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Using the nonlocal strain gradient theory, we explore vibration behaviours of initially bidirectional tensioned func-
tionally graded nanoplates with axial speed. The governing equation of motion can be obtained based on the
differential type of nonlocal strain gradient constitutive relation, which characters the dynamics of nanostructures
containing kinematic relation. The simply supported boundary constraints on four sides are considered and sub-
sequently the numerical results are determined. It shows that natural frequencies of axially moving nanoplates
decrease when increasing the axial speed and the nonlocal parameter. Hence the nonlocal and kinematic factors
cause the natural frequencies to decrease or, weaken the equivalent bending rigidity. On the other hand, natural
frequencies increase with an increase in the axial tension and material characteristic scale. Hence the strain gradi-
ent and tensile stress factors cause the natural frequencies to increase or, strengthen the equivalent bending rigidity.
In addition, the natural frequencies get higher with a larger aspect ratio of the functionally graded nanoplate. The
larger one between the nonlocal parameter and the material characteristic scale plays a dominant role in the soften-
ing and stiffening mechanisms of the nonlocal strain gradient effect. In case of the same magnitude of the nonlocal
parameter and the material characteristic scale, the softening and hardening phenomena disappear. The equivalent
bending rigidity neither increases nor decreases in such a situation, and its value degenerates to the classical one.

1. INTRODUCTION

The mechanical property of nanomaterials and nanostruc-
tures plays an important role in the design and control of
nano-devices such as nano-electro-mechanical systems and
nanorobots, which have attracted extensive attention from re-
lated scientists and engineers.1, 2 The common nanomateri-
als include carbon nanotubes,3 graphene,4 hexagonal boron
nitride,5 metal nanoparticles and so on. The common
nanostructures include nanowires or nanobeams,6 nanoplates,7

nanospheres8 as well as composite structures reinforced by
nanomaterials.9 Among various different mechanical proper-
ties, the dynamic characteristics of nanomaterials and nanos-
tructures occupy a very important position.10 As one of the
focusing issues, the dynamic response is a typical feature in
the operation of nano-devices that needs to be paid attention
to. Due to the limit of the size of nanomaterials and nanostruc-
tures, the experimental studies on the dynamic characteristics
of nanomaterials and nanostructures are relatively complex,
and it is difficult to extract and measure the dynamic charac-
teristics accurately. Therefore, theoretical models11 and atomic
simulations12 are the main approaches to study the dynamics
of nanomaterials and nanostructures in the literature.

In terms of theoretical models, the nonlocal theory proposed
by Eringen13–15 is one of the widely used theoretical methods
in recent decades. For example, Xu and Deng16 presented the
nonlocal and surface effects in the adsorption-induced reso-
nance of nanobeams using the nonlocal theory and they also
revealed the influence of the adsorption density. To solve the
derived integral nonlocal governing equation, Lim et al.17 de-
veloped a new nonlocal finite element method to investigate the
torsional statics and dynamics of circular nanotubes/nanorods
subjected to concentrated and distributed torques, respectively.
Yang et al.18 investigated the nonlinear coupling effects of
thermal loading and surface stress on pull-in instability of elec-
trically actuated circular nanoplates based on the nonlocal the-
ory. Jalaei and Arani19 examined static properties and dynamic
behaviours of orthotropic double-layered graphene sheets rest-
ing on visco-Pasternak foundation under a longitudinal mag-
netic field and mechanical transverse loads. The first order
shear deformation theory and Eringen’s nonlocal theory were
employed and two solution procedures were applied to numer-
ically solve the governing equations of motion for graphene
sheets with arbitrary boundary conditions. However, in the
literature on nanostructural dynamics based on the nonlocal
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theory, there were two kinds of theoretical models with oppo-
site predictions.20 One is called the softening model in which
the natural frequency of nanostructures decreases with the en-
hancement of nonlocal effect,18 and the other is the stiffening
model in which the natural frequency increases with enhancing
the nonlocal effect.21 The inconsistency in the predictions of
the two models has caused confusion. Shen and Li22 resolved
such a puzzled problem and showed the adaptability of the two
models by establishing a semi-continuum model of nanostruc-
tures. Furthermore, based on the nonlocal theory, Lim et al.23

proposed a nonlocal strain gradient theory by considering both
the nonlocal effect of strains and first-order strain gradient, and
the gradient effect of classical and nonlocal stresses. In case of
omitting the strain gradient effect, the nonlocal strain gradient
theory returns to Eringen’s nonlocal theory. In case of omitting
the nonlocal effect, the nonlocal strain gradient theory returns
to the general strain gradient theory. Based on the nonlocal
strain gradient theory, it is shown that there are two modes
including strengthening and weakening in nanostructural dy-
namics, depending on the strength relationship between the
nonlocal parameter and the material characteristic scale.24 The
two modes correspond to both the nonlocal softening model
and the stiffening model, respectively. Using the nonlocal
strain gradient theory, Sahmani and Aghdam25 and Sahmani et
al.26 presented the nonlinear instability of functionally graded
multilayer graphene platelet-reinforced nanoshells subjected to
axial compressive loads, and the size-dependent behaviours
in nonlinear large-amplitude vibration of functionally graded
porous nanoplates reinforced with graphene platelets, respec-
tively.

The nonlocal strain gradient theory comprehensively con-
siders the nonlocal effect and strain gradient effect of nano-
materials and nanostructures, so it has received great atten-
tion in recent years. There have been a large number of pub-
lished papers dealing with the application of this theory to the
dynamics of nanostructures.27–35 For example, Chen et al.29

studied the stability mechanism and nonlinear dynamics of a
nanobeam with a time-dependent axial load based on the non-
local strain gradient theory. Mirjavadi et al.34 investigated
the transient responses of a porosity-dependent functionally
graded nanobeam subjected to different impulsive loadings.
Different porosity distribution types were considered and the
inverse Laplace transform approach was adopted to determine
the dynamic deflections. Mir and Tahani35 presented the non-
linear dynamics and chaotic behaviours of graphene-based res-
onators. A nanoplate model with von Karman-type geometric
nonlinearity was established and the Galerkin decomposition
method and Melnikov integral method were utilized to derive
analytical criteria and chaotic regions of the system. As we
know, the classical local theory that deals with macro-scale
structures does not take into account any microscopic effects,
and the nonlocal theory only considers the nonlocal stress cor-
responding to the strain itself but ignores the nonlocal effect of
the strain gradient, while the strain gradient theory only con-
siders the strain gradient effect of the local stress but ignores
the influence of the nonlocal stress. Therefore, the classical
local theory, the nonlocal theory and the strain gradient the-
ory have certain limitations in showing the special attributes
of nanostructures. In fact, the classical local constitutive rela-

tion does not include any information about the internal char-
acteristic scales of the material, while the nonlocal theory and
the strain gradient theory respectively contain one character-
istic scale parameter. The nonlocal strain gradient theory, by
contrast, is more comprehensive in modeling and predicting,
where the nonlocal effect of strain and its gradient, and the
strain gradient effect of local and nonlocal stresses are arrived
at by introducing two characteristic scale parameters into the
constitutive equations. A large amount of literature has con-
firmed that the nonlocal strain gradient theory is more suit-
able for explaining the microscopic mechanical phenomena of
nanostructures and further revealing the physical mechanisms
of mechanical properties at nanoscale. More accurate theoreti-
cal models and results for nanostructures can be obtained based
on the nonlocal strain gradient theory.24–26 Consequently, the
nonlocal strain gradient theory is applied directly to nanostruc-
tural dynamics in this paper.

In addition to the dynamic characteristics of nanostruc-
tures, their own kinematic factors cannot be negligible. This
is because a considerable number of nanostructures, such as
nanorobots, are in motion during the work process. In the fields
of medicine, food, microelectronics and so on, nanorobots gen-
erally keep linear or reciprocating motion, and sometimes the
key parts in the nanorobots are accompanied by rotation.36

Therefore, it is necessary to demonstrate the dynamics of mov-
ing nanostructures. At present, the dynamic responses of one-
dimensional and two-dimensional nanostructures with axial
motion have been reported.36–39 However, most of them focus
on the nanostructures composed of homogeneous materials.
In fact, with the increasing requirements of extreme engineer-
ing applications, such as high temperature, high pressure, high
strain rate and other external factors, homogeneous nanostruc-
tures have been difficult to meet the demanding functional re-
quirements. In this case, functional gradient structures and
even functional gradient nanostructures emerge, and have been
successfully designed and prepared.40–43 The functional gradi-
ent nanostructure has the dual characteristics of functional gra-
dient structures and nanomaterials, and it is one of the research
hotspots in recent years.44, 45 Considering that the thickness of
components in nanorobots or other equipment is very thin, say
generally in the order of less than ten nanometers, which is far
less than the length and width, but the width is not significantly
less than the length, so it is more general to simplify the key
components of nanorobots into plate-like nanostructures rather
than nanobeams. Moreover, because of the extremely small
thickness, the dynamic characteristics change little along the
thickness direction, so the influence of the thickness on the dy-
namics can be neglected. For the first time, Shen et al.46 intro-
duced nonlocal strain gradient theory into the axially moving
functionally graded nanoplates to study the dynamic stability,
but lacked the systematic analysis on free vibration. Consider-
ing that the axially moving structure is often subjected to initial
axial tensions in practical engineering,47 this paper studies the
transverse free vibration of axially moving functionally graded
nanoplates subjected to the initial tensile force.

It is worth mentioning that, although there have been
some studies on the dynamics and stability of axially moving
nanoplates,48 these were only based on the nonlocal theory,
without the consideration of the functional gradient material
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and the more comprehensive nonlocal strain gradient effect.
On the other hand, there have also been some studies on the
dynamics and stability of functionally graded nanoplates49, 50

based on the nonlocal strain gradient theory. Nevertheless, they
did not consider the kinematic factor of the nanoplate itself that
is indispensable in modeling the components made of func-
tionally graded materials in nanorobots. The main innovation
of this paper is to study the vibration characteristics of axially
moving functionally graded nanoplates with biaxial tensions
using the nonlocal strain gradient theory. Effects of various
parameters on the dynamic characteristics of axially moving
functionally graded nanoplates are presented, including the in-
trinsic parameters such as nonlocal parameter, material charac-
teristic scale, and the external parameters such as aspect ratio,
axial speed, initial biaxial tension and so on. The research re-
sults may provide a theoretical basis for the dynamic and kine-
matic coupling control of nanorobots containing components
made from two-dimensional functional gradient nanomateri-
als.

2. THEORETICAL MODEL AND GOVERNING
EQUATION OF MOTION

Based on the concept of the nonlocal strain gradient theory,
the basic integral constitutive equations of two-dimensional
nanostructures were expressed as23

σ =

∫
V

α0(x
′, x, e0a)C : ε′dV ′;

σ(1) = l2
∫
V

α1(x
′, x, e1a)C : ∇ε′dV ′;

t = σ −∇σ(1); (1)

where σ and σ(1) represented the classical and the non-
classical higher-order nonlocal stresses respectively, ε′ was the
strain and t was the nonlocal strain gradient total stress, C
was the elastic tensor, α0 and α1 were nonlocal key functions
related to strain and first-order strain gradient, respectively.
Meanwhile, e0 and e1 were the traditional and higher-order
nonlocal material constants, a was an internal characteristic
length, and l was the material characteristic scale introduced
to indicate the effect of higher-order strain gradient fields.

Considering the spatial integration of strains and strain gra-
dients shown in Eq. (1), we had difficulty in solving the con-
stitutive equations. Using Laplace operator ∇2, the simplified
differential constitutive relation of the nonlocal strain gradient
theory was given by23[

1− (ea)2∇2
]
t = C

(
1− l2∇2

)
ε′; (2)

where e0 = e1 = e was assumed.
Based on the nonlocal strain gradient theory, the governing

equation of motion for an axially moving functionally graded
nanoplate had already been obtained by Shen et al.46 as(

1− l2∇2
)
D

(
∂4w

∂x4
+
∂4w

∂y4
+

∂4w

∂x2∂y2

)
=

[
1− (ea)2∇2

] [
Nx

∂2w

∂x2
+Ny

∂2w

∂y2
−

ρ(z)h

(
υ2
∂2w

∂x2
+ 2υ

∂2w

∂x∂t
+
∂2w

∂t2

)]
; (3)

where w was the out-of-plane displacement, D was the equiv-
alent bending rigidity, υ was axial speed, ρ was mass density,
h was thickness of the functionally graded nanoplate, and Nx
andNy were initial biaxial tensions along x and y axes, respec-
tively. Note that the biaxial tensions may be produced by the
change of temperature or the nanostructural assembling pre-
stress in nanorobots or other mobile nano-devices. In fact, it
is difficult to achieve a stable free vibration of axially moving
structures without axial tensile forces. Introducing the follow-
ing dimensionless parameters

x =
x

La
; y =

y

Lb
; w =

w

h
; λ =

La
Lb

;

Px =
NxL

2
a

D
; Py =

NyL
2
a

D
; τ =

ea

La
; ζ =

l

La
;

ξ =

√
ρ(z)h

D
Laυ; t =

√
D

ρ(z)hL4
a

t; (4)

where x, y and w were non-dimensional axial coordinates
and out-of-plane displacement, λ was the aspect ratio, Px and
Py were non-dimensional biaxial tensions, τ and ζ were non-
dimensional nonlocal and material characteristic scale param-
eters, which denoted the normalized nonlocal and strain gra-
dient effects in the nonlocal strain gradient theory, respec-
tively, ξ was the non-dimensional axial speed, and t was non-
dimensional time. As a result, the dimensionless form of
Eq. (3) was rewritten as

ζ2
∂6w

∂x6
+ 3ζ2λ2

∂6w

∂x4∂y2
+ 3ζ2λ4

∂6w

∂x2∂y4
+ ζ2λ6

∂6w

∂y6
−

[
1 + τ2

(
Px − ξ2

)] ∂4w
∂x4

−[
2λ2 + τ2λ2

(
Px + Py − ξ2

)] ∂4w

∂x2∂y2
−

λ4
(
1 + τ2Py

) ∂4w
∂y4

+ 2τ2ξ
∂4w

∂x3∂t
+ τ2

∂4w

∂x2∂t
2 +

2τ2ξλ2
∂4w

∂x∂y2∂t
+ τ2λ2

∂4w

∂y2∂t
2 +

(
Px − ξ2

) ∂2w
∂x2

+

Pyλ
2 ∂

2w

∂y2
− 2ξ

∂2w

∂x∂t
− ∂2w

∂t
2 = 0. (5a)

It was noticed that the common theoretical model based on the
nonlocal strain gradient elasticity and Kirchhoff plate theory
can be recovered in case of vanishing the additional consid-
erations including the axial speed and biaxial tensions, shown
as

ζ2
∂6w

∂x6
+ 3ζ2λ2

∂6w

∂x4∂y2
+ 3ζ2λ4

∂6w

∂x2∂y4
+ ζ2λ6

∂6w

∂y6
−

∂4w

∂x4
− 2λ2

∂4w

∂x2∂y2
− λ4 ∂

4w

∂y4
+ τ2

∂4w

∂x2∂t
2 +

τ2λ2
∂4w

∂y2∂t
2 −

∂2w

∂t
2 = 0. (5b)

One can further obtain the classical non-dimensional vibra-
tion equation for square plates by ignoring the internal charac-
teristic scale parameters

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
+
∂2w

∂t
2 = ∇4w +

∂2w

∂t
2 = 0. (5c)
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For a nanoplate, the time-dependent out-of-plane displace-
ment was written by

w(x, y, t) =W (x, y)eiωmnt; (6)

where ωmn was the complex natural frequency of axially mov-
ing functionally graded nanoplates.

The substitution of Eq. (6) into Eq. (5a) can deduce the fol-
lowing equation in terms of natural frequencies and vibration
modes

ζ2
∂6W

∂x6
+ 3ζ2λ2

∂6W

∂x4∂y2
+ 3ζ2λ4

∂6W

∂x2∂y4
+ ζ2λ6

∂6W

∂y6
−

[
1 + τ2

(
Px − ξ2

)] ∂4W
∂x4

−

[
2λ2 + τ2λ2

(
Px + Py − ξ2

)] ∂4W

∂x2∂y2
−

λ4
(
1 + τ2Py

) ∂4W
∂y4

+ 2iτ2ξωmn
∂3W

∂x3
+

2iτ2ξλ2ωmn
∂3W

∂x∂y2
+
(
Px − ξ2 − τ2ω2

mn

) ∂2W
∂x2

+

λ2
(
Py − τ2ω2

mn

) ∂2W
∂y2

− 2iξωmn
∂W

∂x
+ ω2

mnW = 0.

(7)

3. NUMERICAL SOLUTIONS AND
DISCUSSION

Taking the axially moving functionally graded nanoplate
with simply supported boundary constraints on four sides as
an example, we calculate the natural frequencies herein nu-
merically. For simply supported boundary on four sides, the
deflection and bending moment at each side should be zero.
Therefore, the dimensionless form of boundary conditions is
written as

W (x, y)
∣∣
x=0,1

=
∂2W (x, y)

∂x2

∣∣∣∣
x=0,1

= 0;

W (x, y)
∣∣
y=0,1

=
∂2W (x, y)

∂y2

∣∣∣∣
y=0,1

= 0.

(8)

In addition to the classical boundary conditions shown in
Eq. (8), the nonlocal boundary condition can be obtained in
the variational procedure, given by

∂W (x, y)

∂t
+ ξ

∂W (x, y)

∂x

∣∣∣∣
x=0,1

=
∂W (x, y)

∂x

∣∣∣∣
x=0,1

= 0. (9)

The dimensionless displacement can be separated into two
functions with respect to x and y, given by

W (x, y) =

M∑
m=1

N∑
n=1

Amnψmn(x, y)

=

M∑
m=1

N∑
n=1

Amnφm(x)ϕn(y); (10)

where φm(x) and ϕn(y) are the non-dimensional mode func-
tions of x and y direction, respectively, and ψmn(x, y) is prod-
uct of two mode functions.

For a simply supported nanoplate, its y-direction mode func-
tion can be written by

ϕn(y) = sinnπy. (11)

So the mode function is expressed as

ψmn(x, y) = φm(x) sinnπy. (12)

Substituting Eq. (12) into Eq. (10), and further substituting the
obtained results into Eq. (7) yield

ζ2
∂6φm(x)

∂x6
−
[
3(nπ)2ζ2λ2 + τ2

(
Px−ξ2

)
+ 1
]∂4φm(x)

∂x4
+

2iτ2ξωmn
∂3φm(x)

∂x3
+
{
(nπ)2λ2

[
2 + τ2

(
Px + Py − ξ2

)]
+

3(nπ)4ζ2λ4 +
(
Px − ξ2 − τ2ω2

mn

)}∂2φm(x)

∂x2
−

2iξωmn
[
(nπ)2τ2λ2 + 1

] ∂φm(x)

∂x
−[

(nπ)6ζ2λ6 + (nπ)4λ4
(
1 + τ2Py

)
+

(nπ)2λ2
(
Py − τ2ω2

mn

)
− ω2

mn

]
φm(x) = 0. (13)

The solution of Eq. (13) can be assumed as

φm(x) = Ceiβx. (14)

Substituting Eq. (14) into Eq. (13) yields an algebraic equation,
shown as

ζ2β6 +
[
3(nπ)2ζ2λ2 + τ2

(
Px − ξ2

)
+ 1
]
β4 −

2iτ2ξωmnβ
3 +

{
(nπ)2λ2

[
2 + τ2

(
Px + Py − ξ2

)]
+

3(nπ)4ζ2λ4 +
(
Px − ξ2 − τ2ω2

mn

)}
β2 −

2iξωmn
[
(nπ)2τ2λ2 + 1

]
β +[

(nπ)6ζ2λ6 + (nπ)4λ4
(
1 + τ2Py

)
+

(nπ)2λ2
(
Py − τ2ω2

mn

)
− ω2

mn

]
= 0. (15)

Since Eq. (15) is a sixth-order ordinary differential equation,
its solution can be expressed as

φm(x) = C1m

(
eiβ1mx + C2me

iβ2mx + C3me
iβ3mx +

C4me
iβ4mx + C5me

iβ5mx + C6me
iβ6mx

)
; (16)

where Cjm (j = 1, 2, 3, . . . , 6) are six unknown coefficients,
and βjm (j = 1, 2, 3, . . . , 6) are right six roots of Eq. (15). On
the other hand, the boundary conditions can be simplified as

φm(0) = φm(1) =
∂2φm(0)

∂x2
=
∂2φm(1)

∂x2
=
∂φm(0)

∂x

=
∂φm(1)

∂x
= 0. (17)

Therefore, a set of algebraic equations can be derived by sub-
stituting Eq. (16) into the boundary conditions Eq. (17). In
order to obtain nontrivial solutions of the coefficients or non-
trivial solutions of mode functions in Eq. (16), one should set
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1 1 1 1 1 1
eiβ1m eiβ2m eiβ3m eiβ4m eiβ5m eiβ6m

iβ1m iβ2m iβ3m iβ4m iβ5m iβ6m
iβ1me

iβ1m iβ2me
iβ2m iβ3me

iβ3m iβ4me
iβ4m iβ5me

iβ5m iβ6me
iβ6m

β2
1m β2

2m β2
3m β2

4m β2
5m β2

6m

β2
1me

iβ1m β2
2me

iβ2m β2
3me

iβ3m β2
4me

iβ4m β2
5me

iβ5m β2
6me

iβ6m

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (18)

Figure 1. Variation of the first-order frequency of the functionally graded
nanoplate with respect to the axial speed (λ = 1, Px = Py = 50).

Figure 2. Variation of the second-order frequency of the functionally graded
nanoplate with respect to the axial speed (λ = 1, Px = Py = 50).

the determinant of the coefficient matrix of the algebraic equa-
tions to zero, see Eq. (18).

The relation between βjm (j = 1, 2, 3, . . . , 6) is indicated
in Eq. (18). Consequently, we can determine the six roots and
subsequently get the non-dimensional frequencies by numer-
ically solving the algebraic equations. The variations of non-
dimensional natural frequencies with respect to various param-
eters can be demonstrated accordingly.

First, we analyze the influence of the axial speed on the natu-
ral frequency, where the frequency mode n = 1, m = 1, 2, the
dimensionless parameters are ζ = 0.1, λ = 1, Px = Py = 50,
and the nonlocal parameter τ are 0.05, 0.1, 0.15, respec-
tively. The dimensionless frequency of the functionally graded
nanoplates varies with the dimensionless speed ξ as shown in
Figs. 1–2. It can be seen that, under a given nonlocal parame-

Figure 3. Variation of the first-order frequency of the functionally graded
nanoplate with respect to the nonlocal parameter (λ = 1, Px = Py = 50).

Figure 4. Variation of the second-order frequency of the functionally graded
nanoplate with respect to the nonlocal parameter (λ = 1, Px = Py = 50).

ter, the dimensionless frequency decreases and the decreasing
rate gets faster as the dimensionless speed increases. Thus, the
stability of the functionally graded nanoplate is reduced as the
axial speed increases.

Secondly, in order to explore the effect of the nonlocal pa-
rameter τ on the natural frequency, we assume ζ = 0.1, λ = 1,
Px = Py = 50, and the dimensionless axial speed ξ = 1, 2, 3,
respectively. Variations of the dimensionless frequency with
respect to the nonlocal parameter are displayed in Figs. 3–4.
The dimensionless natural frequency decreases with the in-
crease of the nonlocal parameter and the stiffness of the func-
tionally graded nanoplates is continuously decreasing, which
reflects the softening behaviour in nonlocal effects. Figure 3
implies the effect of increasing the nonlocal parameter on the
reduction rate of natural frequencies, and it can be reflected
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Figure 5. Variation of the first-order frequency of the functionally graded
nanoplate with respect to the nonlocal parameter under the different aspect
ratio (ξ = 1, Px = Py = 50).

Figure 6. Variation of the second-order frequency of the functionally graded
nanoplate with respect to the nonlocal parameter under the different aspect
ratio (ξ = 1, Px = Py = 50).

prominently in Fig. 4. It can be inferred that the impact of the
nonlocal parameter is also more and more significant in high-
order frequencies.

Next, in order to analyze the influence of the nonlocal pa-
rameter on the natural frequency with different ratios, one can
keep the axial speed as a constant, and take the aspect ratio
λ = 1, 1.1, 1.2, respectively. The results are demonstrated in
Figs. 5–6. The natural frequency increases with the increase of
the aspect ratio, thereby increasing the rigidity of the axially
moving functionally graded nanoplate. In Fig. 6, the greater
the aspect ratio, the faster the natural frequency decreases with
increasing the nonlocal parameter, which has certain guiding
significance for the design of rectangular nanoplates.

Figures 7 and 8 indicate variations of natural frequencies of
the functionally graded nanoplate with respect to the nonlocal
parameter where the material characteristic scale is chosen as
0.05, 0.1, and 0.15, respectively. It can be seen that when ζ
takes different values, the nonlocal parameter still reflects its
stiffness softening effect on the functionally graded nanoplate.
When ζ takes a larger value, the natural frequency appears de-
creasing faster and faster with the increase of the nonlocal pa-

Figure 7. Variation of the first-order frequency of the functionally graded
nanoplate with respect to the nonlocal parameter under different material char-
acteristic scales (ξ = 1, λ = 1, Px = Py = 50).

Figure 8. Variation of the second-order frequency of the functionally graded
nanoplate with respect to the nonlocal parameter under different material char-
acteristic scales (ξ = 1, λ = 1, Px = Py = 50).

rameter (i.e. increasingly steep change curve), which involves
the coupling effect of the two scale parameters because the
magnitude of material characteristic scales can influence the
changing rate of the nonlocal effect.

In order to explore the effect of the material characteristic
scale on natural frequencies, taking the nonlocal parameter as
0.05, 0.1, 0.15, respectively, we obtain the relationship be-
tween the dimensionless natural frequencies and the material
characteristic scale as illustrated in Figs. 9–10. When differ-
ent nonlocal parameters are adopted, the natural frequency is
continuously increasing as the material characteristic scale in-
creases. So the stiffness of the nanoplate is constantly increas-
ing, which reflects the stiffness hardening effect. Similar to
Figs. 3–4, the phenomenon that the internal characteristic scale
parameters have a greater influence on the higher-order fre-
quencies than lower-order frequencies also appears in Figs. 9–
10.

Similarly, we can reveal the effect of the dimensionless ax-
ial tensions Px and Py on dimensionless natural frequencies
in Figs. 11–12, where the nonlocal parameter 0.1 is adopted.
Therefore, we obtain variations of the first two frequencies of
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Figure 9. Variation of the first-order frequency of the functionally graded
nanoplate with respect to the material characteristic scale under different non-
local parameters (ξ = 1, λ = 1, Px = Py = 50).

Figure 10. Variation of the second-order frequency of the functionally graded
nanoplate with respect to the material characteristic scale under different non-
local parameters (ξ = 1, λ = 1, Px = Py = 50).

the functionally graded nanoplate with respect to the material
characteristic scale under different tensions. It is seen that the
greater the tensions, the greater the natural frequencies, which
reflects the initial tension play a role in enhancing the stiffness
of the nanoplate while the material characteristic scale also has
a stiffness hardening effect. Consequently, it can be consid-
ered to increase the tensions in x and y directions to achieve
the effect of enhancing the stiffness of the functionally graded
nanoplate. Note that the initial biaxial tension may be caused
by increasing the ambient temperature, so a higher change of
temperature can result in a larger vibration natural frequency
of the axially moving functionally graded nanoplate.

Finally, to explore the coupling effect of the nonlocal pa-
rameter and the material characteristic scale, we take the mate-
rial characteristic scale ζ equal to 0.05, 0.08, 0.1, respectively.
The results are exhibited in Fig. 13, from which we can ana-
lyze the influence of the ratio τ/ζ on the natural frequency. It
can be seen that when τ/ζ is less than 1, that is ζ > τ , the
natural frequency increases with the increase of the material
characteristic scale. At this stage, the material characteristic
scale, namely the strain gradient effect plays a dominant role,

Figure 11. Variation of the first-order frequency of the functionally graded
nanoplate with respect to the material characteristic scale under different ten-
sions (ξ = 1, λ = 1).

Figure 12. Variation of the second-order frequency of the functionally graded
nanoplate with respect to the material characteristic scale under different ten-
sions (ξ = 1, λ = 1).

and the increase in the natural frequency corresponds to the
stiffness hardening behaviour. When τ/ζ is equal to 1, that
is, τ = ζ, the frequency degenerates to the natural frequency
of the classic thin plate. When τ/ζ is larger than 1, that is
τ > ζ, the natural frequency decreases with the increase of
the material characteristic scale, where the nonlocal parame-
ter namely the nonlocal effect manages the stiffness softening
behaviour. As we know, stiffness softening and hardening phe-
nomena were widely found in the nanostructural dynamics. In
fact, the coupling effect of the same magnitude of the nonlo-
cal parameter and the material characteristic scale results in
the behaviour of stiffness softening and hardening behaviours.
In the nonlocal strain gradient theory, the nonlocal parame-
ter and the material characteristic scale are on the same order
of magnitude, and the nonlocal effect and strain gradient ef-
fect respectively represented by the two are also equivalent.
In addition, as mentioned above, there is a coupling effect be-
tween the two internal characteristic scale parameters, that is,
the specific value of one parameter affects the effect of another
parameter on the dynamic behaviour of nanostructures. It is
the same magnitude coupling effect between the two internal
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characteristic scale parameters that leads to the formation of
softening and stiffening mechanisms in the mechanical prop-
erties of functionally graded nanoplates. In fact, in addition to
the softening and stiffening mechanism, there is a third special
case where the stiffness keeps a constant. At this stage, the
nonlocal parameter is equal to the material characteristic scale,
thus the softening mechanism of nonlocal scale effect coun-
teracts the stiffening mechanism of strain gradient effect, and
the classical vibration results are recovered from the nonlocal
strain gradient theory.

4. CONCLUSIONS

The axially moving functionally graded nanoplate model is
developed through the nonlocal strain gradient approach. The
initial biaxial tensile force is considered and the governing
equation including the effects of nonlocal, strain gradient, axial
motion, biaxial tension, aspect ratio and so on is derived. The
numerical results of natural frequencies are determined using
the complex modal method. The natural frequencies of axially
moving functionally graded nanoplates become smaller with
the increases of axial speed and the decreasing rate gets faster
with a higher axial speed. Hence increasing axial speed of
the nanoplate may cause the instability behaviour. The greater
the aspect ratio is, the larger the frequency is. Hence natu-
ral frequencies of a square nanoplate are relatively low. The
natural frequency increases with the increase of biaxial ten-
sions. The natural frequencies decrease with the increase of
the nonlocal parameter, while increase with the increase of the
material characteristic scale. The nonlocal parameter and ma-
terial characteristic scale are coupled in micro-dynamic mech-
anisms. When the nonlocal parameter/material characteristic
scale is larger than the other, the nonlocal effect/strain gradient
effect dominates the free vibration of axially moving function-
ally graded nanoplates, respectively showing the softening and
stiffening behaviours of equivalent bending rigidity. When the
nonlocal parameter is equal to the material characteristic scale,
the equivalent bending rigidity remains unchanged and is equal
to the corresponding classical result. Hence the study confirms
that the nonlocal scale effect and the strain gradient effect are
at the same level in internal characteristic effects included in
the nonlocal strain gradient theory.
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