has a natural frequency that
is proportional to engine speed. For example, a fourth-order
pendulum, n = 4, has a natural frequency of 4 times engine
rotational speed. This is important because the excitation har-
monics of a reciprocating engine increase in frequency in pro-
portion to engine speed. When the rotational speed is such that
the n = 4 excitation coincides with a torsional natural fre-
quency of the drive train assembly, large amplitude torsional
vibration may occur. Properly working centrifugal pendulum
absorbers, tuned to n = 4, reduce the n = 4 harmonic of exci-
tation at all engine speeds, and therefore they reduce resonant
torsional response to this harmonic.

The usual theory of pendulum vibration absorbers is a con-
stant speed theory. In practice, matters are not so simple. At
low rotational speed, centrifugal forces are insufficient to hold
the moving masses close to their central positions. Instead they
rattle within the available clearance. The name “Rattler” has
been registered as a trademark for one particular device of the
Salomon type. As engine speed increases, the loose masses
are pulled into their central positions. If there is significant
excitation, there may still not be enough centrifugal force to
generate sufficiently large harmonic reaction forces and some
rattling continues. Then, above a critical speed, the centrifugal
pendulums overcome the excitation, and pull into synchronism
with the torque harmonic to which they are tuned. Above this
engine speed, they start to work properly, reducing the ampli-

tude of crankshaft torsional vibration.
This paper reviews the constructional features of commonly

used centrifugal pendulums and brings together published re-
sults that bear on their design. It includes new analysis of
the response of roller pendulums which have received much
less attention in the literature, although they are widely used.
Figure 7 is the result of this new analysis and compares the
torque-absorbing capacities of bifilar, roller, and tautochronic
pendulums for the first time. Modelling all aspects of a re-
ciprocating engine’s torsional dynamics is extremely complex
and most studies have been confined to single pendulums or
to several pendulums attached to the same wheel. Results for
two- and three-degree-of-freedom torsional systems are shown
in Figs. 8–10. An intriguing detail is the response loops that
occur. These are discussed in section 7. All the results are for
steady operation at a constant speed. A comprehensive ana-
lytical treatment of the large-amplitude dynamic response of
an accelerating engine with centrifugal pendulums is not yet
feasible.

Nomenclature is listed at the start of Appendix 1.

2. CONSTRUCTIONAL DETAILS

In aircraft applications, bifilar pendulums may be attached to
the webs of every crank, Fig 2(a). For automobile engines, it
is more usual to attach pendulums, of either bifilar or roller de-
sign, to one of the wheels of a dual-mass flywheel, Fig 2(b). A
single, solid flywheel is replaced by two co-axial wheels joined
by a torsional spring. The engine’s crankshaft is attached to the
first wheel and the clutch is attached to the second wheel. Usu-
ally, vibration absorbers are attached to the second wheel.

Salomon or roller pendulums are usually wheel mounted,
and there may be 6 or more rollers on a single wheel. One
commercial off-the-shelf design has 9 rollers, with 6 rollers
tuned to one excitation order and 3 to a different order, Fig.
2(d).

Most commercial centrifugal pendulum absorbers move in a
circular arc with respect to their attachment wheel or crank. As
pendulum amplitude becomes large (of the order of 30 degrees)
its natural frequency begins to decrease. For this reason, pen-
dulum geometry is usually set so that the pendulum’s small-
amplitude (linear) natural frequency is higher than its intended
value when the pendulum is operating at its design amplitude.
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Figure 1. (a) Sarazin or bifilar pendulums (the white masses),
(b) Salomon or roller pendulums, (c) Solid bifilar pendulum
design, (d) laminated bifilar pendulum design.

Figure 2. (a) 8-cylinder aircraft crankshaft with attachments
for 8 bifilar pendulums, (b) gearbox side of automobile dual-
mass flywheel with 4 bifilar pendulums, (c) typical geometry
of one side of a bifilar suspension, (d) TCI “Rattler®” roller-
type absorber.

For a pendulum designed to absorb nth order vibration at rota-
tional speed Ω, the pendulum’s natural frequency ωn is usually
set according to ω2

n = (1 + ε)n2Ω2 where the detuning param-
eter ε is in the order of 0.1. This is intended to ensure that ωn

is close to nΩ when the pendulum is working properly.

3. DESIGN CALCULATIONS

During design, the expected time-history of torque applied
at each crank (of a multi-cylinder engine) must first be com-
puted, including allowance for the reciprocating inertias. This
data was then Fourier analysed to generate the amplitudes of
each order of excitation torque and its variation over the re-
quired operating range of the engine. The major orders of exci-
tation for a 4-cycle (4-stroke) engine depended on the number
of cylinders. A one-cylinder engine has major order n = 1/2
because there is one firing stroke every two revolutions. For an
8-cylinder engine, it is n = 4. Higher harmonics may also be
important.

According to linear theory, if a pendulum is tuned precisely
to an order of excitation, it will swing to enforce a nodal point
for torsional vibration of the system to which it is attached.3
The centrifugal pendulum acts as an infinite inertia.

In practice, the response of a swinging pendulum is more
complicated. If the pendulum’s centre of mass moves in a cir-
cular arc, its natural frequency will decrease as amplitude in-
creases. Although this can be compensated by changing the ge-
ometry from a circular arc, as pendulum amplitude increases,
its reaction torque becomes increasingly nonlinear whatever
its path. Eventually the fundamental component of pendu-
lum reaction torque stops increasing, as other harmonics grow,
and the pendulum no longer functions as a vibration absorber.
There is therefore a practical limit on the reaction torque that a
pendulum of given properties can generate.

4. NONLINEAR CHARACTERISTICS

When this limitation was first understood (see, for example,
Newland 1964), nonlinear calculations allowed the maximum
practical pendulum amplitude to be calculated.9 Usually a non-
linear jump occurs at an amplitude of about 60◦ so that the de-
sign amplitude should be restricted to about 30◦. Some authors
have suggested only 10◦ should be the design target (Mitchiner
& Leonard, 1991) but this seems to be unduly conservative.8

The reason for the amplitude limitation is illustrated in
Fig. 3, based on the analysis in Appendix 2. Figure 3
shows (non-dimensional) pendulum torque calculated by equa-
tion (A2.1) for one complete cycle of a centrifugal pendulum
swinging at different amplitudes. Harmonic oscillation of the
pendulum with amplitudes of 30◦ (black line), 60◦ (blue) and
90◦ (red), is illustrated in the upper left diagram. Correspond-
ing pendulum torque is shown in the other three diagrams. For
30◦ amplitude the pendulum torque was nearly harmonic. Its
fundamental component is shown for comparison. For 60◦ am-
plitude there was now significant deviation from the harmonic
shape shown by the fundamental. For 90◦ pendulum ampli-
tude, pendulum torque was far from harmonic, as shown by
its deviation from its fundamental component. The amplitude
of the fundamental component of pendulum torque increased
with increasing amplitude from 30◦ to 60◦ but decreased as
the amplitude rose towards 90◦. Then the third harmonic dom-
inated and the pendulum’s vibration absorbing property had
transferred from order n to order 3n, with the pendulum no
longer absorbing the intended component of torsional vibra-
tion.

By altering the path that the pendulum mass swung through
from a circular path, it was able to make the natural frequency
independent of amplitude. This theory is discussed below. In
effect, the pendulum length decreased as the magnitude of its
swing angle increased, and this altered its natural frequency.
However, that made little difference to the irregularity of the
pendulum torque, Fig. 3(a), because the radius vector from the
centre of rotation to the pendulum mass was only slightly al-
tered by a change in pendulum length. For roller pendulums,
the same limitation applied.

5. VARIABLE LENGTH PENDULUMS

The concept of a bifilar pendulum whose natural frequency
is independent of its amplitude was introduced by Denman in
1992.4 Denman showed that, if the path of the centre-of-mass
is described by an epicycloidal curve, its natural frequency is
constant.
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Figure 3. Time history of non-dimensional pendulum torque T/malΩ2 during one full period of sinusoidal pendulum motion at
three different amplitudesof 30◦ (upper right), 60◦(lower left) and 90◦(lower right). The time history of pendulum displacement
is shown upper left. These diagrams are for n = 4 and ε = 0.1, but those parameters are not critical. These results are for a
bifilar pendulum following a circular path, but those for both a tautochronic pendulum and a roller pendulum are very similar.

An approximate analysis (see Appendix 2) showed that the
free motion of a pendulum will be simple harmonic with con-
stant natural frequency if its length l(φ) changed with swing
angle φ according to the sinc equation l(φ) = Lsinφ/φ.

Figure 4(a) compares the trajectories of a pendulum mass for
a circular trajectory in red (a traditional constant length pen-
dulum), sinc trajectory in blue and epicycloidal trajectory in
green. The last was generated by the small green circle rolling
on the large green circle. All the trajectories were for n = 4
when the radius from the centre of rotation to the centre of the
pendulum is n2 = 16 times the length of the (simple) pendu-
lum. The centre of rotation of the carrier wheel was at O and
the (simple) pendulum was hinged to its carrier at A.

Figur 4(b) is a magnified view of the alternative trajectories.
The dimensions shown and position of the bump stops are for
a typical automobile application to illustrate the small differ-
ences between the three trajectories.

6. STEADY HARMONIC CALCULATIONS

Theoretical calculations of the effectiveness of a particu-
lar installation are usually made by the application of some
method of harmonic balance in which the motion of the pen-
dulum is approximated by an assumption of harmonic time de-
pendence, responding to the chosen harmonic of engine torque.
This method was explored in the author’s original studies and
has been used in various forms extensively since.9, 10 Harmonic
balance calculations consider the rotational equilibrium of the
assembly of a carrier wheel and pendulum and allow the re-
lationship between pendulum displacement amplitude, carrier
displacement amplitude and pendulum torque amplitude to the
found with good accuracy.

Typical results are shown below, for a constant length
bifilar pendulum, Figs. 5(a), 5(c), and a roller pendulum,
Figs. 5(b), 5(d), following a circular track. Results are shown
for different values of detuning, ε = 0.05, 0.1, 0.15, 0.2, 0.25.
In 5(a) and 5(b), the amplitude of (non-dimensional) pendu-
lum torque was plotted against pendulum amplitude, in 5(c)

and 5(d), pendulum torque was plotted versus carrier ampli-
tude. The assumption was that the excitation was purely har-
monic and that the corresponding harmonic of pendulum am-
plitude and carrier amplitude was identified by a harmonic bal-
ance calculation. For the results here, a version of the Ritz
Minimising Method has been used, but other methods produce
similar results.9 The essential result was that, as pendulum
amplitude increased, the carrier reaction torque increased until
it reached a maximum, but thereafter decreased. The corre-
sponding carrier amplitude at first increased (for ε > 0) with
increasing torque amplitude, but then reduced to zero at an
“optimum” condition, before changing phase and approaching
a jump instability.

Figure 5 shows non-dimensional torque T/mΩ2al as the or-
dinate. To compare the magnitude of the torques generated by
bifilar and roller pendulums, an allowance must be made that
roller inertia reduces a roller’s natural frequency so that di-
mension l is different in the two cases. Therefore, in the later
Fig. 7, the ordinate is changed to T/mΩ2a2 to allow a direct
comparison between bifilar and roller pendulums. Also, as al-
ready pointed out, since a bifilar construction fits within the
crankcase of an engine, it can usually be larger and heavier
than a wheel-mounted roller pendulum.

These results were for a conventional pendulum or roller fol-
lowing a circular trajectory. It was assumed that the roller does
not slip or partially slip. There was some evidence that this
may sometimes happen. If it did, the effective inertia of the
roller was reduced.

When their trajectory departed from circular, the results
were modified. Figures 6(a), 6(b) show carrier amplitude plot-
ted against pendulum amplitude for both circular and non-
circular (constant-frequency) trajectories. As in Figs. 5, there
was a separate curve for each value of detuning, in this case for
ε = 0.0, 0.05, 0.1, 0.15, 0.2, 0.25.

For both Figs. 6(a) and 6(b), the solid lines are for a circular
pendulum trajectory, the broken lines for a sinc (constant fre-
quency) trajectory. To achieve zero carrier amplitude for a con-
stant length pendulum, the value of detuning must be chosen to

268 International Journal of Acoustics and Vibration, Vol. 25, No. 2, 2020



D. E. Newland: DEVELOPMENTS IN THE DESIGN OF CENTRIFUGAL PENDULUM VIBRATION ABSORBERS

(a)

(b)

Figure 4. (a) Illustrating the generation of an epicycloid tra-
jectory (in green), circular trajectory (in red) and sinc trajec-
tory (in blue). The larger green circle’s centre is the centre of
rotation of the carrier wheel. The pendulum pivots about A.
Magnified detail is shown in Fig 4(b). Dimensions shown are
for a typical automobile application. (b) Part-view of 4(a). The
red trajectory is circular for a constant length pendulum. Blue
and green trajectories are for the centre of mass of a pendulum
of varying length. The blue trajectory is a sinc curve gener-
ated by equation (B.4). The green trajectory is an epicycloidal
curve with proportions so that it has the same radius of curva-
ture as the red and blue curves when in their central position
x = y = 0. The position of bump stops in a typical application
is where shown.

suit the intended pendulum amplitude, while for a tautochronic
pendulum, detuning should ideally be zero. This gave a tau-
tochronic pendulum an advantage, although in practical terms
it may be difficult to realise this (see below).

As already noted, when excitation generated an excessive
pendulum torque for which there was not a stable harmonic
solution, jumping occurred and the pendulum became unstable
and buffets between its stops.

Critical values of pendulum harmonic torque amplitude are
shown in Figs. 7(a) and 7(b). Six different cases are shown
in each figure. Blue curves are for a constant length pen-
dulum; red curves for a sinc (constant frequency) pendulum,
green curves are for a roller pendulum. In Fig. 7(a), results are
shown for orders n = 2 and n = 4 and for different values
of detuning ε from 0 to 0.25 in 5 equal steps. In Fig. 7(b), the
corresponding results are shown for n = 0.5 and n = 1. For
both Figs. 7, non-dimensional pendulum torque is defined as
T/ma2Ω2 instead of T/malΩ2.

The conclusion from the design diagrams, Figs. 7, is that,
while a tautochronic (constant frequency) design made it eas-
ier to ensure zero or very small carrier amplitude, this was sub-

(a)

(b)

(c)

(d)

Figure 5. Approximate harmonic response amplitudes for a
bifilar and a roller pendulum (I/mr2 = 0.5, r/l = 4), both
with circular trajectories, that have synchronised with the n =
4 order of engine excitation for different values of detuning
ε. In these figures, the non-dimensional pendulum torque is
defined as taup = T/malΩ2, phi = φ is pendulum swing
angle, theta = θ is carrier vibration amplitude (superimposed
on its steady angular velocity).
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(a)

(b)

Figure 6. (a) Carrier amplitude versus pendulum amplitude for
6 values of detuning and n = 4. Solid lines for a circular tra-
jectory; broken lines for a sinc (constant frequency) trajectory.
(b) The same as Fig 6(a) except that n = 2.

ject to the maximum pendulum torque amplitude not being ex-
ceeded. These calculations indicated that a tautochronic pen-
dulum reached its peak harmonic torque at a (slightly) lower
swing amplitude than a corresponding pendulum of constant
length.

All harmonic calculations, of which these are examples, deal
only with the calculated fundamental component of pendulum
torque. As can be seen from Figs 4, when pendulum amplitude
approaches 60◦ this involves a substantial approximation as the
amplitude of the next, 3rd, harmonic approaches the amplitude
of the fundamental.

7. PENDULUMS ON THE SAME WHEEL

A further complication occurs when pendulums are attached
at several places in a rotating system that has many separated
vibratory torque inputs, such as a multi-cylinder reciprocating
engine. Then the torque which one pendulum may be called
on to resist may arise from the vector sum of some or all of the
excitation sources, modified by the dynamic torsional response
of the connecting assembly. Alternatively, many pendulums
may be mounted on the same carrier wheel. This is the usual
construction for automobile engines, when several centrifugal
pendulums are mounted on one wheel (see Figs. 1(b), 2(b),
and 2(d)). It is important that all these individual pendulums
play an equal part, rather than one or two generating most of
the reaction torque and therefore over-swinging. It has been

(a)

(b)

Figure 7. 7.(a) and (b): Amplitude of harmonic pendulum
torque (taup = T/ma2Ω2) plotted against pendulum ampli-
tude (phi = φ) for n = 2 and n = 4, Fig. 7(a), and for n = 0.5,
n = 1, Fig. 7(b). The blue curves are for a constant length bi-
filar pendulum, the red curves for a sinc (tautochronic) pendu-
lum, the green curves for a roller pendulum in a circular track.
Detuning increases from ε = 0 to ε = 0.25 in 5 steps going
from below to above. For the roller pendulum, I/mr2 = 1/2,
r/a = 1/5. The values of φ for which there is a potential
nonlinear jump lie between 52◦–58◦ (n = 2, 4) and 63◦–92◦

(n = 1/2, 1) with the roller pendulum jumping slightly before
the tautochronic pendulum and the constant length pendulum.

found (see e.g. Shaw & Geist, 2010) that, in the theoretical
case when all of several rollers are tuned to precisely the same
order with no detuning, energy may be shared unequally be-
tween the separate rollers.12 By intentionally slightly detuning
each of several multiple pendulums, whether these are constant
length or tautochronic pendulums, it has been found that sig-
nificantly uneven localised responses can be avoided.

8. SYSTEM CALCULATIONS

Relatively little attention has been given to the analysis
of multi-pendulum configurations, when crankshaft-mounted
centrifugal pendulums are combined with wheel-mounted pen-
dulums on an engine’s flywheel. Establishing an accu-
rate model for the torsional vibration response of a system
without absorbers, and then introducing multiple centrifugal
pendulums, which are essentially nonlinear devices, brings
formidable computational problems. But interesting results are
found.

Figures 8(a) and 8(b) show results for a simple two degree-
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of-freedom torsional system, with one pendulum on the wheel
that carries 4th order excitation. The horizontal axis in
Fig. 8(a) represents frequency, expressed as the ratio of the
speed of rotation to the speed at which the 4th order of Ω
equals the torsional natural frequency of the system without
its pendulum, Ωc.

Figure 8(a) shows loci of carrier amplitude plotted against
frequency for different amplitudes of applied harmonic torque.
Loci were plotted for four different excitation torque ampli-
tudes T/mΩ2al (which are constant): 10 (blue), 13.4 (red)
15 (green) and 25 (black). The system parameters were cho-
sen so that the second wheel acted as a vibration absorber for
the first wheel when Ω = 0.5Ωc. For this example, ε = 0.06.

Figure 8(b) goes further, for the same system. The top
graph in Fig. 8(b) is similar to 8(a) with different contours; the
middle graph shows pendulum swing amplitude against fre-
quency, the bottom graph pendulum torque amplitude against
frequency. In Fig. 8(b), loci were plotted for four different
excitation torque amplitudes (which are constant): 5 (red),
10 (green), 13.2 (black) 13.6 (blue) and 25 (magenta). When
the torque amplitude was 13.6, a nonlinear instability occurred
when Ω/Ωc approached 1, the system’s critical speed. For
torque of 13.2, this instability was just avoided.

An interesting feature arose for speeds close to Ω/Ωc = 0.5.
Additional instabilities occurred. A much-magnified detail of
the top graph in Fig. 8 is shown in Fig. 9. This looping of
the loci was a curious complication, with one side of each loop
describing an unstable solution from the harmonic balance cal-
culation. The unstable solutions did not occur in practice, the
operating point finding its nearest stable position. This be-
haviour, computed by an analogue simulation, is shown in the
inset view.9, 11

Calculations for multi-degree-of-freedom systems have be-
come increasingly complicated. The results from an early un-
published conference contribution by the author are shown in
Fig 10.11 The response of a system with three wheels, two with
(constant length) pendulums attached, each with ε = 0.0625,
and each subjected to 4th order in-phase harmonic torque ex-
citation as shown (Fig. 10(a)) are plotted. In Fig. 10(a), re-
sults are shown for six different frequencies (expressed as a
speed ratio by Ω

Ωc
where Ω was the lower non-zero natural fre-

quency of the system). In Fig. 10(b), the response for con-
tinuing increase in torque amplitude is shown for the single
case Ω

Ωc
= 1. As excitation exceeded the first jump value, the

response moved to the next stable position. Pendulum 1 fol-
lowed the marked sequence A1, B1, C1, D1, E1 and pendulum
2, the sequence A2, B2, C2, D2, E2. This diagram assumed that
the pendulums had freedom to swing through the large angle
required without meeting any restraints, which in practice will
not necessarily be the case. The consequence of pendulums
repeatedly hitting their stops is discussed in section 10.

Now that centrifugal pendulum absorbers are increas-
ingly used in automobile engines, and as designs combining
crankshaft-mounted with flywheel-mounted pendulums be-
come more common, research to study operation under tran-
sient conditions is needed to explore the disruptive effect of
engine acceleration, and to widen the speed range over which
satisfactory vibration absorption can be achieved.

9. MEASUREMENTS
The results of measurements on a typical automobile cen-

trifugal vibration absorber show that the trajectory of the
centre-of-mass follows is circular to close accuracy. To con-
vert this to a tautochronic path, the tautochronic path would

deviate by less than 1mm from a circular path even if the pen-
dulum’s amplitude was as much as 60◦. Measurements were
made by a camera fitted with a multi-exposure shutter focussed
on the sharp corner of a pendulum, Fig. 11(a).

By only moving the pendulum, while shooting multiple im-
ages, Fig. 11(b), its trajectory could be identified accurately
and compared with an exactly circular trajectory, Fig. 11(c).
The divergence from a perfect circle was extremely small and
appeared to be within the limits of manufacturing accuracy.
This complication of providing a wear-resistant non-circular
track to the accuracy required for a tautochronic path mitigated
against the adoption of a tautochronic design.

10. DESIGN
There were two principal design considerations. The pen-

dulums had to be correctly tuned. Their maximum permissible
torque must not be exceeded.

The first involved selecting dimensions to satisfy the natu-
ral frequency equations (A1.3) for a bifilar pendulum, (A1.6)
for a roller pendulum. Provided that the bifilar pendulum was
suspended so that it always moved parallel to its carrier wheel,
with no relative rotation, the pendulum inertia and mass did
not enter into (A1.3). In the case of a roller pendulum, the
ratio I/mr2 did affect the natural frequency, with frequency
decreasing as roller inertia increased.

The maximum permissible torque can be found from Fig. 7.
This enabled the permitted pendulum amplitude and torque to
be read from the diagram. Although Fig. 7 has been calcu-
lated from applying equations (A2.1), (A2.6) and (A2.8), these
calculations had to be done numerically and the fundamental
component of pendulum torque computed to ascertain its mag-
nitude. The calculations that led to the graphs in Fig. 7 can be
repeated, but the graphical presentation shown there has suffi-
cient accuracy for most practical applications.

The need for these two design parameters to be calculated
was discussed by Mitchiner and Leonard, but they did not con-
sider bifilar and roller pendulums, only a pendulum swinging
from a single point of suspension for reducing the torsional vi-
bration of an air compressor.8 Also their paper did not consider
pendulum dynamics outside the linear range, which was sug-
gested should be limited to a pendulum amplitude of 0.1 rad
(5.7◦) or 0.2 rad (11.4◦) as an absolute maximum.

As will be seen from Fig. 7, significantly higher swing
amplitude was permissible before instability was approached.
Even with a safety factor of 2, the maximum permissible pen-
dulum amplitude (for all three types of pendulum) may be as
high as 26◦ (0.45 rad).

When excitation was distributed along a torsionally-flexible
drive shaft and pendulum absorbers could not be mounted di-
rectly at the points of excitation, their dynamics were affected
by torsional vibration of the flexible assembly. A general anal-
ysis of such a system has not been completed so far as this
author is aware. Examples of the recent analysis by the author
of torsional systems with limited complication are shown in
Figs. 8 and 9 which are new.

There was considerable skill in designing a satisfactory ab-
sorber that would provide enough vibration absorption and
would last the working life of an engine. Both the design and
the analysis of these devices still bring formidable challenges
and there are numerous practical considerations.

Strength is one. Very high g forces are generated on the
pendulums, which may be as high as 1000 g, and creep of the
support structure under these loads may occur during long ser-
vice.
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(a)

(b)

Figure 8. (a) Approximate harmonic response of a torsional system with two wheels, with excitation on the wheel carrying
a pendulum (see inset, top left). Carrier wheel amplitude is plotted against speed. The speed ratio is 1.0 when the excitation
frequency coincides with the natural frequency of the system. It is 0.5 when the right-hand wheel acts as a perfect vibration
absorber for the left hand (carrier) wheel. Each graph is for a different value of the non-dimensional excitation amplitude.
(b)The same system as Fig 8(a). The top figure shows carrier amplitude against excitation frequency, the middle graph pendulum
amplitude, the bottom graph pendulum reaction torque amplitude on the carrier wheel. Note that the colour coding for Figs 8(a)
and 8(b) is different.

Lubrication was important under the highly-stressed rolling-
contact conditions. For crankshaft-mounted bifilar pendulums,
this may not be a problem because of the crankshaft lubrica-
tion system, but roller pendulums need a low-viscosity high-
pressure lubricant to be sealed within each roller’s housing;
otherwise surface pitting may occur due to surface fatigue un-
der high contact stresses. The roller surface may have to be
circumferentially grooved to provide a lubrication pathway.

To reduce wear, further complications may include the in-
troduction of shrink-fit liners, as shown in Fig. 1(b). And to
increase the magnitude of the reaction torque generated by a
pendulum, tungsten (ρ = 19.5) may replace stainless steel
(ρ = 8).

As explained above, as an engine speeds up, at first its loose
pendulum weights rattle, when there is insufficient centrifu-
gal force to pull them into synchronism. Sometimes they can
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Figure 9. Enlarged view of carrier amplitude against speed
around the speed at which the second wheel acts as a vibration
absorber for the first wheel.

be heard audibly falling into synchronism, when there was a
change in the noise emitted and engine smoothness improved.
This behaviour has long been known to operators of aircraft
with reciprocating engines. A 1976 Operator’s Manual, ap-
proved by the FAA, for aircraft engines with centrifugal pen-
dulum vibration absorbers, carried this cautionary warning:
“These engines are equipped with a dynamic counterweight
system and must be operated accordingly,. . . .Use a smooth,
steady movement of the throttle (avoid rapid opening and clos-
ing). If this warning is not heeded, there could be severe dam-
age to the counterweights, roller and bushings.”

Modern automobile engine designs incorporate a margin of
strength intended to be sufficient to absorb the hammering that
occurs when there are frequent sudden stops and starts.

11. CONCLUSIONS

The long-term future of internal combustion engines burn-
ing fossil fuels is now an issue. Eventually, high-performance
electric drives are likely to supersede most reciprocating auto-
mobile power plants. However, simple long-stroke, low emis-
sion gasoline engines, perhaps supplementing electric traction,
may find their place. Any reciprocating engine has a tendency
to generate torsional vibration and lightweight, and single-
cylinder engines are no exception. They are still likely to in-
corporate centrifugal pendulum vibration absorbers.
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A. APPENDIX 1

Linear theory of bifilar and roller centrifugal pendulums
Nomenclature

The following definitions will be adopted. Dimensions are il-
lustrated in Fig. A.1.

For a bifilar pendulum, Fig. A.1(a), with centre of rotation
at O, centre of mass at G, and pendulum links of length AC:

(a)

(b)

Figure 10. (a) Response of the two carrier wheels in the sys-
tem shown above to increasing (in-phase) torque at different
rotational speeds from 0.7Ωc to 1.7Ωc for n = 4 and ε = .0625
for both pendulums.9, 11 (b) Response of both carrier wheels
for the system of Figure 10(a) for harmonic excitation torque
amplitude of greater magnitude at speed Ωc, the lower (non-
zero) natural frequency of the system.9, 11

d1 Aperture diameter in pendulum and carrier (not shown)
d2 Diameter of cylindrical roller joining pendulum

to carrier (also not shown)
l d1 − d2 = pendulum’s length AC

(the length of each arm of a bifilar suspension)
a Radial distance OA+ CG from the wheel’s centre

of rotation to the centre of mass of pendulum
(in its undeflected position, excluding pendulum length)

m Mass of pendulum
I Inertia of pendulum about its centre of mass, G
For a roller pendulum, Fig. A.1(b), with centre of rotation
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(a)

(b)

(c)

Figure 11. (a) Experiment to record the pendulum trajec-
tory for a typical automobile bifilar centrifugal pendulum. (b)
Multi-exposure recording the trajectory of the bifilar pendu-
lum in Fig. 11(a). (c) Best-fit trajectory (green) compared with
circular trajectory (red) and theoretical tautochronic trajectory
(yellow) for the bifilar pendulum in Fig 11(b).

at O, circular aperture with centre at A, and roller with centre
C:
R Radius of aperture within which roller is

constrained, dimension AP
r Radius of roller, dimension CP

(a)

(b)

Figure A.1. (a) Geometry of a bifilar centrifugal pendulum.
(b) Geometry of a roller centrifugal pendulum.

l Difference in radii, R− r dimension AC
a Radial distance from the centre of rotation

to the centre of aperture, dimension OA
m Mass of roller I Inertia of roller about its centre

of mass C
For both pendulums:

Ω Average rotational speed of carrier wheel (rad/s)
n Order of vibration to which the pendulum is tuned

(pendulum frequency tuned to n times Ω)
Ωt+ θ Angle made by OA with the fixed axis Oy,

t = time (s)
φ Pendulum swing angle relative to the carrier

wheel which is the (acute) angle made by
AC with OA extended

The bifilar pendulum’s natural frequency for small-
amplitude (linear) vibrations at rotational speed Ω was

ω0 = Ω
√
a/l; (A.1)

so that to absorb a harmonic of frequency nΩ,

n2 = a/l. (A.2)

To allow for the pendulum frequency ω0 decreasing slightly
as the pendulum amplitude increased (assuming the pendulum
center of mass followed a circular arc), in practice a/l was set
slightly more than n2 according to:

n2 (1 + ε) =
a

l
; (A.3)

where ε was defined as the detuning.
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On substituting for a/l from (A.3), the inertia added by a
bifilar pendulum may be expressed as:

I +m(a+ l)2 +
m(a+ l)2

ε
; (A.4)

which was an alternative form of:3

I +
ma(a+ l)2

(a− ln2)
. (A.5)

In the case of a roller pendulum, the analysis was more com-
plicated. For the definitions given above, the natural frequency
of a roller in its track was:

ω0 = Ω
√
a/l

1√
1 + I/mr2

; (A.6)

so that the order of vibration for resonance was:

n2 =
(a
l

) 1(
1 + I

mr2

) ; (A.7)

and detuning ε is defined so that:

n2 (1 + ε) =
(a
l

) 1

(1 + I
mr2 )

. (A.8)

With these definitions, the effective inertia offered by one
roller was:

I +m(a+ l)
2

+
m(a+ l − I/mr)2

ε
(
1 + I

mr2

) ; (A.9)

corresponding to (A.4) for the bifilar pendulum.
Derivation of (A.9) followed from the equations of motion

for small-amplitude movement of the roller when its carrier
wheel was subjected to forced harmonic excitation and as-
sumed that there was no slipping.

B. APPENDIX 2
Nonlinearity of a centrifugal pendulum
Bifilar pendulum with constant length links
Consider the model shown in Fig B.1. Arm OA rotates about

the fixed centre O at angular velocity Ω. A simple pendulum
of point mass m and length l was hinged at A.

Assume a quasi-static analysis, when the only force on the
pendulum mass came from the centrifugal acceleration Ω2R
where R was the distance from O to C, the centre of mass.

This centrifugal force generated a tension in the pendulum
arm, which applied a load at A and exerts a torque about O.
The component of centrifugal force perpendicular to the pen-
dulum caused the pendulum to rotate but did not apply a load
at its point of support A. The analysis was made slightly more
complicated when the additional centrifugal acceleration aris-
ing from the pendulum’s relative angular velocity d/dt(φ) was
included, but the result was the same in principle.

The outwards centrifugal force on the pendulum mass m
was mRΩ2 where R was the length OC. The torque about O
exerted by this force was T = pmRΩ2cosθ where p was the
moment arm shown in Fig. B.1. By geometry, if the pendulum
swung through angle φ relative to the wheel, p = asinφ and
Rcosθ = (l + acosφ), so that:

T

malΩ2
=
(

1 +
(a
l

)
cosφ

)
sinφ. (B.1)

Figure B.1. Simplified quasi-static analysis of a centrifugal
pendulum. ArmOA rotates about the fixed centreO at angular
velocity Ω. A simple pendulum of point mass m and length l
is hinged at A.

The results of such a calculation are shown in Fig. 3(a). The
solid line shows the time-history of non-dimensional pendu-
lum torque T/malΩ2 during one full period for sinusoidal
pendulum motion at an amplitude of 60◦. The fundamental
component of this response is shown by the broken line. It
can be seen that, during each period of the pendulum’s motion,
the torque it exerted on its carrier wheel did not change har-
monically, but instead followed the irregular curve shown. For
this example, the order n = 4 and the detuning zero, but the
irregular torque was not sensitive to these values.

Bifilar pendulum with variable length links
Because the natural period of a centrifugal pendulum in-

creased with amplitude, so that its natural frequency decreased,
much has been written about reducing the effective length of
the pendulum to achieve a constant frequency pendulum, or
so-called tautochronic pendulum.10, 11

For a simple pendulum attached to a carrier wheel, which
rotated at constant angular velocity Ω, Fig. B.1, the pendulum
equation was:

mlθ̈ +mRΩ2sinθ = 0; (B.2)

and, since Rsinθ = asinφ,

φ̈+ Ω2
(a
l

)
sinφ = 0. (B.3)

Therefore, provided that the pendulum length l changed, ac-
cording to:

l = Lsinφ/φ; (B.4)

motion was simple harmonic motion with constant frequency
Ω
√
a/L. Second-order terms from the Coriolis acceleration

arising from changing l were neglected.
For this case, equation (B.1) became:

T

maLΩ2
=
(
l/L+

( a
L

)
cosφ

)
sinφ; (B.5)

where L was the pendulum length when at its centre and, sub-
stituting from (B.4),

T

maLΩ2
=
(
sinφ/φ+

( a
L

)
cosφ

)
sinφ. (B.6)
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A graph of T/maLΩ2 from has comparable nonlinearity
from that from equation (B.1) plotted in Fig 3. The deviation
from a harmonic torque was still large as pendulum amplitude
increased above about 45◦.

Roller pendulum following a circular track
For a roller pendulum, the quasi-static analysis was essen-

tially the same except that the contact force between the (cir-
cular) roller and its (circular) track had to be calculated. If the
circumferential component of force at the roller’s centre was
H1, equilibrium of the roller required the tangential compo-
nent of its contact force to be H2 where:

H2 = H1

(
I

mr2

)
/

(
1 +

I

mr2

)
; (B.7)

and the torque equation corresponding to (??) was:

T

malΩ2
=

{
1

1 + I
mr2

}
{

1 +
(a
l

)
cosφ−

(r
l

)( I

mr2

)}
sinφ. (B.8)

Again, a graph of T/maLΩ2 from (B.8) compares closely
in shape with that in Fig 3. A similar deviation from harmonic
occurred as pendulum amplitude increased above about 30◦.
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