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This study investigates the free vibration and frequency analysis of tall buildings with stepped cross-sections for
stepped tube-in-tube structures. Dynamic equations were presented in accordance with the stepped structural
system for free vibration and the differential equations were solved according to the application of boundary
conditions and flexural and shear stiffness and stepped cross-section of different steps. The answer was converted
to an 8× 8 matrix and was obtained using the determinants of matrix and mathematical calculations of frequency.
Nine mathematical computational models were designed for stepped tube-in-tube structures for a 50-story tube-in-
tube building by increasing the height of the outer tube by 15 meters. Finally, the heights of the inner and outer
tubes were equalized by increasing the height of the outer tube and then compared with the results of free vibration
in the articles with the tube-in-tube structural system with equal height and characteristics. Using this method, the
frequency of structures was calculated correctly and the obtained results from finite element analysis showed that
this mathematical method accurately calculated the frequency. It was found that this method was accurate enough
and the obtained computational error was very small. The results showed that the frequency decreases by adding
to the outer tube and increasing its height.

1. INTRODUCTION

The tube-in-tube structural system is considered to be one
of the systems of tall structures, which has led to many im-
provements in tall buildings. The use of stepped tube-in-tube
architecture in tall structures has several advantages such as
providing the possibility of lighting the adjacent buildings and
not blocking the view in urban spaces. In free vibration, one of
the important parameters in stepped narrowing constructions
is the calculation of the natural vibrational frequency of the
structure (ω). In this study, new relationships, formulas and
mathematical methods for calculation are presented and com-
pared with software calculations and other relevant studies.1–3

The stepped tube-in-tube system is a type of framed tube con-
sisting of an interior tube and an exterior tube. The exterior
and interior tubes work together to withstand gravity and lat-
eral loads in buildings. The interior tube differs from the ex-
terior tube in height. The use of this system makes it possible
to construct buildings with higher heights. It can be used in
structures higher than 100 floors.3, 4

The calculation of vibrational frequency and the analysis of
free vibration play an important role in designing tall build-
ings, especially in the case of the first frequency. Free vibra-
tion of tube-in-tube structures has been considered by different
researchers. Therefore, it is important to study the methods
of calculating natural frequencies for stepped tube-in-tube sys-
tems in tall buildings. In free vibration analysis, tall structures
can be considered as beams with a variable cross-section.5, 6

Wang studied the free flexural vibrations of a beam that had
variable stiffness but with a uniform mass.7 Lee et al., exam-
ined the free flexural vibrations of tall buildings with varying
stiffness and mass. Many of these studies have led to sim-
plifications in the calculation process, in a way that the dif-
ferential equation of the structure can be solved. Lee et al.,
suggested an analytical method for the dynamic response of

tubular structures based on D’Alembert’s principle.6, 8 The
Rayleigh-Ritz vibrational frequency method was presented by
Maleknejad and Rahgozar.9–13 They proposed an analytical
method to determine the vibrational frequencies of Bernoulli
and Timoshenko beams by converting the governing differen-
tial equation to attenuated integral equations.14, 15 An approx-
imation method for free vibration analysis of tall tube-in-tube
structures was developed using the series solution method.16

In addition, free vibration analysis was solved using the DQM
method, which is the governing differential equation for free
vibration with shear walls by Bozdogan.17, 18 A new and sim-
ple solution was presented for determining the natural frequen-
cies of wall-tube and tube-in-tube structures. Mohammad Ne-
jad and Haji Kazemi in 2018 modeled a tall building by a
beam with variable stiffness and mass along the height. Thus,
the governing partial differential equation with variable coeffi-
cients was solved to calculate natural frequencies.19 Frequency
analysis of tall buildings was performed considering the effect
of axial force.20

In this paper, an approximation method was developed for
calculating the vibrational frequency of tall buildings with
stepped tube-in-tube systems. The structure can be equivalent
to a beam with a box cross section along the height. The dif-
ferential equations for the vibration of the stepped tube sys-
tem can be obtained using the vibrational principles of the
continuous system. The structures with stepped tube-in-tube
systems are replaced by an equivalent cantilever beam, which
has a bending and shear stiffness and variable mass as a step
along the height. The answer to the vibrational equation gov-
erning the stepped tube system was obtained using mathemat-
ical methods. Then, natural frequencies can be determined
in the system by applying boundary conditions at the site of
ground connection (abutment) where the stepped cross-section
changes and at the end of the system. A numerical sample of
free vibrational analysis and evaluation of natural frequencies
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were performed for a number of tall buildings with stepped
tube-in-tube systems. Further, various comparisons with the
results in published papers and a finite element analysis were
performed to compare the validity of the method. In order
to discuss the effects of this method, natural frequencies for
uniform and non-uniform cross-sections of the stepped tube-
in-tube system of tall buildings were calculated with flexural
stiffness, shear stiffness and variable stepped mass along the
height. The frequency diagram was plotted in steps according
to height.

2. ESTIMATING THE BEHAVIOUR OF
STEPPED TUBULAR STRUCTURES
INCLUDING CANTILEVER BEAMS AND
CALCULATING THE FREE VIBRATION
EQUATION AND THE ANSWER OF THE
DIFFERENTIAL EQUATION

Analyses of a stepped high-rise structure with a precise view
of all the behavioral problems of members and building ma-
terials is practically impossible even if the properties of the
materials and dimensions of the elements are all known. Ad-
ditionally, the application of simplistic assumptions to reduce
the volume of the problem is inevitable. In this regard, the
most common types of hypotheses are introduced as follows:
1) the distance between columns and beams is uniform along
the height of the building; 2) the cross-sectional dimensions of
all beams and columns are the same at the height of the build-
ing; 3) the structural materials are linearly elastic, isotropic,
homogeneous and obey Hooke’s law; 4) the structural system
in terms of plan and height in all these models is assumed
to be symmetrical and rotational inertia is ignored; 5) rigid
floors in the floorboards of tall buildings do not deform in their
panels and do not move perpendicular to them; and, 6) small
and ineffective deformations, axial and shear deformations,
torsional deformations, bending deformations, shear and tor-
sional deformations of roofs and axial deformations of build-
ing columns have been ignored.

In this part, structures with a tubular system (stepped tube-
in-tube is shown in Fig. 1) are replaced with an equivalent can-
tilever beam as shown in Fig. 2, which has a variable bending
stiffness, shear stiffness and mass along the height. The elastic
parameters of equivalent cantilever beam, which include the
modulus of elasticity and the shear modulus of the beam, are
obtained according to Eqs. (1) and (2):19

E = Em; (1)

G =
H
st

∆b

Q + ∆s

Q

; (2)

where Em represents the modulus of elasticity of consumed
material, h is the height of column, H is the height of the whole
structure, s shows the horizontal distance of the axes of the
columns from each other, Q is considered as the load on the
structure, t indicates the thickness of the walls of equivalent
cantilever beam, ∆s and ∆b is shear and bending deformation
of the structure due to the force Q, respectively. The ∆b/Q

and ∆s/Q parameters are obtained from Eqs. (3) and (4):

∆b

Q
=

(h−Hb)
3

12EmIc
+

(
h

d

)2
(d−Hc)

2

12EmIb
; (3)

∆s

Q
=

(h−Hb)

GmAsc
+

(
h

d

)2
(d−Hc)

GmAsb
. (4)

The t parameter is obtained based on Eq. (5)

t =
AC

S
. (5)

In Eqs. (3) to (5), h is the height of the column, H is the height
of the whole structure, Ho is the height of the steps of the struc-
ture, s is the horizontal distance from each other, d is the hor-
izontal distance axes of columns from each other, Hb is the
height of beam, Hc is the height of column, Ib is the moment
of inertia of beam, Ic is the moment of inertia of column, Asc is
the cross-section of column, Asb is the cross-section of beam,
Q is the wide lateral load on the structure, t indicates the thick-
ness of the walls of equivalent cantilever beam, Gm is the shear
modulus of consumables, ∆s and ∆b are shear and bending
deformations of the structure due to the force Q, respectively.

Equations governing the vibrational frequency of the system
are given in Eq. (6):12, 24, 25

∂2

∂x2

(
EI(x)

∂2w(x, t)

∂x2

)
− ∂

∂x

(
GA(x)

∂w(x, t)

∂x

)
+

m(x)
∂2w(x, t)

∂t2
= 0. (6)

The x-axis is along the length of the building height. The
boundary conditions are applied for the equations as follows.
In the support (abutment), the displacement value is zero:

x = 0; w1(x, t) = 0. (7)

The amount of rotation on the support is zero:

x = 0;
∂

∂x
w1(x, t) =

∂

∂x
w2(x, t) = 0. (8)

The amounts of displacement at the intersections are equal:

x = H −H0; w1(x, t) = w2(x, t). (9)

The amounts of rotations at the point of intersections are equal:

x = H −H0;

∂

∂x
w1(x, t) =

∂

∂x
w2(x, t)→ w′1(x, t) = w′2(x, t). (10)

The amounts of shear forces at the intersections are equal:

x = H −H0;

∂

∂x

(
EI1(x)

∂2w1(x, t)

∂x2

)
−GA1(x)

∂

∂x
w1(x, t) =

∂

∂x

(
EI2(x)

∂2w2(x, t)

∂x2

)
−GA2(x)

∂

∂x
w2(x, t). (11)

The amounts of bending anchors at the intersection area are
equal:

x = H −H0; EI1(x)
∂2w1(x, t)

∂x2
= EI2(x)

∂2w2(x, t)

∂x2
→

EI1(x)w′′1 (x, t) = EI2(x)w′′2 (x, t). (12)
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The amount of shear force at the end of the beam is zero

x = H;

∂

∂x

(
EI2(x)

∂2w2(x, t)

∂x2

)
−GA2(x)

∂

∂x
w2(x, t) = 0→

(EI2(x)w′′2 )
′ −GA2(x)w′2 = 0. (13)

The amount of bending anchor at the end of the beam is zero

x = H; EI2(x)
∂2w2(x, t)

∂x2
= EI2(x)w′′2 (x, t) = 0. (14)

Assuming the value of the following answer for differential
Eq. (6):12, 24, 25

w(x, t) = W (x)eiωt; (15)

w′t =
∂w

∂t
= iωW (x)eiωt;

∂2w

∂t2
= i2ω2W (x)eiωt = −ω2W (x)eiωt; (16)

ε =
x

H
; 0 ≤ x ≤ H;→ 0 ≤ x

H
≤ 1;→ 0 ≤ ε ≤ 1. (17)

The following parameters are substituted in Eq. (6)

d

dx
w(x) = w′(x);→ dw(ε)

dε
× dε

dx
=

1

H
w′(ε);

dn

dxn
w(x) =

1

Hn

dn

dxn
w(ε);→ dn

dxn
w(ε) = Hn dn

dxn
w(x).

(18)

2.1. Vibrational Equation of the System

To analyze the free vibration of a building with a stepped
tubular structural system and assuming the harmonic vibra-
tion of Eq. (15) and using Eqs. (15) to (18) and placing it in
Eq. (6) and applying the boundary conditions in Eqs. (7) to
(14), Eqs. (19) and (20) were obtained as follows, where w(x)
is the mode shape function, ω is the natural frequency, EI(x)
is the sum flexural rigidity of inner and outer tube steps, m(x)
is the mass per height unit, and GA(x) is the sum of shear
rigidities for inner and outer tube steps.

EI(x)w′′′′(x)−GA(x)w′′(x)−m(x)ω2w(x) = 0;

EIow
′′′′(x)−GAow

′′(x)−moω
2w(x) = 0;

w′′′′(x)− GAo

EIo
w′′(x)− mo

EIo
ω2w(x) = 0; (19)

a1 = (H −H0)

√
GA1

EI1
; b1 = (H −H0)2

√
mo1

EI1
;

b2 = H2
0

√
mo2

EI2
; a2 = H0

√
GA2

EI2
;

w′′′′1 (ε)− a2
1w
′′
1 (ε)− b2

1ω
2w1(ε) = 0;

w′′′′2 (ε)− a2
2w
′′
2 (ε)− b2

2ω
2w2(ε) = 0. (20)

After solving differential Eq. (19) and (20), numbers are ob-

tained by Eqs. (21) and (22) as follows:

w1(ε) = c1e
−

√
2a2

1−2
√

a4
1+4b21ω2

2 ε + c2e

√
2a2

1−2
√

a4
1+4b21ω2

2 ε +

c3e
−

√
2a2

1+2
√

a4
1+4b21ω2

2 ε + c4e

√
2a2

1+2
√

a4
1+4b21ω2

2 ε;

0 ≤ ε ≤ 1− H0

H
; 0 ≤ ε ≤ 1− k; (21)

w2(ε) = c5e
−

√
2a2

2−2
√

a4
2+4b22ω2

2 ε + c6e

√
2a2

2−2
√

a4
2+4b23ω2

2 ε +

c7e
−

√
2a2

2+2
√

a4
2+4b22ω2

2 ε + c8e

√
2a2

2+2
√

a4
2+4b22ω2

2 ε;

0 ≤ ε ≤ 1− H0

H
; 0 ≤ ε ≤ 1− k. (22)

By substituting the parameters of the A, B, C, and D coef-
ficients, the answers to the differential Eqs. (21) and (22) are
obtained as follows:

w1(ε) = c1e
−Aε + c2e

Aε + c3e
−Bε + c4e

Bε;

0 ≤ ε ≤ 1− H0

H
; 0 ≤ ε ≤ 1− k; (23)

w2(ε) = c5e
−Cε + c6e

Cε + c7e
−Dε + c8e

Dε;

1− H0

H
≤ ε ≤ 1; 1− k ≤ ε ≤ 1. (24)

In general, we have the following equation:

w(ε) = w1(ε) + w2(ε). (25)

After applying the boundary conditions in Eqs. (21) to (25),
a matrix of 8× 8 is obtained, which represents a row which is
mentioned in matrix Eq. (26), where the coefficients in matrix
Eq. (26) are as follows:

a61 = −A3e−A(1−K) + a2
1Ae−A(1−K);

a62 = A3eA(1−K) − a2
1AeA(1−K);

a63 = −B3e−B(1−K) + a2
1Be−B(1−K);

a64 = B3eB(1−K) + a2
1BeB(1−K);

a65 = C3e−C(1−K) − a2
2Ce−C(1−K);

a66 = −C3eC(1−K) + a2
2CeC(1−K);

a67 = D3e−D(1−K) − a2
2De−D(1−K);

a68 = −D3eD(1−K) + a2
2DeD(1−K).

In Eqs. (6) to (26), Ao is the initial cross-section of the struc-
ture, mo is the initial mass of the structure, Io is the initial
moment of inertia of the structure, I1 is the moment of inertia
of the first part of the structure, I2 is the moment of inertia of
the second part of the stairs, A1 is the cross-section of the ini-
tial part of the structure, A2 is the cross-section of the second
part of the stairs of the structure, mo1 is the mass of the ini-
tial part of the structure, mo2 is the mass of the second part of
the stairs of the structure, w1(x, t) is the displacement vector of
the initial part of the structure, and w2(x, t) is the displacement
vector of the second part of the stairs of the structure. Assum-
ing harmonic oscillation W (x, t) = W (x)eiωt that W (x) is a
function of the shape of the mode, ω is the natural frequency
of the structure, ε = x

H is parameter without dimension, a1,
a2, b1, b2 are the assumed parameters to solve the differential
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1 1 1 1 0 0 0 0
−A A −B B 0 0 0 0

e−A(1−K) eA(1−K) e−B(1−K) eB(1−K) −e−C(1−K) −eC(1−K) −e−D(1−K) −eD(1−K)

−Ae−A(1−K) AeA(1−K) −Be−B(1−K) BeB(1−K) Ce−C(1−K) −CeC(1−K) De−D(1−K) −DeD(1−K)

A2e−A(1−K) A2eA(1−K) B2e−B(1−K) B2eB(1−K) −C2e−C(1−K) −C2eC(1−K) −D2e−D(1−K) −D2eD(1−K)

a61 a62 a63 a64 a65 a66 a67 a68

0 0 0 0 C2e−C(1−K) C2eC(1−K) D2e−D(1−K) D2eD(1−K)

0 0 0 0 −a65 −a66 −a67 −a68


;

(26)

Figure 1. Stepped tube-in-tube structural system.

Table 1. Specifications of cross section, mass, length, flexural and shear stiff-
ness of a 25-story building.

EIo (KN/m2) EIi (KN/m2) AGt (KN/m2) m (ton/m) L (m)
35.29×109 7.5538×109 3.99×107 325.83 75.9

equation, A, B, C, D are the assumed parameters for the an-
swer of the equation, k = H0

H is the length of ratio parameter,
w(ε) is the answer of the whole equation, and c1 to c8 are the
constant coefficients of the answer to the differential equation.

3. VALIDATION AND COMPARISON WITH
OTHER ARTICLES WITH PROVIDED
EXAMPLES

In this section, mathematical examples are provided to show
application, efficiency, and computational accuracy. In the pre-
sented examples, the vibrational frequency of tall structures
with a different tube-in-tube system is calculated by consider-
ing the value of the parameters related to the structure. Fig-
ures 1 and 2 show a typical tube structure with an interior tube.
Each tube consists of four plates with an approximately uni-
form thickness of t equivalent. Therefore, the stepped tube-
in-tube model can form a continuous system consisting of two
tubes. Floor and roof plates are considered as hard diaphragms
inside the structure. In the stepped tube-in-tube system, the ad-
dition of an external tube increases the stiffness. The changes
in the height of the external tube on the frequency of the whole
system are obtained by assuming that the height of the inner
tube is constant.

Example 3.1. The vibrational frequency of the tube-in-tube
system is given in Fig. 3 and Table 1 (specifications of cross

Table 2. The obtained frequency using the mathematical model and compari-
son with other studies.

Method Frequency
Mathematical model 3.7234
Effects axial forces20 3.214
Top displacement21 3.157

Mode superposition21 3.279
Finite element22 3.715

Variational method23 3.462
Sturm-Liouville equation7 3.463

Ordinary differential equation24 3.461
Power-series solution16 3.518
D’Alembert’s principle9 3.705

Table 3. Dimensional specifications of a 50-story building with a framed tubu-
lar system.

Tube Spacing Height of Tube Spacing
dimension columns story dimension columns
2Wf (m) Sf (m) h (m) 2Ww (m) Sw (m)

50 2.5 3 30 2.5

section, mass, length, flexural and shear stiffness of a 25-story
building) using the proposed method above.

The answer is calculated after placing the relevant A, B, a1,
a2, C, D parameters in the determinants of matrix Eq. (26)
and equating the determinant to zero. The obtained answer by
the analytical mathematical method in Fig. 4 is accurate and
correct compared to the previous studies and finite element.
The frequency was obtained by using the mathematical model
on Fig. 4: ω1 = 3.7234, ω2 = 16.2099, ω3 = 41.0890. The
obtained frequency using the mathematical model and compar-
ison with other studies are shown in Table 2.

Example 3.2. A mathematical calculation was provided to
analyze the free vibration of symmetrical buildings with a sin-
gle tube system to validate the calculation method.

In the second example, a building is analyzed with a rein-
forced concrete tube with a height of 50 floors. The size of
the members of the beam and column is 0.8× 0.8 meters. The
height of each floor is 3 meters and the distance of column
from the center to center is 2.5 meters. The thickness of the
floor plates is 0.25 meters. The geometric parameters of the
building are given in Table 3. The stiffness properties of the
structural components are used from the model proposed by
Maleknejad and Rahgozar, as shown in Tables 3 and 4.12

The obtained answer by analytical mathematical method for
the equation is shown in Fig. 5. The obtained answer from
the calculations for the tubular structural system is listed in
Table 5.
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Figure 2. Plan of stepped tube-in-tube structural system with equivalent beam plan.

Table 4. Specifications of equivalent hardness for a 50-story building.

Actual structure Equivalent membranes Equivalent membranes
Material Webs Flanges

E (KN/m2) G (KN/m2) Ew (KN/m2) Gw (KN/m2) tw (m) Ef (KN/m2) Gf (KN/m2) tf (m)
2×107 8×106 2×107 1.794×106 0.256 2×107 1.794×106 0.256

Figure 3. Plan of a 25-story tall building with a tube-in-tube system.

4. MODELING AND DISCUSSION RESULTS

After validating the proposed method, nine models with
different heights were presented for the stepped tube-in-tube
building, the dimensional specifications of which are given in
Tables 6 to 8.

The obtained frequency for the stepped tube-in-tube system
at different heights by mathematical method are listed in Ta-
ble 9.

The obtained answer by analytical mathematical method for
the equation are shown in Fig. 6.

As observed, the obtained answer in row 1 (Table 9) for the

Table 5. The obtained answer from the calculations for the tubular structural
system.

Structural Analytical Frequency (rad/sec)
system method ω1 ω2 ω3

Tube mathematical 1.2838 5.7536 14.5574
Tube R = 8 1.105 5.434
Tube Malekinejad et al.9 1.239 5.707
Tube SAP 2000 FEM 1.148 5.758

Table 6. Specifications of stepped external tube and specifications inner tube.

a1 b1 a2 b2
0 0 6.8 16.85

0.51416 0.179476 6.8 16.85
0.77124 0.403821 6.8 16.85
1.02832 0.717904 6.8 16.85
1.2854 1.121725 6.8 16.85
1.54248 1.615284 6.8 16.85
1.79956 2.198581 6.8 16.85
2.05664 2.871616 6.8 16.85
2.31372 3.634389 6.8 16.85
2.5708 4.4869 6.8 16.85

50-story stepped tube-in-tube building is consistent with the
study of Maleknejad and Rahgozar.9 Therefore, the correct-
ness of the method and the answer for the models in this study
are confirmed.

The obtained frequency (Figs. 7 and 8) decreases while in-
creasing the height. A 50-story structure with a stepped tubu-
lar system with different heights was analyzed (Tables 7, 8,
and 9). The result of the first natural frequency was evalu-
ated and compared with the results obtained by Maleknejad et
al., as well as finite element analysis.9 Tables 2 and 5 indi-
cate the results for tube-in-tube structures. The specifications
of a tubular system with a stepped tube at the height of the
structure are given in Table 9 for nine models. In addition, the
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Figure 4. The obtained answer by using an analytical mathematical method.

Figure 5. The obtained answer by analytical mathematical method for the
equation.

stepped tube-in-tube structure was analyzed and the result of
the first natural frequency, obtained by the proposed approx-
imation method, is compared with an obtained answer by the
finite element method from SAP 2000, as shown in Table 9 and
Figs. 7 and 8.

5. CONCLUSIONS

The goal of the present study was to calculate the vibrational
frequency of tall buildings with a stepped tube-in-tube system
for mass and stiffness with stepped decreasing. Finite element
analytical methods are based on discrete modeling and a large
number of linear equations are needed for calculating the re-
sults of the structural analysis due to a large number of ele-
ments. The proposed methods and equations provided a free
vibration analysis for tall stepped tubular structures. In this

Table 7. Specifications of stepped external tube and specifications inner tube
in terms of height and k coefficient.

k H (m) a21/2 b21 a41/4
0.2 30 0.13218 0.032212 0.017472
0.3 45 0.297406 0.163071 0.08845
0.4 60 0.528721 0.515386 0.279546
0.5 75 0.826127 1.258267 0.682485
0.6 90 1.189622 2.609142 1.415201
0.7 105 1.619208 4.833758 2.621835
0.8 120 2.114884 8.246178 4.472735
0.9 135 2.67665 13.20878 7.164456
1 150 3.304506 20.13227 10.91976

Table 8. Specifications of inner tube.

k H (m) a2 b2 a22/2 b22 a42/4
0 150 6.8 16.85 23.12 283.9225 534.534

Table 9. The obtained frequency for stepped tube-in-tube system at different
heights by mathematical method.

No. Heights inner Heights outer Frequency
tube (m) stepped tube (m) ω (rad/s)

1 150 150 1.39735
2 150 135 1.56800
3 150 120 1.80813
4 150 105 2.16023
5 150 90 2.70534
6 150 75 3.61369
7 150 60 5.29494
8 150 45 8.94535
9 150 30 19.41863

mathematical study, the structure was modeled in a continu-
ous environment. This was closer to the reality of a stepped
structure which needed the solution of a differential equation
which was easily programmed in computational software. The
results can be used to reduce modeling errors. Differential
equations were used to calculate the natural frequencies of a
stepped tubular structure with variable stepped mass and stiff-
ness which was solved by a strong form. The results were cal-
culated correctly and they indicated that the changes in bend-
ing and shear stiffness had the greatest effect on the first fre-
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Figure 6. The obtained answer by analytical mathematical method for equation.

Figure 7. Bar diagram of vibration frequency changes for stepped tube system
models.

quency. The effectiveness of the method was presented by
comparing the mathematical results and finite element, and the
available results for tubes in tube-in-tube and single tubes were
compared and confirmed only through the previous papers.
Mathematical examples showed that the approximate values
of the natural frequency of a tall building with stepped tube-
in-tube structures are acceptable with more accurate results of
the finite element method in the range by using the proposed
method, and the use of the obtained natural frequency in this
method was approved. The proposed method in this study was
generally simple, accurate, economical, reliable and particu-
larly suitable in approximation analysis for use in the prelim-

Figure 8. The changes of vibrational frequency of the system with increasing
the height.

inary design stages. Further, tube-in-tube structural systems
were more compatible with the proposed analytical method.
The proposed analytical method was most compatible with a
higher number of stories. In other words, the proposed method
was more accurate as the number of stories increased. In the
proposed analytical method for tubular systems, the addition
of an external tube increased the stiffness of the whole system.
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Further, in the conditions where the stiffness of the structure
remained constant, the higher height of the external tube led to
a lower natural frequency.
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