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The bending vibration behavior of a non-uniform axially functionally graded Euler-Bernoulli beam is investigated
based on the Chebyshev collocation method. The cross-sectional and material properties of the beam are assumed
to vary continuously across the axial direction. The Chebyshev differentiation matrices are used to reduce the
ordinary differential equations into a set of algebraic equations to form the eigenvalue problem associated with the
free vibration. Some calculated results are compared with numerical results in the published literature to validate
the accuracy of the present model. A good agreement is observed. The effects of the taper ratio, volume fraction
index, and restraint types on the natural frequency of axially functionally graded beams with non-uniform cross
section are examined.

1. INTRODUCTION

Functionally graded (FG) materials are special composites
with smoothly varying material properties along any desired
spatial direction. These graded properties can be achieved by
gradually changing the volume fraction of constituents along
a typical direction according to the polynomial, power, and
exponential laws. Due to these particular graded properties,
the applications of structures with FG materials have received
wide attention in civil, automobile and aerospace industries for
the past few decades. Because a beam is both a commonly and
widely used member in structures and machines, to better un-
derstand the dynamic behavior of a beam made of FG materi-
als is necessary from a structural design point of view. In past
years, the dynamic behaviors of FG beams with material prop-
erties varying along the beam thickness have been thoroughly
investigated by many researchers using various analytical and
numerical methods.1–12 It is well-known that beam structures
with varying cross-sectional and material properties along the
length direction are commonly used in buildings, bridges and
mechanical components due to the fact that they are capable
of optimizing the strength and weight of the structure. Hence,
it is important to accurately predict and evaluate the dynamic
characteristics of such beam structures. In this regard, only the
literature related to the FG beams with axially varying proper-
ties will be discussed next.

Due to the variable coefficients in the governing equation,
the dynamic analysis of axially FG beams with tapered cross-
sections becomes more mathematically complex. Therefore,
the dynamic problems of FG beams with material and cross-
sectional properties varying along the axial direction have been
largely studied by numerical methods based on various beam
theories. Aydogdu investigated the vibration and buckling
analysis of simply supported FG Euler-Bernoulli beams with
axial variation of material properties based on a semi-inverse
method.13 Huang and Li applied the integral equation method
to study the free vibration of non-uniform axially FG Euler-
Bernoulli beams.14 The effects of material graded parameters
on natural frequencies of the beams were investigated. Based

on the finite element method, Shahba et al. dealt with the
free vibration and stability of axially FG tapered Timoshenko
beams with respective classic and non-classical boundary con-
ditions.15 Hein and Feklistova studied the free vibration of
non-uniform axially FG beams using the Euler-Bernoulli beam
theory and Haar wavelet approach.16 The results revealed that
the Haar wavelet approach was capable of calculating the fre-
quencies of beams with different non-uniform cross-sections,
bending rigidity and mass density. Shahba and Rajasekaran
studied the free vibration and stability of axially FG tapered
Euler–Bernoulli beams by using both the differential transform
element method and differential quadrature element method of
lowest-order.17 The free longitudinal and transverse natural
frequencies, and the critical buckling loads, of the beams were
determined by the two numerical methods. Li et al. presented
the exact frequency equations of the free vibration for axially
exponentially FG beams with different end conditions based
on an analytical approach.18 Rajasekaran analysed the bend-
ing vibration of rotating axially FG tapered Euler–Bernoulli
beams based on the differential transform element method and
differential quadrature element method of lowest-order.19 The
effects of material property, taper ratio, rotating speed, hub ra-
dius and tip mass on the natural frequencies were investigated.
Huang et al. investigated the free vibration of non-uniform and
axially FG Timoshenko beams with various boundary condi-
tions by using a unified approach.20 Sarkar and Ganguli stud-
ied the free vibration of axially FG uniform Timoshenko beams
with fixed–fixed boundary conditions.21 Tang et al. derived the
exact frequency equations of the free transverse vibration of
exponentially FG beams with non-uniform cross-section based
on the Timoshenko beam theory.22 Liu et al. analysed the free
bending vibration of axially FG Euler-Bernoulli beams with ta-
pered cross-section using the spline finite point method.23 The
effects of the material and cross-sectional properties varying
along the axial direction on the natural frequencies were dis-
cussed. Cao and Gao investigated the free vibration of axially
FG beams with non-uniform cross-section by using the asymp-
totic development method.24
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Figure 1. Configuration and coordinates of tapered axially FG beam.

As mentioned above, various analytical and numerical meth-
ods had been used to effectively investigate the influences of
material and geometric parameters on the dynamic character-
istics of axially FG beams. It is well-known that the Chebyshev
collocation method has been applied to different mathematical
and engineering models because of its high rate of convergence
and predictable accuracy.8–10, 12, 25–34 However, the application
of this method to the bending vibration of axially FG tapered
beams has seldom been reported. Hence, the present paper
attempts to study the free transverse vibration of the axially
FG Euler-Bernoulli beam with a tapered cross-section based
on the Chebyshev collocation method. The Chebyshev differ-
entiation matrices are applied to transform the governing dif-
ferential equations into a set of algebraic eigenvalue equations.
The lateral natural frequencies of tapered axially FG beams
with various boundary conditions are then obtained by solving
the generalized eigenvalue equation. The material properties
axially graded according to the exponential, polynomial and
power functions are considered. The rectangular cross section
is assumed to be tapered linearly in the width and height di-
rections along the beam length. The effects of the taper ra-
tios, axially graded properties, and boundary conditions on the
free vibration behaviors of the axially FG tapered beams are
investigated. Several numerical results are evaluated and com-
pared with those in the published literature to validate the accu-
racy of the present model. The results reveal that the proposed
method can be used to study the free vibration of tapered Euler-
Bernoulli beams with different axially graded material prop-
erties described by typical functions under various boundary
conditions with good accuracy.

2. PROBLEM FORMULATION

The present paper investigates the bending vibration behav-
ior of non-uniform axially FG beams under various boundary
conditions. The material and cross-section properties were
assumed to be varied along the longitudinal direction of the
beam. Figure 1 illustrates the geometric configuration and co-
ordinate system of the beam with a tapered section along the
height and width directions. The origin o of the coordinate xyz
was the centre of the left-end plane of the beam. The x-axis,
y-axis and z-axis originating from the origin were found in the

length, width, and thickness directions, respectively. A, I , E
and ρ represented the respective cross-sectional area, area mo-
ment of inertia, Young modulus, and density; the subscripts
o and L denoted the axial position of the given properties at
x = 0 and x = L, respectively. The governing equation of
motion of such a beam was expressed by a fourth-order partial
differential equation as follows.14, 17

∂2

∂x2

[
S(x)

∂2w(x, t)

∂x2

]
+m(x)

∂2w(x, t)

∂t2
= 0, 0 ≤ x ≤ L.

(1)
Here w was the transverse displacement, L was the beam
length, and x was the axial coordinate. S(x) = E(x)I(x)
was the bending rigidity where E(x) and I(x) were the Young
modulus and area moment of inertia at position x, respectively.
m(x) = ρ(x)A(x) was the beam mass per unit length in which
ρ(x) and A(x) were the respective density and cross-sectional
area at location x. Assume that w(x, t) = W (x)eiωt and sub-
stitute it into Eq. (1) to yield:

d2

dx2

[
S(x)

d2W
dx2

]
−m(x)ω2W = 0, 0 ≤ x ≤ L; (2)

where ω was the natural frequency. Changing the spatial vari-
ables by ξ = 2x/L − 1 and letting Ω2 = ω2L4/16 allowed
Eq. (2) to be rewritten as:

d2

dξ2

[
S(ξ)

d2W
dξ2

]
−m(ξ)Ω2W = 0, −1 ≤ ξ ≤ 1; (3)

or

S(ξ)
d4W
dξ4

+ 2S′(ξ)
d3W
dξ3

+ 2S′′(ξ)
d2W
dξ2

= m(ξ)Ω2W,

− 1 ≤ ξ ≤ 1. (4)

The associated classic boundary conditions were repre-
sented as follows:

W = 0,
dW
dξ

= 0 (Clamped end);

W = 0,
d2W
dξ2

= 0 (Pinned end);

d2W
dξ2

= 0,
d
dξ

[
S(ξ)

d2w
dξ2

]
= 0 (Free end). (5)

The free bending vibration problem of non-uniform axially
FG beams in Eqs. (4) and (5) were solved using the Chebyshev
collocation method. The following Gauss-Chebyshev-Lobatto
collocation points within the interval [-1, 1] were used:35

ξj = cos
πj

N
, j = 0, 1, 2, . . . , N. (6)

Thus, the displacement function W (ξ) was expanded by the
Nth-order Chebyshev polynomials as follows:

W (ξ) ≈
j=0∑
N

γj(ξ)W (ξj), j = 0, 1, 2, . . . , N. (7)
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with

γj(ξ) =
(−1)j+1(1− ξ2)T ′N (ξ)

cjN2(ξ − ξj)
;

TN (ξj) = cos
(
Ncos−1 (ξj)

)
;

γj(ξk) = δjk;

cj =

{
2 j = 0, N = 0

1 j = 1, 2, . . . , N − 1
. (8)

Then, the first derivative of the displacement function W (ξ)
was obtained by the following matrix vector multiplication:

W ′ (ξj) =

N∑
j=0

(DN )ijW (ξj) , j = 0, 1, 2, . . . , N. (9)

Here (DN )ij = γ′j (ξj) was the i, j element of an (N + 1) ×
(N + 1) Chebyshev differentiation matrix DN . The entries of
this matrix were:35

(DN )00 =
2N2 + 1

6
; (DN )NN = −2N2 + 1

6
;

(DN )jj = − ξj

2
(
1− ξ2j

) , j = 1, 2, . . . , N − 1;

(DN )ij =
ci(−1)i+j

cj (ξi − ξj)
, i 6= j, j = 1, 2, . . . , N − 1.

(10)

For simplicity, the first derivative of the Chebyshev differenti-
ation matrix was denoted by D1. The kth derivative was ob-
tained by Dk = (D1)k.

Based on the Chebyshev collocation method as described,
the ordinary differential equation in Eq. (4) was rewritten in
terms of Chebyshev differentiation matrices as:

(K1D4 + 2K2D3 +K3D2)W = Ω2MW ; (11)

where

K1 =


S(ξ0) 0 . . . 0

0 S(ξ1) . . . 0
...

...
. . .

...
0 0 . . . S(ξN )

 ;

K2 =


S′(ξ0) 0 . . . 0

0 S′(ξ1) . . . 0
...

...
. . .

...
0 0 . . . S′(ξN )

 ;

K3 =


S′′(ξ0) 0 . . . 0

0 S′′(ξ1) . . . 0
...

...
. . .

...
0 0 . . . S′′(ξN )

 ;

m =


m(ξ0) 0 . . . 0

0 m(ξ1) . . . 0
...

...
. . .

...
0 0 . . . m(ξN )

 ;

W = {W (ξ0)W (ξ1) . . .W (ξN )}T = {W1W2 . . .WN+1}T .
(12)

Likewise, the boundary equations in Eq. (5) at the supporting
ends of the beam were also expressed by Chebyshev differen-
tiation matrices as given in Table 1. When the homogeneous
boundary conditions were imposed on the governing Eq. (11),
some mathematical operations were performed. First, the first
and second equations of the system were replaced by the two
boundary conditions at the right end. The Nth and (N+1)th
equations were replaced by those at the left end. Then, the Nth
and (N+1)th equations of the new system were moved up to
become the third and fourth equations. Finally, by shifting the
displacements WN and WN+1 to the third and fourth rows of
the displacement vector W , the generalized eigenvalue prob-
lem was obtained as:[
KBB KBI

KIB KII

]{
WB

WI

}
= Ω2

[
O O
MIB MII

]{
WB

WI

}
; (13)

WB =
{
W1 W2 WN WN+1

}T
;

WI =
{
W3 W4 . . . WN−1

}T
. (14)

The subscripts B and I denoted the boundary and internal col-
location points associated with the boundary condition and the
governing equation, respectively. The sizes of the stiffness ma-
trices KBB , KBI , KIB and KII were 4 × 4, 4 × (N − 3),
(N −3)×4 and (N −3)× (N −3), respectively. The sizes of
the inertia matrices MIB and MII were the same as the corre-
sponding stiffness matrices KIB and KII .

To solve the general eigenvalue equation in Eq. (13), it was
expanded to yield:

KBBWB +KBIWI = 0; (15)

KIBWB +KIIWI = Ω2
(
MIBWB +MIIWI

)
. (16)

Then, after introducing Eq. (15) into Eq. (16), the algebraic
eigenvalue equation was reduced to the following form:

AWI = Ω2BWI ; (17)

A = −KIB (KBB)
−1
KBI +KII ;

B = −MIB (KBB)
−1
KBI +MII . (18)

Thus, natural frequencies of the free bending vibration of non-
uniform axially FG Euler-Bernoulli beams with various classi-
cal boundary conditions can be obtained as the solution:

det
(
A− Ω2B

)
= 0. (19)

3. RESULTS AND DISCUSSIONS

To assure the successful application of the Chebyshev collo-
cation method in the vibration analysis of axially FG Euler-
Bernoulli beams with non-uniform cross-sections, the accu-
racy studies are carried out through various numerical exam-
ples. First example to be concerned is a uniform axially FG
beam with the bending rigidity S(x) and mass per unit length
m(x) according to the following distribution:14

S(x) =

[
Eo + (EL − Eo)

eαx/L − 1

eα − 1
,

]
I α 6= 0;

m(x) =

[
ρo + (ρL − ρo)

eαx/L − 1

eα − 1

]
A, α 6= 0; (20)
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Table 1. Boundary condition equations in terms of Chebyshev differentiation matrices.

Boundary Conditions Left end (ξ = −1) Right end (ξ = +1)

clamped
[
0 0 · · · 1

]
W = 0

[
1 0 · · · 0

]
W = 0

[D1(N + 1, :)]W = 0 [D1(1, :)]W = 0

pinned
[
0 0 · · · 1

]
W = 0

[
1 0 · · · 0

]
W = 0

[D2(N + 1, :)]W = 0 [D2(1, :)]W = 0

free [D2(N + 1, :)]W = 0 [D2(1, :)]W = 0

S(ξN ) [D3(N + 1, :)]W + S(ξN ) [D2(N + 1, :)]W = 0 S(ξ0) [D3(1, :)]W + S(ξ0) [D2(1, :)]W = 0

Table 2. Comparison of dimensionless fundamental frequencies of axially FG
beams for different values of α.

α source CF PP CP CC
Present solution 3.5158 11.4560 16.4022 24.0528

Huang14 3.5656 11.4532 16.4775 24.0576
-10 Hein16 NA 11.4481 16.3837 24.0269

Liu23 3.5340 11.4560 16.4111 24.0660
Present solution 3.1409 11.2443 16.0255 23.9433

Huang14 3.1421 11.2443 16.0219 23.9456
-3 Hein16 NA 11.2422 16.0307 23.9384

Liu23 3.1410 11.2443 16.0262 23.9446
Present solution 2.8545 10.3669 15.7169 24.9364

Huang14 2.8544 10.3669 15.7171 24.9375
3 Hein16 NA 10.3670 15.7171 24.9371

Liu23 2.8545 10.3669 15.7169 24.9366
Present solution 3.0431 9.9366 15.4957 24.8063

Huang14 3.0431 9.9358 15.4956 24.7949
10 Hein16 NA 9.9366 15.4930 24.8080

Liu23 3.0431 9.9366 15.4958 24.8068

where α is the material graded index which describes the dis-
tribution of material properties. For α > 0, a larger value
α (e.g., 10) represents a more sudden increase in the prop-
erties E(x)/Eo and ρ(x)/ρo near the right surface. In con-
trast, the properties vary abruptly near the left surface for a
smaller value of α (e.g., -10) as α < 0. The beam is made
of aluminum and zirconia, whose properties vary axially ac-
cording to the exponential function in Eq. (20). Meanwhile,
the beam is aluminum-rich at x = 0 and zirconia-rich at
x = L. The dimensionless fundamental natural frequencies
λ = ωL2 (ρoA/EoI)

1/2 of the beams with various values of α
and boundary conditions are presented in Table 2. The present
results agree well with those given by Huang and Li, Hein
and Feklistova and Liu et al.14, 16, 23 The results reveal that the
restraint and material graded index have a significant impact
on the frequencies. The fundamental frequency decreases first
and increases with the increasing α for the clamped-free (CF)
beam, reduces with the increasingα for the pinned-pinned (PP)
and clamped-pinned (CP) beam, and varies irregularly with α
for the clamped-clamped (CC) beam.

Secondly, a non-uniform axially FG beam is examined
whose bending rigidity S(x) and mass per unit length m(x)
are represented as:17

S(x) = E(x)I(x) =
[
Eo

(
1 +

x

L

)] [(
1− Cb

x

L

)
(

1− Ch
x

L

)3
Io

]
;

m(x) = ρ(x)A(x) =

[
ρo

(
1 +

x

L
+
( x
L

)2)]
[(

1− Cb
x

L

)(
1− Ch

x

L

)
Ao

]
. (21)

Here Cb and Ch denote the width and height taper ratios, re-
spectively, whose values range from 0 to 1. The non-uniform

beam becomes prismatic as Cb = Ch = 0, and it tapers
to a point at x = L as Cb = Ch = 1. The tapered FG
beam has the properties of L = 1 m, Ao = 4 × 10−4 m2,
Io = 1.33 × 10−8 m4, Eo = 70 Gpa and ρ = 2702 kgm−3.
Its material properties vary axially according to the polynomial
function in Eq. (21). The dimensionless frequency parameter
λ = ωL2 (ρoAo/EoIo)

1/2 is used in the calculations of natural
frequencies. Tables 3– 5 present the variations of the dimen-
sionless fundamental frequencies against different taper ratios
for axially FG beams with CF, PP and CC boundary condi-
tions, respectively. In comparison with the results obtained by
Shahba and Rajasekaran and Liu et al., an excellent agreement
is achieved.17, 23 Depending on the taper ratios and boundary
conditions, the increase in height and width taper ratios may
decrease or increase the fundamental natural frequencies. For
the beams with the same width ratio Cb, the natural frequen-
cies reduce with the increasing height taper ratio Ch except
for those of CF beams. The frequencies of CF beams enlarge
with the increasing Ch. For the beams with the same height
taper ratio Ch, the frequencies of CF beams increase with the
increasing width taper ratio Cb but those of PP and CC beams
vary differently withCb depending on the value ofCh. It is im-
portant to note that the height taper ratio has a more profound
impact on the natural frequencies of all beams than width taper
ratio while it shows an opposite trend for CF beams.

From the previous comparison study, it indicates that the
proposed method can be applied to evaluate the free vibration
frequencies of various axially FG tapered beams with high ac-
curacy. In the next, the free vibration of non-uniform beams
with axially graded material properties according to a power-
law function is studied to show the adaptability of the pre-
sented method. Its bending rigidity S(x) and mass per unit
length m(x) are given as follows:17, 19

S(x) =
[
Eo + (EL − Eo)

( x
L

)p]
[(

1− Cb
x

L

)(
1− Ch

x

L

)3
Io

]
;

m(x) =
[
ρo + (ρL − ρo)

( x
L

)p]
[(

1− Cb
x

L

)(
1− Ch

x

L

)
Ao

]
. (22)

Here the non-negative exponent p is the volume fraction
index. For a larger value of p, the properties E(x)/Eo and
ρ(x)/ρo change more suddenly near the right surface and the
material at the left surface is the dominant constituent. For a
smaller value of p, the variation of the properties shows an op-
posite tendency. The recommended value of p ranges from 1/3
to 3 to insure that the FG material has a proper balance between
the percentages of the constituents.15 The axially FG beam
is composed of zirconia and aluminum with ceramic-rich left
side and metal-rich right side. The properties of the beam are

International Journal of Acoustics and Vibration, Vol. 25, No. 3, 2020 439



W.-R. Chen: VIBRATION ANALYSIS OF AXIALLY FUNCTIONALLY GRADED TAPERED EULER-BERNOULLI BEAMS BASED ON CHEBYSHEV. . .

Table 3. Comparison of dimensionless fundamental frequencies of CF axially FG beams with different tapered ratios.

Ch source Cb = 0 Cb = 0.2 Cb = 0.4 Cb = 0.6 Cb = 0.8

Present solution 2.4256 2.6054 2.8508 3.2137 3.8310
0 Shahba17 2.4256 2.6054 2.8508 3.2137 3.8310

Liu23 2.4256 2.6054 2.8508 3.2137 3.8310
Present solution 2.5051 2.6863 2.9336 3.2994 3.9219

0.2 Shahba17 2.5051 2.6863 2.9336 3.2994 3.9220
Liu23 2.5051 2.6863 2.9336 3.2993 3.9219

Present solution 2.6155 2.7987 3.0486 3.4181 4.0471
0.4 Shahba17 2.6155 2.7988 3.0486 3.4181 4.0471

Liu23 2.6155 2.7987 3.0486 3.4181 4.0471
Present solution 2.7835 2.9699 3.2237 3.5985 4.2355

0.6 Shahba17 2.7836 2.9699 3.2237 3.5985 4.2355
Liu23 2.7836 2.9699 3.2237 3.5985 4.2355

Present solution 3.0871 3.2794 3.5401 3.9232 4.5695
0.8 Shahba17 3.0871 3.2794 3.5401 3.9232 4.5695

Liu23 3.0871 3.2794 3.5401 3.9232 4.5695

Table 4. Comparison of dimensionless fundamental frequencies of PP axially FG beams with different tapered ratios.

Ch source Cb = 0 Cb = 0.2 Cb = 0.4 Cb = 0.6 Cb = 0.8

Present solution 9.0286 9.0599 9.0867 9.0994 9.0685
0 Shahba17 9.0285 9.0599 9.0867 9.0994 9.0685

Liu23 9.0286 9.0599 9.0867 9.0994 9.0685
Present solution 8.1341 8.1462 8.1498 8.1336 8.0645

0.2 Shahba17 8.1341 8.1462 8.1498 8.1336 8.0646
Liu23 8.1341 8.1462 8.1498 8.1336 8.0646

Present solution 7.1530 7.1455 7.1254 7.0794 6.9703
0.4 Shahba17 7.1531 7.1455 7.1254 7.0794 6.9703

Liu23 7.1531 7.1455 7.1254 7.0794 6.9703
Present solution 6.0357 6.0082 5.9637 5.8868 5.7351

0.6 Shahba17 6.0357 6.0082 5.9637 5.8868 5.7351
Liu23 6.0357 6.0082 5.9638 5.8868 3.7351

Present solution 4.6519 4.6045 4.5353 4.4263 4.2281
0.8 Shahba17 4.6520 4.6045 4.5354 4.4263 4.2281

Liu23 4.6520 4.6046 4.5355 4.4264 4.2284

Table 5. Comparison of dimensionless fundamental frequencies of CC axially FG beams with different tapered ratios.

Ch source Cb = 0 Cb = 0.2 Cb = 0.4 Cb = 0.6 Cb = 0.8

Present solution 20.4721 20.4151 20.2883 20.0186 19.3844
0 Shahba17 20.4721 20.4151 20.2883 20.0186 19.3844

Liu23 20.4721 20.4152 20.2883 20.0186 19.3845
Present solution 18.2170 18.1995 18.1286 17.9436 17.4564

0.2 Shahba17 18.2170 18.1995 18.1286 17.9436 17.4564
Liu23 18.2170 18.1996 18.1286 17.9736 17.4565

Present solution 15.8281 15.8497 15.8349 15.7366 15.4021
0.4 Shahba17 15.8281 15.8497 15.8349 15.7366 15.4021

Liu23 15.8282 15.8498 15.8350 15.7367 15.4025
Present solution 13.2291 13.2894 13.3316 13.3234 13.1521

0.6 Shahba17 13.2291 13.2894 13.3316 13.3234 13.1521
Liu23 13.2294 13.2896 13.3319 13.3238 13.1529

Present solution 10.2217 10.3211 10.4234 10.5143 10.5301
0.8 Shahba17 10.2217 10.3211 10.4234 10.5143 10.5301

Liu23 10.2236 10.3231 10.4257 10.5170 10.5343

as follows: Eo = 200 Gpa, ρo = 5700 kgm−3, EL = 70 Gpa,
ρL = 2702 kgm−3, and r2 = Io/AoL

2 = 0.0001. r is the in-
verse slenderness ratio. The effects of the taper ratios, material
graded indices and restraint types on the vibration frequencies
of such axially FG beams are demonstrated. The frequency
parameter λ = ωL2 (ρoAo/EoIo)

1/2 is used to evaluate the
dimensionless natural frequencies.

Tables 6 and 7 present the effects of various values of Ch
and Cb on the first three dimensionless frequencies for the CF
and PP axially FG beam with p = 2, respectively. The vari-
ations of the first three natural frequencies with respect to the

taper ratios Ch and Cb for the CP and CC axially FG beams
are depicted in Figs. 2 and 3 to show the varying trend of the
natural frequencies. As seen in Table 6, the first frequency of
the CF beam dramatically increases with the increase of taper
ratios Ch and Cb. However, its second and third frequencies
reduce with Ch but increase with Cb. It is also noted that the
first frequency is affected much more by the increasing width
taper ratio Cb than the height taper ratio Ch. In contrast, the
height taper ratio has a more profound influence on the higher
mode frequencies of the CF beams. As shown in Table 7, the
increase in height taper ratio Ch has a significant impact on the
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(a)

(b)

(c)

Figure 2. Variation of dimensionless natural frequencies against taper ratios
for CP axially FG beams with p = 2. (a) First mode (b) Second mode (c)
Third mode.

reduction of the first three frequencies of the PP beams. The
first frequency is most significantly affected by the increasing
Ch, followed by the second and third frequencies. When the
width taper ratio Cb increases, the first frequency slightly re-
duces but the second and third frequencies increase. The only
exception is the second frequency of the beam with Ch = 0.1,
which is decreased as Cb is increased from 0.8 to 0.9. As ob-
served, the height taper ratio will enhance the effect of width
taper ratio on the natural frequencies, especially for the first
mode. It can be found in Fig. 2 that all three frequencies of
CP beams reduce with the increase in Ch and slightly increase
with Cb. Unlike the PP beams, the increasing Ch has a more
profound effect on the reduction rate of higher mode frequen-

(a)

(b)

(c)

Figure 3. Variation of dimensionless natural frequencies against taper ratios
for CC axially FG beams with p = 2. (a) First mode (b) Second mode (c)
Third mode.

cies. Like the PP and CP beams, Fig. 3 reveals that the first
three frequencies of CC beams decrease as the height taper
ratio Ch increases. Like the CP beams, the reduction rate of
higher mode frequency with respect to the increasing height
taper ratio is higher than that of lower ones. With the increase
in Cb, the first three frequencies of CC beams slightly increase
first and then reduce. However, the effect of the increasing Cb
on the reduction of frequencies is gradually diminished while
the CC beam has a higher height taper ratio Ch.

To summarize the results reported previously, several con-
clusions on the effects of taper ratios for axially FG beams
with various boundary conditions can be made as follows. In
general, the height taper ratio remarkably affects the natural
frequencies of all beams than width taper ratio while it shows
an opposite tendency for the fundamental frequencies of CF
beams. With the increase in height taper ratio Ch, the natural
frequencies decrease for all beams with the same width ratio
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Table 6. Dimensionless frequencies λi of CF axially FG Z/A beams with different tapered ratios (p = 2).

Cb mode Ch = 0.1 Ch = 0.2 Ch = 0.3 Ch = 0.4 Ch = 0.5 Ch = 0.6 Ch = 0.7 Ch = 0.8 Ch = 0.9

λ1 4.4645 4.5164 4.5773 4.6501 4.7394 4.8524 5.0019 5.2135 5.5488
0.1 λ2 22.6987 21.9220 21.1204 20.2904 19.4283 18.5303 17.5950 16.6337 15.7326

λ3 59.3274 56.5197 53.6280 50.6359 47.5210 44.2511 40.7785 37.0286 32.9061
λ1 4.6167 4.6683 4.7288 4.8013 4.8903 5.0029 5.1521 5.3637 5.6998

0.2 λ2 22.9514 22.1659 21.3552 20.5159 19.6441 18.7360 17.7901 16.8174 15.9038
λ3 59.5887 56.7744 53.8757 50.8761 47.7530 44.4740 40.9912 37.2294 33.0918
λ1 4.7926 4.8438 4.9040 4.9762 5.0647 5.1769 5.3258 5.5372 5.8737

0.3 λ2 23.2426 22.4469 21.6258 20.7758 19.8930 18.9735 18.0155 17.0299 16.1022
λ3 59.8934 57.0710 54.1636 51.1547 48.0216 44.7317 41.2367 37.4608 33.3060
λ1 4.9990 5.0499 5.1098 5.1815 5.2695 5.3813 5.5297 5.7407 6.0772

0.4 λ2 23.5853 22.7778 21.9446 21.0821 20.1864 19.2535 18.2815 17.2809 16.3372
λ3 60.2581 57.4251 54.5067 51.4860 48.3403 45.0369 41.5269 37.7340 33.5586
λ1 5.2460 5.2966 5.3560 5.4273 5.5149 5.6261 5.7738 5.9841 6.3200

0.5 λ2 24.0004 23.1788 22.3311 21.4537 20.5426 19.5937 18.6049 17.5866 16.6240
λ3 60.7101 57.8630 54.9298 51.8937 48.7315 45.4105 41.8813 38.0669 33.8664
λ1 5.5487 5.5989 5.6580 5.7289 5.8160 5.9266 6.0736 6.2828 6.6168

0.6 λ2 24.5237 23.6846 22.8189 21.9231 20.9929 20.0242 19.0147 17.9746 16.9890
λ3 61.2980 58.4310 55.4772 52.4196 49.2348 45.8896 42.3344 38.4914 34.2583
λ1 5.9315 5.9816 6.0405 6.1112 6.1979 6.3079 6.4539 6.6613 6.9914

0.7 λ2 25.2224 24.3607 23.4718 22.5521 21.5972 20.6028 19.5666 18.4985 17.4837
λ3 62.1188 59.2221 56.2375 53.1477 49.9294 46.5488 42.9557 39.0717 34.7933
λ1 6.4368 6.4871 6.5463 6.6170 6.7037 6.8133 6.9581 7.1627 7.4852

0.8 λ2 26.2411 25.3485 24.4279 23.4754 22.4867 21.4573 20.3846 19.2785 18.2240
λ3 63.4024 60.4565 57.4211 54.2786 51.0053 47.5669 43.9127 39.9631 35.6144
λ1 7.1449 7.1965 7.2569 7.3287 7.4162 7.5259 7.6694 7.8689 8.1755

0.9 λ2 27.9572 27.0195 26.0526 25.0526 24.0149 22.9350 21.8104 20.6506 19.5378
λ3 65.8665 62.8267 59.6945 56.4517 53.0740 49.5264 45.7570 41.6856 37.2102

Cb except for the fundamental frequencies of CF beams. The
fundamental frequencies of CF beams show an ascendant ten-
dency with the increasing Ch. When the width taper ratio Cb
increases, the first three frequencies increase for CF and CP
beams with the same height taper ratio Ch, but those of PP
and CC beams vary differently depending on the value of Ch.
Therefore, it is difficult to predict the natural frequencies for
axially FG tapered beams of various boundary conditions with
respect to the taper ratios.

Table 8 presents the effects of material gradation on the
first three frequencies of axially FG beams with Ch = 0.3
and Cb = 0 under different boundary conditions. As can be
seen, the variations of natural frequencies of axially FG tapered
beams with respect to p depend on the boundary conditions.
With the increasing p, the first and second modes of CF beam
increase first, and then decrease while the third mode continues
to increase. All modes of PP beam enlarge with p. For CP and
CC beams, the fundamental frequency increases and decreases
alternatively with p, while other two modes show an increas-
ing trend. As cited by Shahba et al., it is important to note
that the effects of p on the variation of the natural frequencies
of tapered axially FG beams are hard to be predicted because
both the stiffness and mass of the beam are enhanced with the
increase in p.15

4. CONCLUSIONS

The bending vibration of various axially FG Euler-Bernoulli
beams with tapered cross section is studied based on the
Chebyshev collocation method. The effects of the material and
cross-sectional properties varying along the beam length direc-
tion on the vibration behaviors are investigated. Natural fre-
quencies for the uniform axially FG beams with the exponen-
tial function gradient and the tapered axially FG beams with

polynomial function gradient are evaluated and compared with
the published ones to confirm the effectiveness of the present
method. The results indicate that the present study can anal-
yse the free vibration of Euler-Bernoulli beams with different
axially graded material properties and varying cross-sectional
properties under various boundary conditions. Finally, the ax-
ially FG tapered beam with power law gradient are examined
to demonstrate the adaptability of the present method to differ-
ent graded material properties. Hence, it is believed that the
present method can be extended to study the dynamic prob-
lem of elastically supported bi-directional FG beams resting
on elastic foundations in the future work.
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