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This paper investigates the influence of the nonlinearities of a vibration isolation system on the planar dynamics of
a motorcycle. The use of a nonlinear isolation system is often necessitated by design and packaging constraints.
Although the use of a vibration isolation system is uncommon in motorcycles, it is used in some cases to enhance
ride comfort by mitigating vibrations transmitted to the rider due to shaking forces. In such cases, the handling
of the motorcycle can be influenced due to the coupled dynamics of the rear unsprung mass and the swing arm.
In this paper, a stochastic analysis has been performed by using the statistical linearization method to specifically
examine nonlinearities associated with the vibration isolation system. An eight degree-of-freedom planar model
has been developed, and each isolator is represented by a modified multi-axial Kelvin-Voigt model. It has been
observed that the model developed in this study can capture the coupled dynamics between the rear suspension
and the vibration isolation system. Results indicate that the nonlinear design of the vibration isolation system
can be useful in enhancing ride comfort in the lower frequency range without an adverse impact on handling.
Furthermore, it has been observed that the parameters associated with the nonlinear vibration isolation system can
be tuned to enhance ride comfort while meeting the design requirements of spatial dynamics.

1. INTRODUCTION

Planar or in-plane dynamics of a motorcycle entails the dy-
namics of the suspension system, wheels, frame, powertrain,
and the vibration isolation system when the motorcycle is trav-
eling in a straight line. While intertwined with spatial (or out-
of-plane) dynamics, planar dynamics can be specifically an-
alyzed for ride comfort and handling. Ride comfort primarily
pertains to the isolation of the rider (or sprung mass) from mul-
tiple excitation inputs while handling is a broader term that is
used to convey multiple aspects of the riding experience. For
planar dynamics, handling is typically used to convey the abil-
ity of the tires to adhere to the road surface. Multi-body dy-
namics models are being increasingly used to analyze the in-
fluence of several components or configurations on stability,
handling, maneuverability, etc. of a motorcycle. Availability
of commercial software such as BikeSim and FastBike enables
designers to investigate dynamic characteristics before com-
mencing detailed design.1, 2 While the multi-body dynamics
models developed in commercial software are useful for a sys-
tem level analysis, their use is somewhat limited for compo-
nent level design of parts such as vibration isolators. Further-
more, most of the multi-body dynamics models assume linear
behavior and ignore any nonlinearities. Some of the research
in motorcycle dynamics has focused on modeling special pur-
pose motorcycles that are used for off-road or racing purposes.
These systems require modeling adjustments since road irreg-
ularities could induce high amplitude displacements that may
result in a nonlinear response.3

Nonlinear designs of vibration isolators are useful in miti-
gating some of the inherent trade-offs associated with the de-
sign of linear and passive systems.4 In some cases, nonlin-
ear designs incorporate characteristics such as quasi-zero stiff-
ness (QZS) and high-static-low-dynamic stiffness (HSLDS).
Although the introduction of such nonlinearities is helpful in

reducing some of the design trade-offs between resonant peaks
and high frequency transmissibility, such designs often result
in phenomena such as instability, jump frequencies, hardening
or softening behavior, etc., that may need to be carefully exam-
ined and simulated.4–7 Incorporation of stiffness nonlinearity
enables a vibration isolation system to exhibit a significantly
higher stiffness along the non-isolating axes. This is impor-
tant for some products in automotive systems where packag-
ing, handling, etc. are critical considerations in the design of
a vibration isolation system.8 Such constraints require a vi-
bration isolator to demonstrate significantly different stiffness
and damping properties along the isolating axis as compared
to the other axes. One example of such a vibration isolator is
shown in Fig. 1. In addition to the design nonlinearity of the
vibration isolator model shown in Fig. 1, there are several other
nonlinearities associated with different designs of a vibration
isolator. In the literature, the study of such nonlinearities in-
cludes investigation of the influence of cubic damping,9 mate-
rial properties of rubber,10 and damping mechanisms,11 among
other viscoelastic characteristics.12

Viscoelastic models are commonly used for modeling elas-
tomeric isolators in order to represent specific properties in-
volving damping and stiffness characteristics. The main ad-
vantage of these models is a rheological relationship between
multiple physical parameters of the vibration isolator and the
viscoelastic model, allowing design iterations that can relate
attributes such as isolator geometry and elastomeric material
properties to specific aspects of the system response. Such
models are often used to represent the complex behavior of an
elastomer to perform dynamic simulations,13 or for the analy-
sis or optimization of the dynamic response of an elastomeric
isolation system.14

A vibration isolation system is not commonly used in mo-
torcycles. However, the use of such a system is necessary in
some cases to mitigate the effect of shaking forces resulting

International Journal of Acoustics and Vibration, Vol. 25, No. 4, 2020 (pp. 597–608) https://doi.org/10.20855/ijav.2020.25.41733 597



S. Kaul: PLANAR DYNAMICS OF A MOTORCYCLE: INFLUENCE OF VIBRATION ISOLATION SYSTEM NONLINEARITY

Figure 1. Modified nonlinear Kelvin-Voigt model.

from the configuration of the powertrain and other packaging
constraints. These shaking forces result in vibrations that are
felt by the rider at the seat, handlebars, and footrests, typically
at relatively higher frequencies. Although the primary purpose
of the vibration isolation system is to enhance ride comfort,
its inherent coupling with the rear suspension and the rear un-
sprung mass influences the overall planar, and arguably spatial,
dynamics of the motorcycle.15 This makes the design of the
vibration isolation system challenging and requires a careful
examination of design parameters such as stiffness nonlinear-
ity, material damping, etc. in order to mitigate the trade-off
between ride comfort and handling. Although planar dynam-
ics of motorcycles has been investigated in the existing liter-
ature, there is no model in the current literature that captures
the influence of the vibration isolation system, and its associ-
ated nonlinearities, on ride comfort and handling. This paper
attempts to fill this gap by providing a comprehensive analyt-
ical model that can be used to investigate nonlinearities of the
vibration isolation system in conjunction with the suspension
system in order to comprehend the influence on the planar dy-
namics of the motorcycle. The aim of the model presented
in this paper is to provide a tool that can be used for a holis-
tic analysis of the design parameters of the vibration isolation
system to comprehend their influence on ride comfort as well
as handling.

In this paper, Section 2 presents the proposed model as well
as the analysis method used in this study. This section includes
a brief description of the statistical linearization method that
has been used to solve the nonlinear model. Section 3 presents
the results from multiple simulations carried out by using the
model from Section 2 while comparing the results of the non-
linear model to a corresponding linear model. Overall conclu-
sions from the results of the study are drawn in Section 4.

2. MODEL

The governing planar motorcycle model is presented in this
section along with the assumptions used to derive the equations
of motion (EOM). The model consists of four rigid bodies that
are interconnected either through the suspension system or the
vibration isolation system. The vibration isolator model used

in this study is similar to a HSLDS design that has been dis-
cussed in recent literature,6, 16 and one such design is shown in
Fig. 1. The governing model of such a design has been derived
in the literature for a multi-axial vibration isolator,8 and will be
incorporated into the planar motorcycle model derived for this
study. For the planar model discussed in this section, each sus-
pension system is represented as a spring-damper unit.17 The
entire model is shown in Fig. 2.

In the model shown in Fig. 2, the chassis and the rider are
combined as one rigid body, designated the sprung mass. The
sprung mass is modeled with two degrees-of-freedom (DOF),
namely bounce and pitch. There are two unsprung masses in
the model, one for the front wheel and one for the rear wheel.
Each unsprung mass is the combined mass of the wheel and
other parts connected to the wheel. While the front unsprung
mass has been modeled with only one DOF, the rear unsprung
mass has been modeled with two translational DOF since it is
attached to the powertrain through the swing arm, as shown
in the schematic of the model in Fig. 2. The powertrain has
been modeled as a rigid body with two translational DOF and
one rotational or pitch DOF. The powertrain is connected to
the sprung mass through two sets of vibration isolators and to
the rear unsprung mass through the swing arm (also known
as the rear fork in the literature). The swing arm is typically
attached through a revolute or pin joint and connects the rear
wheel to the frame as well as the powertrain.16 The EOM of
all four rigid bodies are combined to identify the overall mass
(M ), damping (C) and stiffness (K) matrices of the system,
all three matrices are 8 × 8. The mass matrix is diagonal due
to the lumped mass representation of all the rigid bodies in the
model. The linear model can be directly referenced from the
literature and is briefly summarized in the following subsection
before discussing the nonlinear model.15

2.1. Linear Model
The linear model uses a conventional Kelvin-Voigt model

for each vibration isolator connecting the powertrain to the
sprung mass. The EOM for this model can be expressed in
the matrix form as:

MŸ + CẎ +KY = K ′′X + C ′′Ẋ. (1)
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Figure 2. Eight degree-of-freedom model including isolator nonlinearities.

In Eq. (1), Y = [y θ yf xr yr xp yp γ]T is the 8 × 1 vector
that consists of the eight DOF located at the center of mass
of each rigid body. K ′′ and C ′′ are 8 × 2 matrices resulting
from the source of base excitation at the front and rear wheels,
with K ′′ = [0 0 kpf 0 0 0 0 0; 0 0 0 0 kpr 0 0 0]T and
C ′′ = [0 0 cpf 0 0 0 0 0; 0 0 0 0 cpr 0 0 0]T , where kpf and
cpf are the stiffness and damping constants of the front tire
while kpr and cpr are the stiffness and damping constants of
the rear tire. In Eq. (1), X is the base excitation at the tires due
to irregularity of the road surface over which the motorcycle is
traveling, X =

[
yfi(t) yfi

(
t− p

V

)]T
. This base excitation

accounts for wheelbase filtering due to the lag in excitation
between the front tire and the rear tire as the motorcycle travels
at a constant velocity, V , in a straight line with a wheelbase of
p, and with a vertical displacement amplitude of yfi due to
road irregularity at the front wheel of the motorcycle.

The acceleration response, A(ω), for the model in Eq. (1),
can be expressed as follows:

A(ω) = −ω2[−ω2M + iωC+K]−1[K ′′+ iωC ′′]X(ω). (2)

In Eq. (2),X(ω) =

[
1

e−ω
p
V

]
Yfi(ω), where Yfi(ω) is the input

resulting from the irregularity of the road surface at the front
tire in the frequency domain, this form of the input is due to
the effect of wheelbase filtering. The acceleration response of
Eq. (2) can be modified as:

A(ω) = H(ω)

[
1

e−ω
p
V

]
Yfi(ω) = H∗(ω, V )Yfi(ω). (3)

In Eq. (3), H(ω) = −ω2[−ω2M + iωC+K]−1[K ′′+ iωC ′′],
and H∗(ω, V ) is the 8× 1 modified frequency response func-
tion (FRF) that can be used to compute the power spectral den-
sity (PSD) or spectrum of acceleration for each DOF of the

model as follows:

Sa(ω, V ) = |H∗a(ω, V )|2Srr(ω, V ). (4)

In Eq. (4), Srr(ω, V ) is the PSD of the road profile. Further-
more, Sa(ω, V ) is the PSD of acceleration of each DOF, where
a = ÿ, θ̈, ÿf , ẍr, ÿr, ẍp, ÿp, γ̈, and is computed by using the
magnitude of the modified FRF, H∗a(ω, V ), for each degree-
of-freedom. For this study, the PSD of the road profile has
been computed by assuming a constant speed of the motorcy-
cle while it is traveling on a good road surface.19 The details
of this linear model can be found in the literature.15

2.2. Nonlinear Model
In order to account for the nonlinearity introduced by the

multi-axial stiffness of the vibration isolators, as shown in
Fig. 1, the restoring spring force due to the effective vertical
stiffness of the front and rear isolators (f1fy and f1ry respec-
tively) can be expressed as follows:8

f1fy = f1ry = β2y1 + β1y
3
1 . (5)

In Eq. (5), y1 is the relative displacement of the rigid body
in the vertical direction while β1 and β2 are coefficients de-
pendent on stiffness, free length of the spring elements, and
the compressed length of the spring elements at static equi-
librium. It may be noted that the front and rear isolators are
assumed to be identical to simplify the model even though the
relative displacement for each isolator is expected to be dif-
ferent. The model as well as the analysis presented in this
paper is not limited to identical front and rear isolators, and
can be adapted to a varying number of isolators with differ-
ent characteristics. In Eq. (5), β1 = khx

l0x
l3x

+ khz
l0z
l3z

and

β2 = k0 + 2khx − 2khx
l0x
lx

+ 2khz − 2khz
l0z
lz

, where the free
length of the two springs along the x-axis and the z-axis is l0x
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and l0z respectively while the compressed length upon assem-
bly, at static equilibrium, is lx and lz . Also, k0, khx, khz are
the stiffness constants as shown in the model in Fig. 1. The
two isolators (front and rear) are assumed to be identical, and
in order to further simplify the model, the following substitu-
tions have been used for the two identical nonlinear vibration
isolators: khx = khz = kh, l0x = l0z = l0, lx = lz = l.
As a result, β1 = 2kh

l0
l3 and β2 = k0 + 4kh − 4kh

l0
l3 can

be substituted in Eq. (5). The benefit of such an isolator design
can be visualized by plotting the progressive stiffness exhibited
by the vibration isolator along the vertical axis. The effective
stiffness, keff, of each vibration isolator in the vertical direction
can be derived as:

keff =
∂f1fy
∂y1

=
∂f1ry
∂y1

= β2 + 3β1y
2
1 . (6)

In Eq. (6), y1 is the relative displacement along the isolation
direction. It may be noted that stability can be ensured by
choosing the parameters such that β2 > 0.16 For the design
used in this study, a pre-compression of 5% has been used un-
less otherwise stated, resulting in l = 0.95l0. Also, due to the
selection of 5% pre-compression, kh = 4k0 has been enforced
for satisfying the stability criterion. The resulting progressive
stiffness of this vibration isolator along the vertical axis can be
seen in Fig. 3 for a free length, l0, of 50 mm and varying val-
ues of k0. As can be seen from Fig. 3, the effective stiffness
is progressive for the three values of k0 shown in the figure as
compared to the fixed value of stiffness, k = 750 N/mm, for a
comparable linear vibration isolator used for the linear model.
It may be noted that the choice of model parameters for the vi-
bration isolators that has been discussed here will ensure that
the system will not exhibit instabilities or jump frequencies for
the analysis performed in this paper.

The EOM in Eq. (1) need to be modified to accommodate the
nonlinearities due to the influence of the multi-axial stiffness of
the vibration isolators connecting the powertrain to the sprung
mass. The corresponding EOM for the sprung mass are derived
to be as follows:

mÿ + (kf + kr + 2β2)y − kfyf − kryr +

[kf (p− b)− krb+ β2xf1 − β2xr1]θ + (β2xr1 − β2xf1)γ −
2β2yp + (cf + cr + c1fy + c1ry)ẏ − cf ẏf − crẏr +

[cf (p− b)− crb+ c1fyxf1 − c1ryxr1]θ̇ +

(c1ryxr1 − c1fyxf1)γ̇ + (−c1fy − c1ry)ẏp −
β1(yp + xf1γ − y − xf1θ)3 −
β1(yp − xr1γ − y + xr1θ)

3 = 0; (7)

Iθ̈ + [kf (p− b)2 + krb
2 + β2x

2
f1 + β2x

2
r1]θ +

[kf (p− b)− krb+ β2xf1 − β2xr1]y − kf (p− b)yf +

krbyr + (β2xr1 − β2xf1)yp + (−β2x2f1 − β2x2r1)γ +

[cf (p− b)2 + crb
2 + c1fyx

2
f1 + c1ryx

2
r1]θ̇ +

[cf (p− b)− crb+ c1fyxf1 − c1ryxr1]ẏ − cf (p− b)ẏf +

crbẏr + (c1ryxr1 − c1fyxf1)ẏp + (−c1fyx2f1 − c1ryx2r1)γ̇ −
β1xf1(yp + xf1γ − y − xf1θ)3 +

β1xr1(yp − xr1γ − y + xr1θ)
3 = 0. (8)

Figure 3. Nonlinear stiffness characteristics.

In Eq. (7) and Eq. (8), m and I are the mass and mass mo-
ment of inertia about the center of mass of the sprung mass. In
the EOM, y represents bounce (vertical motion) and θ repre-
sents the pitch motion of the sprung mass while xp, yp, and γ
represent the motion of the powertrain. The location of the
elastic center of the two vibration isolators from the center
of mass of the powertrain is (xf1, yf1) and (xr1, yr1). Al-
though the distribution of the rider mass and inertia as well
as the rider position can influence the dynamics of the motor-
cycle, the model presented in this study does not account for
this variability. As a result, the rider mass and inertia in an up-
right position is combined with the chassis mass and inertia. In
Eq. (7) and Eq. (8), the powertrain is assembled to the frame
(sprung mass) through vibration isolators with damping con-
stants of (c1fx, c1fy) and (c1rx, c1ry) at the front and rear, and
horizontal stiffness constants of k1fx and k1rx at the front and
rear respectively. Also, in Eq. (7) and Eq. (8), β1 and β2 are
the coefficients associated with the multi-axial vibration isola-
tors discussed in Eq. (5) and Eq. (6). It may be noted that the
EOM have been derived for a wheelbase of p, and the distance
between the center of mass of the sprung mass and the center
of mass of the rear unsprung mass is expressed as b.

The EOM for the two unsprung masses are derived to be as:

mf ÿf − kfy − kf (p− b)θ + (kf + kpf )yf −
cf ẏ − cf (p− b)θ̇ + (cf + cpf )ẏf = 0; (9)

mrẍr = Fxr; (10)
mrÿr + (kpr + kr)yr − kry + krbθ +

(cpr + cr)ẏr − crẏ + crbθ̇ = Fyr. (11)

As can be seen from Eq. (9), Eq. (10) and Eq. (11), the hop
(vertical) DOF associated with both unsprung masses (yr and
yf ) is modeled while the fore-aft DOF of the rear unsprung
mass (xr) is modeled additionally due to the attachment of the
rear unsprung mass to the powertrain through the swing arm.
In Eq. (10) and Eq. (11), Fxr and Fyr are the fore-aft and verti-
cal components of the force resulting from the pin connection
between the swing arm and the rear unsprung mass. Further-
more,mf andmr are the front and rear unsprung masses while
kf and kr are the effective spring constants for the front and
rear suspensions.
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The powertrain is modeled with three planar DOF and the
corresponding EOM are derived as follows:

mpẍp + (k1fx + k1rx)xp + (k1rxyr1 − k1fxyf1)γ +

(c1fx + c1rx)ẋp + (c1rxyr1 − c1fxyf1)γ̇ = Fxsa; (12)

mpÿp + 2β2yp + (β2xf1 − β2xr1)γ +

(−β2xf1 + β2xr1)θ − 2β2y + (c1fy + c1ry)ẏp +

(c1fyxf1 − c1ryxr1)γ̇ + (−c1fyxf1 + c1ryxr1)θ̇ +

(−c1fy − c1ry)ẏ + β1(yp + xf1γ − y − xf1θ)3 +

β1(yp − xr1γ − y + xr1θ)
3 = Fysa; (13)

Ipγ̈ + (k1fxy
2
f1 + β2x

2
f1 + k1rxy

2
r1 + β2x

2
r1)γ +

(k1rxyr1 − k1fxyf1)xp + (β2xf1 − β2xr1)yp +

(−β2xf1 + β2xr1)y + (−β2x2f1 − β2x2r1)θ +

(c1fxy
2
f1 + c1fyx

2
f1 + c1rxy

2
r1 + c1ryx

2
r1)γ̇ +

(c1rxyr1 − c1fxyf1)ẋp + (c1fyxf1 − c1ryxr1)ẏp +

(−c1fyxf1 + c1ryxr1)ẏ + (−c1fyx2f1 − c1ryx2r1)θ̇ +

β1xf1(yp + xf1γ − y − xf1θ)3 −
β1xr1(yp − xr1γ − y + xr1θ)

3 = Fxsaysa − Fysaxsa. (14)

In Eqs. (12)–(14), mp and Ip are the mass and mass moment
of inertia of the powertrain while xp, yp, and γ represent the
three DOF of the powertrain. Additionally, (xsa, ysa) is the lo-
cation of the swing arm pivot on the powertrain from its center
of mass. It may be noted that xsa and ysa are the absolute val-
ues of the coordinates. In Eqs. (12)–(14), Fxsa and Fysa are
the horizontal and vertical components of the force resulting
from the pin connection between the swing arm and the pow-
ertrain. Since the swing arm is attached through a pin joint at
both ends, it has been modeled as a one-dimensional uniaxial
spring. Furthermore, since the swing arm is typically designed
to be highly stiff, such a representation is expected to be ade-
quate for the planar model. Using this model, the connection
forces at the two ends of the swing arm are derived as:

Fxr =
AE

L
[xr cos2 φ+ yr cosφ sinφ−

(xp + ysaγ) cos2 φ− (yp − xsaγ) cosφ sinφ]; (15)

Fyr =
AE

L
[yr sin2 φ+ xr cosφ sinφ−

(xp + ysaγ) cosφ sinφ− (yp − xsaγ) sin2 φ]; (16)

Fxsa =
AE

L
[−xr cos2 φ− yr cosφ sinφ+

(xp + ysaγ) cos2 φ+ (yp − xsaγ) cosφ sinφ]; (17)

Fysa =
AE

L
[−yr sin2 φ− xr cosφ sinφ+

(xp + ysaγ) cosφ sinφ+ (yp − xsaγ) sin2 φ]. (18)

In Eqs. (15)–(18), A is the effective cross-sectional area of the
swing arm,E is the modulus of elasticity of the swing arm ma-
terial, and L is the length between the swing arm pivot on the
powertrain and the pivot on the unsprung mass. Furthermore,
φ is the angle of inclination of the swing arm from the hori-
zontal axis that depends on the overall trim and may change

somewhat with the hop of the rear unsprung mass. The rest of
the variables in Eqs. (15)–(18) have already been defined.

The EOM in Eq. (7) to Eq. (18) are combined to express the
overall nonlinear model in a matrix form that is similar to the
linear model in Eq. (1), this model can be expressed as:

MŸ + CẎ +K∗Y + g(Y ) = K ′′X + C ′′Ẋ. (19)

In Eq. (19), the mass and damping (M andC respectively) ma-
trices are identical to the linear model in Eq. (1), the stiffness
matrix, K∗, is modified to accommodate the nonlinear vibra-
tion isolator design while g(Y ) is the 8×1 vector containing all
the terms resulting from the stiffness nonlinearity of the vibra-
tion isolators in the model. These nonlinearities are collected
together in the vector form as follows:

g(Y ) =

−β1(yp + xf1γ − y − xf1θ)
3 − β1(yp − xr1γ − y + xr1θ)

3

0
0
0
0
0

β1(yp + xf1γ − y − xf1θ)
3 + β1(yp − xr1γ − y + xr1θ)

3

β1xf1(yp+xf1γ−y−xf1θ)3 − β1xr1(yp−xr1γ−y+xr1θ)3


.

(20)

The clear separation of the terms associated with nonlineari-
ties, as shown in the vector in Eq. (20), simplifies the use of
the statistical linearization method that has been used for solv-
ing the nonlinear model.

The statistical linearization method has been used in the lit-
erature to derive an equivalent linear model that can be used
to replace a nonlinear model with reasonable accuracy when
the excitation input is stationary and Gaussian.3, 20 In some
cases, this method has also been shown to be effective for non-
stationary excitation inputs.20 The determination of the equiv-
alent linear model is based on statistically minimizing the Eu-
clidean norm of the error. For spectral response, the error is
computed as the difference between the covariances of the ac-
celeration spectrum resulting from the iterative calculation of
the system response. The components of the equivalent linear
system can be computed by using an iterative process and a
corresponding convergence criterion.20 This iterative process
has been used to replace the EOM in Eq. (19) with an equiva-
lent linear model that can be expressed as:

(M +Me)Ÿ + (C +Ce)Ẏ + (K∗ +Ke)Y = K ′′X +C ′′Ẋ.
(21)

In Eq. (21), Me, Ce, andKe are the equivalent mass, damping,
and stiffness matrices derived to replace the nonlinear system
with an equivalent linear system. Since all the nonlinearities
in the model presented in this paper are limited to the stiffness
matrix, Me and Ce are zero matrices for the EOM derived for
the model in Fig. 2. It may be noted that the statistical lin-
earization method can also be used to deal with other forms of
nonlinearities for the model discussed in this paper. In such
cases, the mass matrix, Me, and the damping matrix, Ce, may
be non-zero, depending on the nature of system nonlinearities.

The elements of the stiffness matrix, Ke, in Eq. (21) can be
derived from the vector containing the nonlinear terms, g(Y ),
shown in Eq. (20), as Ke

ij = E
[
∂gi
∂Y

]
, i = 1, . . . , 8; j =
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Figure 4. Statistical linearization method—algorithm.

1, . . . , 8, where Y is the vector consisting of all DOF of the
system and E[·] is the expected value. These elements of the
stiffness matrix, Ke, are derived row-by-row as follows:

∂g1
∂Y

=

3β1(yp+xf1γ−y−xf1θ)2+3β1(yp−xr1γ−y+xr1θ)2
3β1xf1(yp+xf1γ−y−xf1θ)2−3β1xr1(yp−xr1γ−y+xr1θ)2

0
0
0
0

−3β1(yp+xf1γ−y−xf1θ)2−3β1(yp−xr1γ−y+xr1θ)2
−3β1xf1(yp+xf1γ−y−xf1θ)2+3β1xr1(yp−xr1γ−y+xr1θ)2



T

;

(22)

∂g2
∂Y

=
∂g3
∂Y

=
∂g4
∂Y

=
∂g5
∂Y

=
∂g6
∂Y

= 01×8; (23)

∂g7
∂Y

=

−3β1(yp+xf1γ−y−xf1θ)2−3β1(yp−xr1γ−y+xr1θ)2
−3β1xf1(yp+xf1γ−y−xf1θ)2+3β1xr1(yp−xr1γ−y+xr1θ)2

0
0
0
0

3β1(yp+xf1γ−y−xf1θ)2+3β1(yp−xr1γ−y+xr1θ)2
3β1xf1(yp+xf1γ−y−xf1θ)2−3β1xr1(yp−xr1γ−y+xr1θ)2



T

;

(24)

∂g8
∂Y

=

−3β1xf1(yp+xf1γ−y−xf1θ)2+3β1xr1(yp−xr1γ−y+xr1θ)2
−3β1x2f1(yp+xf1γ−y−xf1θ)

2−3β1x2r1(yp−xr1γ−y+xr1θ)2
0
0
0
0

3β1xf1(yp+xf1γ−y−xf1θ)2−3β1xr1(yp−xr1γ−y+xr1θ)2
3β1x2f1(yp+xf1γ−y−xf1θ)

2+3β1x2r1(yp−xr1γ−y+xr1θ)2



T

.

(25)

The overall linearized equations of motion of the equivalent
linear model derived from the nonlinear model, with EOM in
Eq. (19), can therefore be expressed as follows:

MŸ + CẎ + (K∗ +Ke)Y = K ′′X + C ′′Ẋ. (26)

In Eq. (26), Ke =
[
∂g1
∂Y

∂g2
∂Y

∂g3
∂Y

∂g4
∂Y

∂g5
∂Y

∂g6
∂Y

∂g7
∂Y

∂g8
∂Y

]T
, the

elements of this matrix are derived in Eq. (22) to Eq. (25). The
rest of the variables in Eq. (26) have already been discussed
earlier in this section. The linearized EOM can also be used to
compute the ratio between the output and the excitation input
for each degree-of-freedom, called as displacement transmissi-
bility. For the linearized model, displacement transmissibility
due to external excitation can be computed as:

T = [−ω2M + iωC +K∗ +Ke]
−1[Ḱ + iωĆ]. (27)

In Eq. (27), T is the 8 × 1 transmissibility matrix while Ḱ
and Ć are 8 × 1 matrices resulting from excitation due to the
irregularity of the road surface.

For the linear model in Eq. (1), the PSD for each DOF re-
sulting from the excitation input due to road surface irregular-
ity can be computed directly, as shown in Eq. (4). While this
cannot be done directly for the nonlinear model, the equivalent
linear model in Eq. (26) has been used to iteratively determine
the response by using the statistical linearization method. A
flowchart of this iterative process is shown in Fig. 4. To start
the iterative process, the static load, P , is used to compute the
initial response, Y , shown as Y0 in the flowchart in Fig. 4. As
can be seen from the flowchart in Fig. 4, the equivalent stiff-
ness matrix, Ke, is not finalized till the norm of the difference
in the covariances of the acceleration spectrum is significantly
low. In order to carry out the iterative process, a frequency
bandwidth of interest needs to be established. For the purposes
of this study, the frequency range of 0 to 40 Hz has been used.
This iterative procedure is expected to yield a unique equiva-
lent linear system.3, 20
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Table 1. Linear model—modal analysis results.

Damped natural Damping ratio Mode shapefrequency (Hz)
1.66 0.146 Sprung mass bounce fully coupled with powertrain bounce and a limited amount of sprung mass pitch
3.04 0.229 Sprung mass pitch fully coupled with powertrain pitch
12.06 0.108 Rear unsprung mass fore-aft fully coupled with powertrain fore-aft
15.45 0.259 Rear unsprung mass hop
17.55 0.245 Front unsprung mass hop
22.09 0.103 Powertrain pitch coupled with some sprung mass pitch
23.69 0.106 Powertrain bounce coupled with some sprung mass bounce

603.48 0.0005 Rear unsprung mass fore-aft coupled with a limited amount of powertrain fore-aft

Figure 5. Sprung mass pitch acceleration spectrum at constant speed (20 m/s).

The nonlinear model presented in this section has been used
for multiple simulations in Section 3. The linear model has
been used as a baseline for the results and is used to compare
the results of the nonlinear model and to specifically determine
the influence of parameters associated with the nonlinear vi-
bration isolation system. All the parameters that have been
used for simulation have been identified from relevant litera-
ture.

3. RESULTS

This section presents the simulation results for the model
presented in Section 2. The linear model has been analyzed
first to establish a baseline for the nonlinear model. Also,
the results of the nonlinear model are analyzed to investigate
the influence of different parameters associated with the vibra-
tion isolation system. Finally, the results of the model derived
from the statistical linearization method are compared with re-
sults from numerical integration to evaluate the accuracy of
this approach. Most of the motorcycle parameters used for the
simulations have been adapted from existing literature while
the vibration isolator parameters have been taken from exper-
imental characterization conducted for another study.8, 17 The
following values have been used for all the simulations pre-
sented in this section: p = 1.4 m, b = 0.7 m, m = 200 kg,
I = 40 kg m2, kf = 15 kN/m, kr = 25 kN/m, kpf =
180 kN/m, kpr = 180 kN/m, mf = 15 kg, mr = 20 kg,
mp = 100 kg, Ip = 10 kg m2, xr1 = 320 mm, yr1 = 55 mm,
xf1 = 325 mm, yf1 = 20 mm, xsa = 270 mm, ysa = 30 mm,
k1rx = 350 N/mm, k1fx = 350 N/mm, A = 707 mm2,
E = 200 GPa, L = 590 mm, φ = 5.9◦.

The results of the linear model are used as a baseline for the

Figure 6. Sprung mass bounce acceleration spectrum at constant speed
(20 m/s).

Figure 7. Rear unsprung mass hop acceleration spectrum at constant speed
(20 m/s).

analysis of the nonlinear model. Table 1 presents a summary
of the results from the modal analysis of the linear model. As
can be seen from these results in Table 1, the two lowest modes
exhibit coupling between sprung mass bounce and sprung mass
pitch and coupling of these two modes with the motion of the
powertrain.

It can also be seen from the results in Table 1 that the fore-aft
mode of the powertrain is coupled to the rear unsprung mass
due to the swing arm connection. Furthermore, the rear and
front unsprung masses exhibit uncoupled hop modes with a
relatively higher damping ratio. Finally, the highest mode is
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Figure 8. Acceleration response—sprung mass bounce.

Figure 9. Acceleration response—sprung mass pitch.

primarily due to the highly stiff swing arm connecting the rear
unsprung mass to the powertrain, this mode is well outside the
frequency range of interest for the purposes of this study and
will not be used for any analysis. The results of the linear
model are comparable to other similar models in the literature,
specifically for the modes related to the sprung mass and the
unsprung masses.17

While the use of the nonlinear vibration isolation system
is not seen to influence the acceleration spectrum of the un-
sprung masses significantly, it can be clearly seen to influence
the acceleration spectrum of the sprung mass, as seen from the
results in Fig. 5 and Fig. 6. It can be seen that the peak of
the bounce acceleration spectrum as well as the pitch accelera-
tion spectrum of the sprung mass reduces in the low frequency
range while there is a corresponding increase in the peak and
bandwidth of the sprung mass spectrum at higher frequencies
(ranging from 10 to 20 Hz). This increase can be mitigated
somewhat by lowering the vertical stiffness of the nonlinear
isolators (k0) to maximize the benefits of the HSLDS design of
a vibration isolator. Although the pitch acceleration spectrum
of the sprung mass exhibits a reasonable reduction in the lower
frequency range, the peak in the higher frequency range (10 to
20 Hz) does not reduce substantially with decreasing values of

Figure 10. Displacement transmissibility—sprung mass bounce.

Figure 11. Time domain response—sprung mass bounce.

k0, as clearly seen in Fig. 6 and to some extent in Fig. 5. This
could be attributed to the powertrain modes in this frequency
range that are directly coupled to the sprung mass. It may be
noted that the reduction of the sprung mass spectrum is not
achieved at the expense of the rear unsprung mass hop, as seen
from the results in Fig. 7. This implies that the HSLDS design
could be used to mitigate the trade-off between ride comfort
and handling. It is observed that the spectrum of the rear un-
sprung mass hop acceleration shows very little sensitivity to
the vertical stiffness of the nonlinear vibration isolators, and is
not significantly different from the system with the linear vi-
bration isolation system. This can be primarily attributed to
the independent hop modes of the two unsprung masses. Fur-
thermore, this result indicates that the nonlinear vibration iso-
lators can be designed to marginally improve ride comfort in
the lower frequency range without any adverse impact on han-
dling.

Acceleration response is widely used in vibration analysis
for the evaluation of ride comfort. For the planar motorcycle
model, observations from the acceleration response are some-
what similar to the results from power spectral density. It can
be seen from Fig. 8 and Fig. 9 that acceleration of the sprung
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Figure 12. Time domain response—comparison—sprung mass bounce.

Figure 13. Sprung mass bounce acceleration spectrum at constant speed
(20 m/s)—influence of pre-compression.

mass is either lower or identical to the system with linear vi-
bration isolators except for the frequency range of 10 to 20 Hz.
Furthermore, displacement transmissibility results in Fig. 10
show that the peak transmissibility of the sprung mass bounce
reduces marginally with the use of the nonlinear vibration iso-
lation system. It is observed that the acceleration response as
well as displacement transmissibility of the unsprung masses
is not affected much by using the nonlinear vibration isolation
system. This implies that the use of the nonlinear vibration
isolation system does not seem to have an adverse impact on
handling. The transmissibility results can be further substanti-
ated from the response of the sprung mass in the time domain
while the motorcycle is traveling in a straight line at a constant
speed of 20 m/s (72 kph) over a bumpy road that has a sinu-
soidal profile with an amplitude of 20 mm and a wavelength
of 6 m. Results for the time history of sprung mass bounce
can be seen in Fig. 11, and it is seen that the amplitude reduces
slightly with the use of the nonlinear vibration isolation system
while remaining sensitive to the design parameters.

In order to evaluate the accuracy of the response resulting
from the statistical linearization method, a comparison of the

Figure 14. Sprung mass pitch acceleration spectrum at constant speed
(20 m/s)—influence of pre-compression.

Figure 15. Nonlinear stiffness characteristics—influence of pre-compression.

results for the sprung mass bounce is shown in Fig. 12. It can
be seen that the time domain response from the statistical lin-
earization method is within 1% of the results from numerical
integration of the nonlinear model. The comparison of the time
history of other degrees-of-freedom exhibits similar results and
is not being shown here. A single step solution with an explicit
Runge-Kutta formulation has been used for numerical integra-
tion.21 It can, therefore, be concluded that statistical lineariza-
tion can be reliably used for analyzing the nonlinear model
presented in this study. This method is robust and numerically
efficient, as indicated in the reference literature.20 Additional
nonlinearities associated with the system could also be investi-
gated by using the statistical linearization method.

In order to demonstrate the full range of results from the
use of the nonlinear design of the vibration isolation system
with HSLDS characteristics, a few more simulations have been
performed to specifically investigate parameter sensitivity un-
der multiple operating conditions. Figure 13 and Fig. 14 show
the influence of varying levels of pre-compression of the non-
linear vibration isolators on the acceleration spectrum of the
sprung mass. While a change in the pre-compression of the
nonlinear vibration isolators is seen to only slightly influence
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Figure 16. Sprung mass bounce acceleration spectrum—influence of speed.

Figure 17. Sprung mass pitch acceleration spectrum—influence of speed.

the peak of the bounce acceleration spectrum of the sprung
masses, it is seen to influence the peak as well as the bandwidth
of the pitch acceleration spectrum. This could be attributed to
the relationship between pre-compression and effective stiff-
ness of the vibration isolation system. These results indicate
that pre-compression of the HSLDS design can be used to fine
tune ride comfort. It should be noted that a change in pre-
compression does not influence the acceleration spectrum of
unsprung masses, therefore this parameter is not expected to
have an influence on handling. The direct influence of pre-
compression on the effective stiffness of the nonlinear vibra-
tion isolators can be seen from Fig. 15. It may be noted that
the choice of pre-compression is directly related to the out-of-
plane stiffness due to the stability criterion, therefore exercis-
ing an influence on the spatial dynamics of the motorcycle.17

Spectral analysis and time domain analysis is performed at
three different speeds to observe any trends as the speed of the
motorcycle increases from 10 m/s (36 kph) to 20 m/s (72 kph),
and eventually to 30 m/s (108 kph). It may be noted that the
spectral analysis is carried out while the bike is traveling over
an asphalted road that is considered as a good road surface
as per the classification of the International Organization for
Standardization.19 Three different speeds have been chosen to
encompass a wide range of speeds that the bike may be trav-

Figure 18. Rear unsprung mass hop acceleration spectrum—influence of
speed.

eling. It can be seen from Fig. 16 and Fig. 17 that although
the spectrum for bounce acceleration exhibits a significant in-
crease in the peak with an increasing speed, the results for the
pitch acceleration spectrum are complex and do not show a di-
rect trend with increasing speed. This could be due to the sig-
nificant coupling between the bounce and pitch modes of the
sprung mass. On the other hand, the spectrum of the unsprung
masses exhibits a direct increase in the peak as well as band-
width with an increasing speed, an example of such a result
can be seen from the spectrum of the rear unsprung hop ac-
celeration in Fig. 18. It can be observed from Fig. 18 that the
frequency corresponding to the peak spectrum does not vary
much as the speed increases from 10 m/s to 30 m/s, this is pri-
marily because the excitation frequencies in this speed range
are much lower than the natural modes of the unsprung mass.

Results from the time domain analysis can be seen in Fig. 19
and Fig. 20. The time domain analysis is performed when the
motorcycle is traveling in a straight line with a constant speed
over a sinusoidal bump course with an amplitude of 20 mm
and a wavelength of 6 m. This corresponds to an excita-
tion frequency of 1.67 Hz, 3.33 Hz, and 5 Hz for a speed of
10 m/s, 20 m/s, and 30 m/s respectively. Wheelbase filtering
has been used such that the displacement input at the rear tire
is Yr = y sin

(
2π V

L t− 2π p
L

)
while the displacement input at

the front tire is Yf = y sin
(
2π V

L t
)
, where V is the speed of

the bike, p is the wheelbase, L is the wavelength of the bump
course, y is the amplitude of the bump course, and t is time.
The results for sprung mass bounce from Fig. 19 indicate that
a reduction in speed results in an increase in the amplitude of
the output while an increase in speed results in an increase in
the frequency of the response. This can be directly attributed
to the natural mode of the sprung mass that is being primarily
excited at a speed of 10 m/s, and the excitation frequency shift-
ing away from the bounce mode with an increase in speed. The
sprung mass pitch response in Fig. 20 does not show a direct
trend with increasing speed like the sprung mass bounce, this
could be due to the natural mode corresponding to the sprung
mass pitch being specifically excited at 20 m/s as well as the
coupling between the pitch and bounce motion of the sprung
mass.
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Figure 19. Time domain response—sprung mass bounce over bump course—
influence of speed.

Figure 20. Time domain response—sprung mass pitch over bump course—
influence of speed.

Finally, the influence of the wavelength of the sinusoidal
bump course can be seen in Fig. 21 and Fig. 22 while the mo-
torcycle is traveling in a straight line at a constant speed of
20 m/s over a sinusoidal bump course with an amplitude of
20 mm. As the wavelength (λ) of the bump course changes
from 2 m to 3 m to 5 m, the excitation frequency reduces from
10 Hz to 6.67 Hz to 4 Hz respectively. It can be observed
that the sprung mass bounce amplitude is significantly higher
at λ = 5 m since the natural mode corresponding to this DOF
gets predominantly excited at this wavelength, as seen from the
results in Fig. 21. This can be explained from the list of nat-
ural modes of the linear model in Table 1, the lowest natural
mode pertains to the sprung mass and is close to the excita-
tion frequency corresponding to the wavelength of λ = 5 m.
Similarly, it can be seen from the sprung mass pitch in Fig. 22
that the amplitude is reasonably higher for λ = 5 m due to the
sprung mass pitch mode and the coupling between the sprung
mass bounce and pitch. Such an analysis can be specifically
beneficial for evaluating parameter sensitivity of the vibration
isolation system before starting detailed design.

Figure 21. Time domain respons—sprung mass bounce—influence of bump
course wavelength.

Figure 22. Time domain response—sprung mass pitch—influence of bump
course wavelength.

4. CONCLUSIONS

A comprehensive model has been presented in this paper
that can be used to analyze the planar dynamics of a motor-
cycle with a specific focus on evaluating the influence of non-
linearities of the vibration isolation system. Although this pa-
per discusses one specific form of nonlinearity of the vibration
isolation system, the general approach used in this study could
be applicable to the investigation of other nonlinearities asso-
ciated with the planar dynamics involving the front and rear
suspension systems.

Results indicate that ride comfort can be improved in the
low frequency range by using the nonlinear vibration isolation
system without any adverse impact on handling. This is par-
ticularly observed in the relatively lower peaks of the accelera-
tion spectrum of the sprung mass in the frequency range of 1 to
6 Hz. Since this frequency range is considered to be significant
for ride comfort of the upper body of the rider, the nonlinear
vibration isolation system is expected to be particularly ben-
eficial if the associated parameters are specifically tuned for
ride comfort. Furthermore, the nonlinear vibration isolation
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system allows design flexibility to vary the pre-compression
as well as out-of-plane stiffness to meet the needs of spatial
dynamics of the motorcycle. The one disadvantage of the non-
linear vibration isolation system observed from the results of
this study is the relative increase in the acceleration spectrum
of the sprung mass and its bandwidth in the frequency range of
10 to 20 Hz. This frequency range is considered to be impor-
tant for ride comfort of the rider’s arms and hands, and not the
entire upper body.22 This disadvantage could be mitigated to
some extent by using some form of local vibration isolation at
the handlebars.23

The main benefit of the model and analysis presented in this
paper is that ride comfort and handling can be analyzed to eval-
uate the influence of the coupled dynamics of the rear suspen-
sion system and the vibration isolation system in the presence
of nonlinearities. This could allow an analyst to evaluate spe-
cific nonlinear attributes of the suspension system as well as
the vibration isolator design before starting detailed design of
individual components. Future work will aim to investigate the
influence of stiffness and damping nonlinearities in alternate
rear suspension designs on the planar dynamics of a motorcy-
cle. An experimental evaluation of the findings of this study
will also be pursued in the future.
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