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A numerical technique for detection of unbalance magnitude of a rotor-bearing system is proposed and verified
by experimental analysis. Dimensional analysis is used for development of mathematical model of an unbalanced
rotor-bearing system following rigid rotor approach. A developed mathematical model is solved by factorial re-
gression analysis method using the experimental data obtained by a Box-Behnken design. The proposed approach
integrates the rotor parameters, disc parameters, bearing parameters and operating conditions with the synchronous
vibration amplitude. Confirmation experiments are conducted using Taguchi design methodology with unbalance
mass, rotor speed, mass eccentricity and radial load as parameters with different levels assigned to them.

1. INTRODUCTION

Rotating machines play a vital role in many industries such
as manufacturing, cement, food processing, automotive indus-
try etc. to name a few. Failure of the rotating machines
severely affects the production rates and the manufacturing
cost; hence proper health monitoring and diagnosis of rotat-
ing machines is essential. Rotor unbalance is one of the prime
contributors to the vibrations in these rotating machines. If
unbalance is not corrected, it results into fatigue in support
structures, promotes bearing wear, and leads to power loss.
Unbalance results in synchronous i.e., 1 x rpm vibration com-
ponent with a steady amplitude which can be corrected by a
technique called dynamic balancing. In the present study only
the unbalance fault is taken into consideration synchronous vi-
bration component is taken for unbalance estimation.1Wang et
al.2 put forth an algorithm that simultaneously identified both
the residual unbalance and the dynamic coefficient of the bear-
ing applicable for a single disc and signal span rotor. They
modelled the rotor as a homogeneous and continuous Rayleigh
beam and then the developed model equation was solved using
finite element method. This model is applicable to the rotor
supported by both rolling contact bearing as well as the jour-
nal bearing. Liu et al.3 proposed a method that minimizes
the initial unbalance in multistage rotors used in aero engines.
They developed a prediction model for initial unbalance of the
final multistage rotor assembly and the optimum assembly an-
gle for each rotor. They verified the effectiveness of the pro-
posed method using the balancing machine.

Shrivastava and Mohanty4 presented a method for estima-
tion of the unbalance force of rotor-bearing system using a
joint-input state estimation technique. The proposed method
was experimentally verified for different shaft speeds and noise
levels. Sensitivity analysis was also

performed to observe the effect on response by changing
system parameters. Ambur and Rinderknecht5 proposed the
parameter estimation method for the detection of unbalance
using frequency domain vibration data. The estimated pa-
rameters were the magnitude of unbalance, phase, and loca-
tion. Al-Shudeifatet al.6 studied the unbalance response of the
cracked rotor on critical whirl amplitudes using the finite ele-

ment method and validated the numerical result by performing
experiments. The peak amplitudes corresponding to the critical
whirling speeds were found to be significantly altered because
of a change in the angle between the unbalance force vector
and the crack opening direction. The existence of the angle of
the unbalance force vector was found which corresponds to the
removal of critical whirl vibration for the cracked rotor system
as compared to a crack free rotor. Cao et al.7 quantitatively
analyzed the effect of fluctuations in the speed on the vibra-
tions of unbalanced rotor. A method based on zoom synchro-
squeezing transform (ZST) and tacholess order tracking was
proposed for the correction of the unbalance. In the first step,
the instantaneous angular speed was obtained using ZST and
the corresponding phase was calculated. The signal resampling
done to minimize the effect of speed fluctuations. By making
use of the discrete Fourier transform, the obtained angular do-
main signal was then transformed into the order domain to get
the amplitude and phase of vibration signal.

Sanches and Pederiva8 presented numerical and experimen-
tal method for the simultaneous identification of faults such
as unbalance and residual shaft bent. Use of the finite element
method was made to model the rotor while correlation analysis
was used to identify these faults in time domain. The param-
eters used for the detection were the magnitude of unbalance
and the phase for each disc. Developed algorithm was tested
for ten cases first without noise and then by adding 6 percent
random noise. The predicted fault parameters by the algorithm
were satisfactory as compared to their reference experimental
values. Shrivastava and Mohanty9 proposed a model for esti-
mation of the amplitude and phase of the single plane unbal-
anced rotor. Kalman filtering and a method based on recursive
least square input force estimation was used. The effect of
noise, filter parameters, and modelling error on unbalance pa-
rameters was analyzed. Use of reduced order model for force
estimation makes the analysis fast and highlights its suitability
for online monitoring. Wang and Jiang10 developed a differ-
ential equation for a dual- rotor system with misalignment and
unbalance faults. The developed equation was solved using the
Runge-Kutta method. T he cascade plot, time waveform, and
frequency spectrum were used to identify the faults such as
mass eccentricity, misalignment angle and parallel misalign-
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ment. It is observed from the model and experiment that the
spectrum of the dual-rotor system consists of the peaks at first
two harmonics speed frequency, peak at two times the speed
frequency for the misalignment and unbalance.

Yao et al.11 proposed two method for the identification of the
unbalance parameters. In the first method, use of the modal ex-
pansion technique with the optimization algorithm was made
while in second, the modal expansion technique was applied
to inverse problem. The proposed method is effective for the
identification of magnitude and phase of the axial location of
the unbalance. Bartkowiak12 studied the synchronization of a
controlled unbalance rotor. Method of direct separation of mo-
tion was used to derive the equations of motion. It is observed
that the amplitude of vibration of the supporting body in res-
onance condition reduces after increasing the unbalance mass.
Fonseca et al.13 studied the rotor unbalance

and rotor drops in active magnetic bearings. Due to contact
of rotor with inner race of back up bearing and the presence of
these two phenomena leads to the chaotic motion. They stud-
ied the rotor both numerically and experimentally. Their study
showed that even a smaller amount of unbalance leads to ro-
tor swing and severely affects its dynamic behavior. Wang et
al.14 put forth a mathematical model for identification of the
unbalance of the single-span single -disc rotor in that the rotor
was modeled as elastic Euler-Bernoulli beam and the forces
exerted by bearings and the disc on the rotor were considered
as point forces. Their proposed method turned out to be effi-
cient for rotor balancing without a test run and external exci-
tation. Shamsah et al.15 put forth a novel method for the de-
tection of rotor unbalance with a technique involving a lesser
number of sensors. The method can be beneficial for the big-
ger rotating machineries having number of bearings. With the
reduced number of sensors, the computational time required
for the signal processing will be significantly reduced and ulti-
mately the machinery downtime could also be reduced. Yadav
et al.16 studied the effect of unbalance forces on the dynam-
ics of high-speed rotors having ball bearing of radial clear-
ance as a non-linearity. The dynamic response was studied
using Poincare maps, orbit plots and power spectra. Ocampo
et al.17 proposed the polar plot analysis method for the identi-
fication of the angular position of the unbalance force on non-
symmetric rotors. They developed a two degree of freedom
mathematical model of a rotor with an unequal principal mo-
ment of inertia of the shaft in transverse direction. Bartkowiak
et al.18 studied the synchronization of the unbalanced rotor for
forced excitation condition. Numerically, it was seen that, for
the system in resonance, the control law can control the syn-
chronization at its existence limit. Also, the amplitude of vi-
bration of supporting body in resonance condition can be min-
imized by increasing the unbalance mass while the energy of
excitation further transferred to rotor. Wen et al.19 developed
a dynamic model of rotor system with four degrees of freedom
to determine the reaction forces due to rotor unbalance. Based
on these reaction forces, a three degree of freedom dynamic
model of bearing cage motion was also proposed. Experimen-
tal validation of the simulation result was carried out and the
presence of cage rotating frequency, its multiple harmonics,
inner race rotation frequency, combined frequencies were ob-
served due to presence of unbalance. M. Arias-Montiel et al.20

presented methodology for the unbalance control of the asym-
metrical two disk rotor-bearing system. They used the finite el-
ement method for mathematical modelling. The methodology

was based on the asymptotic state observer using displacement
measurement at both disks.

The present work aims to estimate the synchronous vibra-
tion amplitude so at to detect the presence of the unbalance
in rotor bearing system. The method integrates the unbalance
magnitude with vibration amplitude by considering the rotor
parameters, disc parameters, bearing parameters and operat-
ing conditions so that with capturing of the vibration signal in
frequency domain it is possible to detect the presence as well
as the magnitude of unbalance in rotating machines of prac-
tical interest. All these parameters together considered first
time in the mathematical modelling for rotor unbalance de-
tection and adds novel contribution to this field. Developed
mathematical model equation is solved by factorial regression
analysis method using the experimental data obtained by Box-
Behnken design. The validation experimentation is conducted
using Taguchi design methodology with unbalance mass, rotor
speed, mass eccentricity and radial load on rotor as parameters
with different levels assigned to them.

2. FORMULATION OF MATHEMATICAL
MODEL

A mathematical model was derived here for defining the cor-
relation between vibration response and the unbalance on the
rotor-bearing system. Dimensional analysis21–23 was used for
development of theoretical model equations. It was assumed
that the synchronous vibration displacement response due to
presence of rotor unbalance depends on the parameters given
in Eq. (1).

Synchronous amplitude =f(ds, ρs, Ls,ms, Es, diDisc,

doDisc, er, tDisc, MDisc, EDisc,

ρDisc,Kc, k, δ, C, ν , cr, Di, Do,

Dr, Dp, Z,Wr, Mu, N). (1)

The following procedure was adopted for obtaining the dimen-
sionless parameters for vibration response of unbalanced rotor.

i. Determination of the parameters as in Eq. (1) and ex-
pressing their dimensions in Mass (M), length (L) and
Time (T) system of units as in Tab. 1.

ii. Selection of the repeating parameters from the parameters
listed in Eq. (1). Here, the rotor diameter (R1=ds), rotor
speed (R2=N) and radial load on the rotor (R3=Wr) were
selected as repeating parameters.

iii. Expressing the matrix of the repeating parameters as,

[R] =

R11 R12 R13

R21 R22 R23

R31 R32 R33

ML
T
. (2)

Here the number of fundamental dimensions in Tab. 1 are 3,
hence the number of repeating variables (r) chosen are 3.

i. The parameters other than repeating are the non-repeating
parameters. Writing the matrix of the non-repeating pa-
rameters as,

[U ] =

U11 U12 . . U1n

U21 U22 . . U2n

U31 U32 . . U3n

ML
T
. (3)
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Table 1. Parameters for mathematical modelling with their dimensions and
units.

Parameter Symbol Unit Dimension
Rotor Parameters

Rotor diameter ds mm L
Mass density of rotor ρs Kg/m3 ML-3

Rotor length Ls mm L
Mass of rotor ms Kg M
Elastic modulus of rotor Es N/m2 ML-1T-2

Disc Parameters
Inner diameter of disc diDisc mm L
Outer diameter of disc doDisc mm L
Eccentricity radius er mm L
Disc thickness tDisc mm L
Mass of Disc MDisc Kg M
Elastic modulus of disc EDisc N/m2 ML-1T-2

Mass of density of disc ρDisc Kg/m3 ML-3

Bearing Parameters
Constant for contact deformation Kc N/mm1.5 ML-0.5T-2

Curvature ratio k -- --
Deflection δ Mm L
Damping coefficient C Ns/m MT-3

Lubricant viscosity ν mm2/s L2T-1

Radial clearance Cr mm L
Inner race diameter Di mm L
Outer race diameter Do mm L
Roller diameter Dr mm L
Pitch diameter Dp mm L
Number of rollers Z -- --

Operating Parameters
Radial load Wr N MLT-2

Unbalance Mu gm M
Speed N rpm T-1

Response Parameters
Displacement y µm L

ii. Deciding the number of dimensionless parameters. The
total number of parameters (n) including the response as
listed in Eq. (1) were 27. The number of repeating pa-
rameters selected were 3. Hence, the number of dimen-
sionless parameters were 25 (n-r).

iii. Applying the matrix method22 for obtaining the non-
dimensionless parameters as,

Un

RC1n
1 RC2n

2 RC3n
3

=M0L0T 0 = (πn). (4)

iv. Substitution of dimensions of parameters from Eqs. (2)
and (3) in Eq. (4) as,(

MU1nLU2nTU3n
)[(

MR11LR21TR31
)C1n ·

(
MR12LR22TR32

)C2n

·
(
MR13LR23TR33

)C3n

] = (πn).

(5)

v. Expressing Eq. (5) as algebraic equation,

R11C1n +R12C2n +R13C3n = U1n;

R21C1n +R22C2n +R23C3n = U2n;

R31C1n +R32C2n +R33C3n = U3n. (6)

vi. Solving the simultaneous Eq. (6) to obtain the dimension-
less parameters as listed in Tab. 2.

Table 2. Parameters in Non-dimensional form.

πρs
ρsds

4N2

Wr
πk k

πLs
Ls
ds

πδ
δ
ds

πms
msdsN

2

Wr
πC

Cds
NWr

πEs
Esds

2

Wr
πυ

ν
ds2N

πdiDisc

diDisc
ds

πcr
cr
ds

πdoDisc

doDisc
ds

πDi

Di
ds

πer
er
ds

πDo
Do
ds

πtDisc
tDisc
ds

πDr
Dr
ds

πMDisc

MDiscdsN
2

Wr
πDp

Dp

ds

πEDisc

EDiscds
2

Wr
πZ Z.

πρDisc
ρDiscds

4N2

Wr
πMu

MudsN
2

Wr

πKc
Kcds

1.5

Wr
πy

y
ds

vii. Substitution of dimensionless parameter from Tab. 2 in
Eq. (1).

y

ds
=f

(
ρsds

4N2

Wr
,
Ls
ds
,
msdsN

2

Wr
,
Esds

2

Wr
,

diDisc

ds
,

doDisc

ds
,

er
ds
,
tDisc

ds
,
MDiscdsN

2

Wr
,
EDiscds

2

Wr
,
ρDiscds

4N2

Wr
,

Kcds
1.5

Wr
, k,

δ

ds
,
Cds
NWr

,
ds

2 N
,
cr
ds
,
Di

ds
,
Do

ds
,
Dr

ds
,

Dp

ds
, Z,

MudsN
2

Wr

)
. (7)

Equation (7) represented the theoretical model for defining the
vibration displacement due to unbalance. In Eq. (7) the func-
tion ‘f’ is to be obtained experimentally.

3. REDUCED ORDER MODELLING

Now, as the parameters in Eq. (7) were still more, the com-
putational time required to solve these equations was more.
Hence, it was required to reduce the number of parameters.
This was done by performing the mathematical operations in
dimensional analysis as,24

i.

π1 =
πs

πEs

× πLs =
ρs × ds ×N2 × Ls

Es
; (8)

ii.

π2 = πms
× πer =

ms ×N2 × er
Wr

; (9)

iii.

π3 =
πMDisc × πρDisc

πEDisc

=
MDisc×ds3×N4×ρDisc

EDisc ×Wr
; (10)

iv.

π4 =
πCr

×πDp

πDr×πυ×πZ×πKc

=
N×Cr×Dp×Wr

ds
0.5×υ×Dr×Z×Kc

;

(11)

v.

π5 = πMu =
MudsN

2

Wr
; (12)

vi.

θ = πdiDisc×πdoDisc×πtDisc×πC×πDi
×πDO

×πk×πδ. (13)
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Substituting the Eqs. (8) to (13) in Eq. (7) we get,

y

ds
=

(
θ,
ρs × ds ×N2 × Ls

Es
,
ms ×N2 × er

Wr

MDisc × ds
3 × N4 × ρDisc

EDisc ×Wr
,

N × Cr ×Dp ×Wr

ds
0.5 × υ ×Dr × Z ×Kc

,

MudsN
2

Wr

)
. (14)

Equation (14) represents the reduced order model of the origi-
nal model given in Eq. (7) wherein the number of parameters
was reduced from 23 to 6 without affecting the physics of the
problem. To solve the Eq. (14), and for evaluating the function
‘f’, the use of design of experiments with multivariable regres-
sion technique was used.23–25 Expressing the Eq. (14) in the
form of power law,

y

ds
= θ × (π1)

p × (π2)
q × (π3)

r × (π4)
s × (π5)

t
; (15)

where, ‘p’ to ‘t’ were the unknowns which were to be evaluated
experimentally. For further simplification, taking log on the
both the sides of Eq. (15) we get,

log(
y

ds
) = log θ + p× log (π1) + q × log (π2) + r × log (π3)

+ s× log (π4) + t× log (π5) (16)

Now, let us assume that,

log(
y

ds
) = Y ; log (θ) = a0;

log (π1) = x1; log (π2) = x2;

log (π3) = x3; log (π4) = x4;

log (π5) = x5.

Hence, Eq. (20) became,

Y = a0 + px1 + qx2 + rx3 + sx4 + tx5. (17)

Now, to evaluate the unknowns in Eq. (17), if ‘n’ experi-
ments were performed then the results of all experiments can
be summed as,

n∑
j=1

Yi =na0 + p

n∑
j=1

xj1 + q

n∑
j=1

xj2 + r

n∑
j=1

xj3

+ s

n∑
j=1

xj4 + t

n∑
j=1

xj5; (18)

where, the suffix ‘j’ in above equation represented the jth exper-
iment. As there were six unknowns in Eq. (17), it was required
to develop six simultaneous equations which were developed
and written in matrix form given in Eq. (19) and is solved

using a MATLAB coding.26



n
∑n
j=1 xj1

∑n
j=1 xj2∑n

j=1 xj1
∑n
j=1 xj1xj1

∑n
j=1 xj1xj2∑n

j=1 xj2
∑n
j=1 xj2xj1

∑n
j=1 xj2xj2∑n

j=1 xj3
∑n
j=1 xj3xj1

∑n
j=1 xj3xj2∑n

j=1 xj4
∑n
j=1 xj4xj1

∑n
j=1 xj4xj2∑n

j=1 xj5
∑n
j=1 xj5xj1

∑n
j=1 xj5xj2

. . .

. . .

∑n
j=1 xj3

∑n
j=1 xj4

∑n
j=1 xj5∑n

j=1 xj1xj3
∑n
j=1 xj1xj4

∑n
j=1 xj1xj5∑n

j=1 xj2xj3
∑n
j=1 xj2xj4

∑n
j=1 xj2xj5∑n

j=1 xj3xj3
∑n
j=1 xj3xj4

∑n
j=1 xj3xj5∑n

j=1 xj4xj3
∑n
j=1 xj4xj4

∑n
j=1 xj4xj5∑n

j=1 xj5xj3
∑n
j=1 xj5xj4

∑n
j=1 xj5xj5




a0
p
q
r
s
t



=



∑n
j=1 Yi∑n

j=1 xj1Yj∑n
j=1 xj2Yj∑n
j=1 xj3Yj∑n
j=1 xj4Yj∑n
j=1 xj5Yj

 . (19)

4. EXPERIMENTATION AND DATA
ACQUISITION

Now, to obtain the unknowns in model equation (15) and to
execute the Box-Behnken design [BBD] for obtaining the ex-
perimental data to get solution to the matrix equation (19), a
design matrix was obtained using the MINITAB software that
has dimensions of the [(2f (f -1) +Cpf )] for experimental runs
in that f indicated the number of factors and Cp indicated the
number of central points. Accordingly, in the analysis of the
vibration response of the unbalanced rotor due to factors such
as mass unbalance, rotor speed, mass eccentricity and radial
load on rotor, different combinations of these factors were ex-
ecuted to verify the dependence of the vibration amplitude at
synchronous frequency component on these factors giving total
27 experimental data sets. Figure 1 (a) shows the actual experi-
mental setup, 1 (b) shows the schematic of the system and Fig.
1 (c) shows the data acquisition system, accelerometers used
for conducting the experiments. Experimental setup consisted
of a rotor-shaft driven by a 1.5 kW DC motor. The speed regu-
lation was achieved by dimmer switch. The shaft was coupled
to a motor through a flexible coupling and was supported by
SKF 6005 ball bearings at both ends and lubricated by SKF
LGHP2 grease having base Oil viscosity at 400C, 96 mm2/s. A
hydraulic loading arrangement was used to provide the radial
load and rotor unbalance is created by placing masses of dif-
ferent magnitude and radii on a balance disc as shown in Fig. 1
(a-b).

A piezoelectric accelerometer as shown in Fig. 1 (c) (Adash-
AC102-1A) was mounted on the housing of the support bear-
ing that captures the vibration signature of the unbalanced ro-
tor. The signals were sampled with a sampling frequency of
4096 (212) Hz. The digital tachometer of non-contacting type
gave the direct speed measurement. Table 3 shows factors and
their levels used for carrying out the experiments.

5. RESPONSE SURFACE METHOD [RSM]

The RSM involves collection and mathematical analysis of
the experimental data using statistical techniques. The RSM
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Table 3. Factors and levels for experimental runs.

Factors
Levels

L1 L2 L3

Mu 15 20 25
N 1020 2040 3060
er 60 70 80
Wr 1000 2000 3000

(a)

(b)

(c)

Figure 1. (a) Experimental setup photograph, (b) Schematic of test rig (b)
Data acquisition system.

Table 4. Experiment Design Matrix and Result.

Run Order Mu N er W Y
1 15 2040 60 2000 25.19
2 20 2040 80 1000 49.66
3 15 3060 70 2000 43.45
4 15 2040 70 1000 28.72
5 25 2040 80 2000 75.78
6 20 1020 80 2000 53.88
7 20 2040 60 1000 22.57
8 20 3060 60 2000 34.14
9 20 3060 70 1000 38.94
10 15 1020 70 2000 31.16
11 20 1020 60 2000 24.49
12 20 2040 70 2000 46.08
13 20 2040 70 2000 46.08
14 20 3060 80 2000 75.12
15 20 1020 70 1000 27.92
16 25 2040 60 2000 34.77
17 20 1020 70 3000 44.30
18 25 2040 70 3000 62.90
19 20 2040 80 3000 78.79
20 20 2040 60 3000 35.81
21 20 2040 70 2000 46.08
22 15 2040 80 2000 55.42
23 25 3060 70 2000 59.97
24 25 1020 70 2000 43.01
25 20 3060 70 3000 61.77
26 15 2040 70 3000 45.57
27 25 2040 70 1000 39.65

was suitable for the modeling and analysis of a physical prob-
lem wherein an output or response variable was influenced by
several factors and it was also desired to optimize the response
variable. BBD was the important class of the three level de-
signs for fitting the second order response in RSM.27 In this
work BBD was used for assembling second order polynomial
equation and for exploring the quadratic response surface. This
design consisted of three replicated points at the center of a
multidimensional cube and a set of points in the middle of
each side. The multinomial equation (20) was derived using
Minitab software.

yi =β0 + β1Mui
+ β2N + β3er + β4Wr + β5MuMu

+ β6NN + β7erer + β8WrWr + β9MuN + β10Muer

+ β11MuWr + β12Ner + β13NWr + β14erWr + ei;
(20)

where, β0 indicated intercept and β1 to β14 were the regression
coefficients. The terms ei represented the experimental error
and the subscript ‘i’ indicated the experiment number.

6. RESULTS AND DISCUSSIONS
In the present study, an experimental setup as shown in

Fig. 1 is used to analyze the effect of different factors on the
vibration displacement amplitude at synchronous frequency of
an unbalanced rotor. Table 4 shows the design matrix obtained
using MINITAB software and in that the last column of the
matrix shows the response variable which is vibration displace-
ment amplitude obtained using the vibration analyzer.

For the solution of the constants of Eq. (19), the data set of
Table 4 is used which yields,

a0 = −3.2295; p = −2.5098; q = 2.7395;

r = −1.0379; s = 2.7459; t = 0.6280.
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Table 5. ANOVA for the radial vibration displacement.

Source DF Coefficient SS MS F P
Model 14 +144.6 6487.82 463.42 2651.59 0.000
Linear 4 - 6269.17 1567.29 8967.79 0.000
Mu 1 -2.784 624.25 624.25 3571.87 0.000
N 1 - 0.01571 664.04 664.04 3799.50 0.000
er 1 -3.620 3734.34 3734.34 21367.25 0.000
Wr 1 -0.02175 1246.55 1246.55 7132.53 0.000
Square 4 - 64.63 16.16 92.45 0.000
Mu* Mu 1 -0.01637 0.89 0.89 5.11 0.043
N*N 1 -0.000001 8.47 8.47 48.44 0.000
er* er 1 +0.02094 23.39 23.39 133.84 0.000
Wr * Wr 1 -0.000001 11.28 11.28 64.52 0.000
Interaction 6 - 154.03 25.67 146.88 0.000
Mu*N 1 0.000299 5.46 5.46 31.23 0.000
Mu* er 1 0.05391 29.06 29.06 166.27 0.000
Mu* Wr 1 0.000320 10.26 10.26 58.69 0.000
N* er 1 0.000284 33.58 33.58 192.16 0.000
N* Wr 1 0.000002 12.55 12.55 71.84 0.000
er* Wr 1 0.000397 63.11 63.11 361.13 0.000
Error 12 - 2.10 0.17 - -
Lack of Fit 10 - 2.10 0.21 - -
Pure Error 2 - 0.00 0.00 - -
Total 26 - 6489.92 - - -

R2= 99.97 % R2-(adj)= 99.81 %

Hence the model Eq. (15) becomes,

y

ds
=0.0395× (π1)

−2.5098 × (π2)
2.7395 × (π3)

−1.0379

× (π4)
2.7459 × (π5)

0.6280
. (21)

6.1. Analysis of Variance [ANOVA]
ANOVA Table summarizes main effects, factor interactions,

and P-value. The P-value is an important indicator stating the
significance of a factor. P-values are frequently used in hy-
pothesis testing for accepting or rejecting a null hypothesis.
As P-values is smaller, it is an indication of significance of a
factor and a cut off value of 0.05 is used for accepting or re-
jecting the null hypothesis.27 Table 7 shows the results of the
ANOVA on experimental data.

By making use of the design of experiments, the coefficients
of the multinomial Eq. (20) are obtained as,

yi =144.6− 2.784Mui
− 0.01571 N − 3.620er

− 0.02175Wr − 0.01637MuMu − 0.000001 NN
+ 0.02094 erer − 0.000001WrWr + 0.000229MuN

+ 0.05391Muer + 0.000320MuWr + 0.000284 Ner

+ 0.000002 NWr + 0.000397 erWr. (22)

Equation (22) is used for prediction of the radial vibration dis-
placement amplitude of the synchronous frequency component
due to unbalance. To substantiate, the determined polynomi-
als are significant or not, variance analysis and an F- ratio test
was performed on them. The F-value obtained for the model is
2651.59 which show that the model is significant.

6.2. Confirmation Experiments
Further to continuation of the validity of the obtained model

Eq. (21) for the radial vibration amplitude at the synchronous
frequency component, confirmation experiments were con-
ducted using Taguchi’s design using the factors and their levels

Table 6. Parameters and values.

Rotor Disc Bearing
ds = 25 MDisc = 0.5 Cr = 11

Ls = 390 ρDisc = 7800 Dp = 36

ρs = 7800 EDisc = 200× 109 υ = 96

ms = 1.5 - Dr = 6.75

Es = 200× 109 - Z = 10

- - Kc = 274870.7

Table 7. Confirmation experiments.

Expt. Mu N er W yi-Expt. yi-Model
(Eq. 21)

yi-Regression
(Eq. 22)

1 15 1020 60 1000 15.4 15.29 17.58
2 15 2040 70 2000 39.2 38.47 42.16
3 15 3060 80 3000 74.5 74.30 84.65
4 20 1020 70 3000 45.6 44.30 49.37
5 20 2040 80 1000 50.4 49.64 52.01
6 20 3060 60 2000 35.8 34.17 39.14
7 25 1020 80 2000 62.1 61.95 65.05
8 25 2040 60 3000 41.5 41.23 47.49
9 25 3060 70 1000 46.2 44.80 48.39

as listed in Tab. 3. Taguchi design helps in reduction of num-
ber of experiments by making use of the orthogonal array.28, 29

The rotor-disc-bearing parameters used for the obtaining the
synchronous vibration amplitude using Eq. (21) are taken from
Tab. 6.

Table ?? gives L9 orthogonal array which also list the results
of the confirmation experiments and a comparison between the
model Eq. (21) and the regression Eq. (22).

For the trials listed in Table ??, the experimental response
plots are obtained using the multichannel vibration analyzer
by conducting experiments on the set up shown in Fig. 1.

Figure 2 shows response plot for the experiment 1 which
was obtained at a rotor speed of 1020 rpm.

As expected, first harmonic of the rotor speed frequency has
shown a principal peak due to seeded unbalance with an rms
amplitude value of 15.4 µm. The amplitude values predicted
by the proposed model Eq. (21) and the regression Eq. (22)
are 15.29 µm and 17.58 µm respectively. The other peaks seen
in Fig. 2 are the harmonics of the rotor speed frequency which
are because of the unbalance on the rotor. Figure 3 shows the
response plot for the confirmation experiment 2 which was ob-
tained at a rotor speed of 2040 rpm.

The principal peak observed from the spectrum is at the first
harmonic of the shaft speed frequency of 34 Hz having rms
amplitude of 39.2 µm. The model Eq. (21) and the regression
Eq. (22) also predicted the values of the vibration amplitude
of 38.47 µm and 42.16 µm respectively which are closer to the
experimental data.

Figure 4 shows the frequency spectrum for the third confir-
mation experiment conducted at 3060 rpm rotor speed.

A significant peak of 74.5 µm amplitude is noticed at the
51 Hz frequency which corresponds to the first harmonic of
the rotor speed frequency. The model Eq. (21) predicts the
vibration amplitude of 74.30 µm and the regression Eq. (22)
has predicted a peak of 84.65 µm which are nearly matching
with the experimentally obtained peak. Similarly for the other
experiments similar results are noticed as seen from the exper-
imental spectrums shown in Figures 5-10 and the comparison
of the vibration amplitudes as summarized in Table ??.

Figure 11 gives the comparison between the rms vibration
amplitude at synchronous frequency component obtained us-
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Figure 2. Response Plot for experiment 1.

Figure 3. Response Plot for experiment 2.

Figure 4. Response Plot for experiment 3.

Figure 5. Response Plot for experiment 4.

Figure 6. Response Plot for experiment 5.

Figure 7. Response Plot for experiment 6.
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Figure 8. Response Plot for experiment 7.

Figure 9. Response Plot for experiment 8.

ing mathematical model Eq. (21), regression Eq. (22) and the
experimental data, a fair amount of closeness can be seen.

6.3. Effect of Rotor Speed
Figure 12 shows the effect of rotor speed on the radial

vibration amplitude at synchronous frequency. Here, the
non-dimensional vibration amplitude (πy) is plotted against
thenon-dimensional rotor speed term(π1). It is evident that the
vibration amplitude increases with increase in rotor speed has
significant effect at 3060 rpm as compared to 1020 rpm and
suffices the theoretical development of the π1 term.

6.4. Effect of Mass Eccentricity Radius
Figure 13 shows the effect of eccentricity radius on the

radial vibration amplitude at synchronous speed frequency.
Here, the non-dimensional vibration amplitude (πy) is plot-
ted against thenon-dimensional eccentricity radius term(π2).
As seen from the figure, with increase in the mass eccentricity

Figure 10. Response Plot for experiment 9.

Figure 11. Comparison of the vibration amplitude.

radius, the amplitude found to be increasing and justifies the
theoretical development of π2 term.

6.5. Effect of Mass Unbalance
Figure 14 shows the effect of mass unbalance on the radial

vibration amplitude at synchronous speed frequency. Here, the
non-dimensional vibration amplitude (πy) is plotted against
thenon-dimensional mass unbalance term(π5).The radial vi-
bration amplitude at synchronous frequency component was
found to be increasing with increase in mass unbalance from
15 to 25 gm. justifies the theoretical development of π5 term.

7. CONCLUSION

In the present investigation, a numerical model is developed
for prediction of vibration displacement amplitude of syn-
chronous frequency component of an unbalanced rotor-bearing
system following rigid rotor approach. The numerical results
have validated for different experimental conditions with ex-
periments conducted in laboratory test rig. In this study the use
of design of experiments implementing the response surface
method and the Taguchi design is made for exploring simul-
taneous effect of the variables such as rotor unbalance, speed,
eccentricity radius, radial load etc. with three levels on the vi-
bration displacement amplitude. All these experiments are de-
signed to consider 2-way interaction among the variables and
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Figure 12. Variation of non-dimensional vibration amplitude vs non-
dimensional rotor speed [at 1020 rpm, 2040 rpm, 3060 rpm].

Figure 13. Variation of non-dimensional vibration amplitude vs non-
dimensional eccentricity radius [at 60 mm, 70 mm, 80mm].

also the main effects of the individual variables as mentioned.
From the obtained results, the following points can be deduced,

i. The synchronous vibration displacement amplitude is
found to be dependent on the level of unbalance, rotor
speed, eccentricity radius and the radial load.

ii. The synchronous speed frequency shows a principal peak
due to seeded unbalance in all the experimental trials with
the presence of the harmonics of the speed frequency
(Figures 2-10).

iii. With increase in the non-dimensional rotor speed, the
non-dimensional displacement amplitude at synchronous
speed frequency is found to be increasing and has signif-
icant effect at 3060 rpm as compared to 1020 rpm (Fig-
ure 12).

iv. It is evident that the non-dimensional vibration displace-
ment amplitude at synchronous frequency component in-
creases with increase in the non-dimensional eccentricity
radius term and the non-dimensional unbalance terms in
that the eccentricity radius has considerable effect on the
amplitude (Figure 13, 14).

v. To avoid and control the unstable rotor response, an elec-
tromagnetic actuator or active magnetic bearings along
with the suitable PID control may be placed on the shaft
at a suitable position, and the obtained displacement of a

Figure 14. Variation of non-dimensional vibration amplitude vs non-
dimensional mass unbalance [at 15 gm, 20 gm, 25 gm].

point of the rotor may be fed to the controller. Then the
stiffness of the shaft may be adjusted to keep the zones
of instability away from the excitation zone caused due to
unbalance.

vi. The different mountings on the shaft used in rotating ma-
chineries such as turbine, flywheel, gears etc. can be mod-
elled as disk as per the methodology presented in this pa-
per. The geometrical, material parameters associated with
these components needs to be in corporate in the theoret-
ical model. Then during the trial experimental work, the
effect of the amount of the increase in the synchronous vi-
bration amplitude due to changes in position and magni-
tude of unbalance on different disks needs to be obtained
by selecting the appropriate balancing planes. The suit-
able trial mass will be selected and state of the art methods
for the correction of the unbalance can be implemented.

PURVIEW

The proposed technique may also be utilized for the online
or real time monitoring of the rotor instability and unbalance
estimation. The obtained synchronous vibration displacement
may be fed to the suitable machine learning algorithm con-
sisting of the neural networks, genetic algorithm, neuro-fuzzy
system, or support vector machine classifier to predict the real
time machine working condition. Future research will deal
with this aspect.
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