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Ultrasonic guided waves are widely used in non-destructive testing (NDT), and complete guided wave dispersion,
including propagating and evanescent modes in a given waveguide, is essential for NDT. Compared with an infinite
plate, the finite lateral width of a rectangular bar introduces a greater density of modes, and the dispersion solutions
become more complicated. In this study, a recursive Legendre polynomial analytical integral (RLPAI) method is
presented to calculate the dispersion behaviours of guided waves in rectangular bars of orthotropic materials. The
existing polynomial method involves a large number of numerical integration steps, and it is often computationally
costly to compute these integrals. The presented RLPAI method uses analytical integration instead of numerical
integration, thus leading to a significant improvement in the computational speed. The results are compared with
those published previously to validate our method, and the computational efficiency is discussed. The full three-
dimensional dispersion curves are plotted. The dispersion characteristics of propagating and evanescent waves are
investigated in various rectangular bars. The influences of different width-to-thickness ratios on the dispersion
curves of four types of low-order modes for a rectangular bar of an orthotropic composite are illustrated.

1. INTRODUCTION

The use of ultrasonic guided waves has been successfully
demonstrated in a wide range of nondestructive testing appli-
cations. Dispersion curves of guided waves propagating in a
given structure are essential for inspection purposes and to ob-
tain information about the material properties. Accurate algo-
rithms for calculating these curves are indispensable tools for
engineers engaging in nondestructive assessment and for sci-
entists studying wave phenomena.

The general frequency equations were first derived by
Pochhammer and Chree for a cylinder and by Rayleigh and
Lamb for an infinite plate with traction-free faces.1–4 The dis-
persion characteristics of infinite plate and cylindrical waveg-
uides have been treated analytically, numerically, and experi-
mentally by several generations of scholars. Many analytical
and numerical methods have been developed and successfully
deployed to compute guided wave dispersion curves for plate-
like and cylindrical structures, such as the semi-analytical fi-
nite element method, spectral method, stiffness transfer ma-
trix method, reverberation-ray matrix method, and power se-
ries technique.5–9 An intrinsic feature of such waveguides is
the simplicity of the boundaries, as their boundaries consist of
one or two similar faces. They have infinite planar or axial
dimensions and have a finite dimension in only one direction.

Unlike simple structures, such as plates and (hollow) cylin-

ders, a bar with a rectangular cross section has finite dimen-
sions in two directions, i.e., a finite thickness and a finite width.
The formation of guided waves in a rectangular bar becomes
more complicated because of the intersections of more bound-
ary faces. Thus, it is more difficult to derive and analyze the
dispersion relation of a rectangular bar. The first studies on
the dispersion of guided waves in rectangular bars were per-
formed by Morse and Booker, which were confined to low fre-
quencies and to a limited ratio of the side lengths.10–13 Using
the Rayleigh–Ritz method, Nigro and Aalami gave approxi-
mate solutions and presented dispersion curves at low frequen-
cies for square and rectangular bars.14, 15 With the colloca-
tion method, Fraser obtained the dispersion curves of a lim-
ited range of wavenumbers for a rectangular bar. Using the
finite element method, Taweel et al. obtained the dispersive
properties of guided waves in bars.16 Gunawan and Hirose
developed a boundary element method to calculate the dis-
persion relations of guided waves in bars with arbitrary cross
sections.17 Using the semi-analytical finite element method,
Veres and Sayir determined the dispersion curves of a rectan-
gular wooden bar and related the dispersion curves and ma-
terial properties.18 Hayashi et al. derived the theoretical dis-
persion curves and wave structures for a bar with an arbitrary
cross section.19 Manzanares et al. presented a plane wave ex-
pansion method to predict the vibrational elastic modes in bars
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with square and circular cross sections.20 Using an analytical
superposition method, Krushynska and Meleshko investigated
guided waves in a rectangular elastic bar.21 Most of these pre-
vious studies on guided wave behaviours of rectangular bars
concentrated almost exclusively on propagating waves, with a
limited number of studies devoted to evanescent waves.

Propagating modes are relevant for wave propagation and
vibration. These modes have been discussed extensively for
various waveguides. Evanescent modes with complex or
purely imaginary wavenumbers are also present in perfectly
elastic materials without any energy leakage and represent lo-
cal modes.22 The complex spectra of guided waves in sim-
ple structures, such as infinite plates and cylinders, have been
determined by many researchers using various methods, such
as the numerical spectral method, spectral collocation method,
semi-analytical method, boundary element method, and Leg-
endre polynomial method.23–28 However, very few theoretical
studies on evanescent waves in a rectangular bar have been
established specifically. Indeed, it is more difficult to obtain
dispersion curves for a rectangular bar than for simple plate
structures. The recent wide utilization of guided waves in rect-
angular bars for non-destructive evaluation demands accurate
calculations of the complete guided wave dispersion. The tra-
ditional methods, e.g., finite element method or root-finding
routines, require a far greater coding effort or a tedious iterative
search procedure to find complex solutions of the transcenden-
tal dispersion equation of guided waves in a rectangular bar.
Moreover, although the Legendre polynomial method is quite
versatile for guided wave problems, it involves a large amount
of numerical integration calculations, resulting in a low com-
putational efficiency.29–34

This paper presents a recursive Legendre polynomial ana-
lytical integral (RLPAI) method to determine complete roots
of the dispersion equation of guided waves in a rectangular or-
thotropic composite bar. The RLPAI method does not require
the large amount of numerical integration calculations required
by traditional polynomial methods, and the computational ef-
ficiency increases significantly. Through numerical compar-
isons with available results, the presented method is validated.
The complete three-dimensional (3D) dispersion curves are
plotted in the complex wavenumber domain to gain deeper in-
sight into the properties of evanescent waves. The dispersion
characteristics of evanescent waves in various rectangular bars
are illustrated. The influences of different width-to-thickness
ratios on the dispersion curves are discussed in detail.

2. MATHEMATICS AND FORMULATION OF
THE PROBLEM

In this section, we derive the analytical formulation of the
problem in rectangular Cartesian coordinates (x, y, z), with the
origin located at a corner of the rectangular section. The x-
axis coincides with the wave propagation direction, and the y-
and z-axes are parallel to the width and thickness directions,
respectively, as shown in Fig. 1. The bar of finite width d and
finite thickness h lies in the positive y–z region, where the
medium occupies the region 0 ≤ z ≤ h and 0 ≤ y ≤ d.

The dynamics equations (Eq. (1)) and the constitutive equa-

Figure 1. Schematic diagram of a bar with rectangular cross section.

tion (Eq. (2)) for an orthotropic composite bar can be expressed
as follows:

∂Txx
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(2)
The strain–displacement relations are given as follows:
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∂ux
∂x

; εyy =
∂uy
∂y

; εzz =
∂uz
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;
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1

2

(
∂uy
∂z

+
∂uz
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)
; εxz =

1

2

(
∂ux
∂z

+
∂uz
∂x

)
;

εxy =
1

2

(
∂ux
∂y

+
∂uy
∂x

)
. (3)

In Eqs. (1)–(3), σij and εij are the stress and strain tensors,
respectively, Cij is the elastic parameter, ρ is the mass den-
sity, and ui (i = x, y, z) denotes the mechanical displacement
component in the i-th direction.

For a wave propagating in the x-direction, we assume dis-
placement components to be of the form,

ux(x, y, z, t) = exp(ikx− iωt)U(y, z);

uy(x, y, z, t) = exp(ikx− iωt)V (y, z);

uz(x, y, z, t) = exp(ikx− iωt)W (y, z); (4)

where U , V , and W denote the amplitude of the vibration in
the x-, y-, and z-directions, respectively, k is the wavenumber,
ω is the angular frequency, and i is the imaginary number.
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To meet the stress-free boundary conditions, namely
σzz
∣∣
z=0,h

= 0, σxz
∣∣
z=0,h

= 0, σyz
∣∣
z=0,h

= 0, σyy
∣∣
y=0,d

= 0,
σyz
∣∣
y=0,d

= 0, and σxy
∣∣
y=0,d

= 0, we introduce the position-
dependent material parameters, which are given as follows:

Cij = CijF (y, z); ρ = ρF (y, z). (5)

F (y, z) is defined by

F (y, z) = π(y)f(z) =

{
1, 0 ≤ y ≤ d and 0 ≤ z ≤ h;

0, elsewhere;
(6)

with π(y) and f(z) being rectangular window functions,

π(y) =

{
1, 0 ≤ y ≤ d

0, elsewhere
and f(z) =

{
1, 0 ≤ z ≤ h

0, elsewhere
.

The abovementioned boundary conditions can be automat-
ically incorporated in the constitutive relations.35 For a sim-
ple plate structure, function F is equal to f(z). To reduce the
number of resolving equations, we substitute Eqs. (3)–(6) into
Eq. (2) and substitute the result into Eq. (1). Consequently,
the following governing differential equations in terms of dis-
placement can be obtained:[
C55U′zz − k2C11U + C66U′yy + ik(C12 + C66)V′y +

ik(C13 + C55)W′z

]
F (y, z) + C55(U′z + ikW )F (y, z)′z +

C66(U′y + ikV )F (y, z)′y = −ρω2UF (y, z);[
C44V′zz − k2C66V + C22V′yy + ik(C12 + C66)U′y +

(C23 + C44)W′yz

]
F (y, z) + C44(V′z +W′y)F (y, z)′z +

(ikC12U + C22V′y + C23W′z)F (y, z)′y = −ρω2VF (y, z);[
C33W′zz − k2C55W + C44W′yy + ik(C13 + C55)U′z +

(C23 + C44)V′yz

]
F (y, z) + C44(V′z +W′y)F (y, z)′y +

(ikC13U + C23V′y + C33W′z)F (y, z)′z = −ρω2WF (y, z);

(7)

where the subscript is the partial derivative with respect to y or
z.

To solve the coupled wave equations, we expand U(y, z),
V (y, z), and W (y, z) to products of two Legendre orthogonal
polynomial series, as follows:

U(y, z) =

∞∑
m,n=0

p1m,nQm(z)Qn(y);

V (y, z) =

∞∑
m,n=0

p2m,nQm(z)Qn(y);

W (y, z) =

∞∑
m,n=0

p3m,nQm(z)Qn(y); (8)

where pim,n (i = 1, 2, 3) denotes the expansion coef-

ficients, Qm(z) =
√

2m+1
h Pm

(
2z−h
h

)
and Qn(y) =√

2n+1
d Pn

(
2y−d
d

)
, with Pm and Pn being the m-th and n-th

Legendre polynomials, respectively. All the summations will
be unavoidably truncated at some finite values m = M and
n = N when higher order terms become essentially negligi-
ble.

We substitute Eq. (8) into Eq. (7), multiply both sides of the
resulting equation by Q∗j (y) · Q∗p(z), integrate over y from 0

to d and over z from 0 to h, taking advantage of the orthonor-
mality of the Legendre polynomials, and rearrange the terms
in the equations into a matrix form:

k2

An,p,m,j11 An,p,m,j12 An,p,m,j13

An,p,m,j21 An,p,m,j22 An,p,m,j23

An,p,m,j31 An,p,m,j32 An,p,m,j33


p1m,n
p2m,n
p3m,n

+

k

Bn,p,m,j11 Bn,p,m,j12 Bn,p,m,j13

Bn,p,m,j21 Bn,p,m,j22 Bn,p,m,j23

Bn,p,m,j31 Bn,p,m,j32 Bn,p,m,j33


p1m,n
p2m,n
p3m,n

+

Cn,p,m,j11 Cn,p,m,j12 Cn,p,m,j13

Cn,p,m,j21 Cn,p,m,j22 Cn,p,m,j23

Cn,p,m,j31 Cn,p,m,j32 Cn,p,m,j33


p1m,n
p2m,n
p3m,n

 =

− ω2

Mn,p,m,j 0 0

0 Mn,p,m,j 0

0 0 Mn,p,m,j


p1m,n
p2m,n
p3m,n

 ; (9)

which can be written more compactly as

k2 A ·P + k1 B ·P + C ·P = −ω2 M ·P; (10)

where A, B, C, and M are matrices of order 3(M + 1)2 ×
3(N + 1)2, which can be obtained by Eq. (7) and are given in
the Appendix, and P = [p1m,n p2m,n p3m,n]T , where p1m,n,
p2m,n, and p3m,n are the three mechanical displacement compo-
nents.

It should be noted that in previous works the wave differen-
tial equations are transformed into the matrix eigenvalue prob-
lem.32–34 This is useful for the propagating mode, by specify-
ing real k and then solving for ω, but fails to find complex k
solutions because the solving involves a multivariable search.
We decompose the matrix so that the k dependence of the dif-
ferent terms becomes more apparent, and obtain Eq. (10). To
obtain all three types of roots (real, imaginary and complex),
we employ a mathematical technique known as the linear com-
panion matrix method and recast Eq. (10), leading to the fol-
lowing generalized eigenvalue problem:[

0 I

A−1(E−C) −A−1B

]
·R = k ·R; (11)

where I is the identity matrix, 0 is the zero matrix,
R = [P k ·P]T , and E = −ω2M.

This is a typical generalized eigenvalue problem and can be
easily solved using an eigensolver routine that yields the com-
plex eigenvalues k. The cases presented in this paper were
solved with the routine eigensolver of Mathematica (version
8.0).

It is important to note that for the Legendre polynomial se-
ries, the rectangular window functions and their derivatives
are introduced into the integral kernel functions in the solu-
tion process, resulting in a long computational time to per-
form the large number of numerical integration calculations.
To improve the computational efficiency, we present the RL-
PAI method, using analytical integrals instead of the numeri-
cal integration of the traditional Legendre polynomial method.
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Figure 2. Phase velocity dispersion curves of a square steel bar; black dotted
lines: results of Hayashi et al. obtained using the semi-analytical finite element
(SAFE) method,37 red dashed lines: our results.

According to the recursion and orthogonality of the Legendre
polynomial, the analytic formulas of the integrals involved in
Eq. (11) can be derived. There are five integral forms:

I1 =

∫ 1

−1
taPn(t)Pm(t) dt;

I2 =

∫ 1

−1
taPn(t)

d

dt
Pm(t) dt;

I3 =

∫ 1

−1
taPn(t)

d2

dt2
Pm(t) dt;

I4 =

∫ 1

−1
taPn(t)Pm(t)

d

dt

[
h(t+ 1) − h(t− 1)

]
dt;

I5 =

∫ 1

−1
taPn(t)

d

dt
Pm(t)

d

dt

[
h(t+ 1) − h(t− 1)

]
dt. (12)

All the integrals in the traditional polynomial method can be
computed directly based on Eqs. (A.1)–(A.5), as shown in Ap-
pendix B. The presented method is concise, has a high com-
putational speed, and is easy to implement. In the following
section, the computational efficiency is compared between the
RLPAI method and the traditional polynomial method. We
take the values M = 20 and N = 20, if not specified.

3. NUMERICAL RESULTS AND DISCUSSION

3.1. Validation of Method
To validate the computational strategies used in this paper,

we first considered wave propagation in an isotropic square
steel bar. The present results are compared with the avail-
able results of Hayashi et al., from the semi-analytical fi-
nite element (SAFE) method.37 The material parameters were
C11 = 281.757 GPa,C12 = 113.161 GPa,C44 = 84.298 GPa,
ρ = 7932 kg/m3, and h = d = 5.08 mm. As shown in Fig. 2,
the polynomial results match those from the SAFE method in
the literature well.

The above example only considered propagating waves.
Since the investigations on evanescent waves in a rectangu-
lar bar are very limited, we calculated the evanescent wave
dispersion curves in an aluminum plate and compared them
with the results of Giurgiutiu and Haider, which were based

Figure 3. Dispersion curves, including real and imaginary branches, for an
aluminum plate; blue lines: literature results, red dots: our results.

Table 1. Computation time of the traditional polynomial method for a bar.

t
Truncated terms

3 4 5 6 7
Integral time t1 (s) 68.4 299.2 763.3 2164.8 15885.3

Total time t2 (s) 73.1 319.1 809.8 2277.1 16288.0
Percentage t1/t2 93.6% 93.8% 94.23% 95.1% 97.5%

Table 2. Computation time of the RLPAI method for a bar.

t
Truncated terms

3 4 5 6 7
Integral time t1 (s) 0.8 1.2 1.4 1.9 3.4

Total time t2 (s) 5.5 21.1 47.8 114.2 406.1
Percentage t1/t2 14.5% 5.7% 2.9% 1.7% 0.8%

Table 3. Computation time of the traditional polynomial method for a plate.

t
Truncated terms

3 4 5 6 7
Integral time t1 (s) 0.34 0.66 1.14 1.81 2.69

Total time t2 (s) 0.40 0.76 1.31 2.06 3.03
Percentage t1/t2 85.0% 86.8% 87.0% 87.9% 88.8%

on the SAFE method.26 This served as a further verifica-
tion of our method. The plate thickness was h = 1 mm,
and the non-dimensional wavenumber and frequency were
Φ = kh/π and Ω = ωh

π

√
ρ
C44

. The material parameters were
C11 = 103.7 GPa, C12 = 51.1 GPa, C44 = 26.3 GPa, and
ρ = 2700 kg/m3. The two methods are in good agreement, as
shown in Fig. 3.

3.2. Comparisons of Computational
Efficiency Between Traditional
Polynomial Method and Recursive
Legendre Polynomial Analytical Integral
(RLPAI) Method.

In this section, we discuss the computational efficiency of
the traditional polynomial method and the RLPAI method. We
calculate the integral calculation time (t1) and the total compu-
tational time (t2) for various truncation terms, and the values
of t1 to t2 for solving eigenvalues at 400 frequency points are
shown in Tables 1 and 2. The numbers of terms M and N
in Eq. (8) were the same. The CPU of the computer was an
Intel Core i5-4460 with a frequency of 3.0 GHz and 8 GB of
memory. From Tables 1 and 2, we notice that for the tradi-
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Figure 4. Three-dimensional dispersion curves for a rectangular orthotropic
composite bar with d/h = 2.

tional polynomial method, t1 rapidly increased from 68.4 to
15885.3 s when the number of truncated terms varied from 3

to 7. In contrast, t1 and t2 for the RLPAI method were much
smaller, with values that were reduced several hundred times
and even several thousand times, e.g., 15885.3 s compared
with 3.4 s. The proportion of t1 to t2 was greater than 90%

for the traditional polynomial method, which means that most
of the time was spent on integration calculations. The mini-
mal proportion was less than 1% for the RLPAI method, and
the time of the integral calculation was significantly reduced,
which means there were significant time savings when plotting
the set of dispersion curves. The comparison between the two
methods indicates that the presented method can dramatically
improve the computational efficiency. Moreover, for compari-
son, we also performed calculations for the case of a plate, as
shown in Table 3. The comparison of Tables 1 and 3 shows that
the integral time of the traditional polynomial method for a bar
was far greater than that for a plate. A complex cross-section
structure requires a greater calculation time due to the greater
number of integral calculations involved.

3.3. Complete Dispersion Curves for
Rectangular Orthotropic Composite Bar

Three-dimensional (3D) dispersion curves can provide a
clearer visualization of the solutions. Figure 4 shows the com-
plete 3D dispersion curves for a rectangular orthotropic com-
posite bar with a width-to-thickness ratio d/h = 2. The phys-
ical properties of the orthotropic composite material were ob-
tained from the literature, ρ = 1580 kg/m3, C11 = C33 =

14.95 GPa, C12 = C23 = 6.9 GPa, C13 = 7.33 GPa, C22 =

128.2 GPa, C55 = 3.81 GPa, and C44 = C66 = 6.73 GPa.38

The purely real branches are in dark blue, purely imaginary
ones are in green, and complex ones are in red. At any given
frequency, there existed a finite number of propagating modes
with real wavenumbers and evanescent modes with imaginary
wavenumbers, as well as an infinite number of evanescent

(a)

(b)

Figure 5. Dispersion curves for a rectangular orthotropic composite bar with
d/h = 2; (a) one quadrant of dispersion curves and (b) two-dimensional pro-
jection of complex branches on Ω-Re(Ψ) and Ω–Im(Ψ) planes.

modes with complex wavenumbers. Purely real and purely
imaginary solutions occurred in pairs, while complex ones oc-
curred in fours. To better understand the nature of these modes,
we present one quadrant of the spectrum, as well as the projec-
tion of complex branches of the planes Ω-Re(Ψ) and Ω-Im(Ψ),
as shown in Fig. 5.

Most purely imaginary modes emerged from a cutoff fre-
quency and ended at an adjacent cut-off frequency with in-
creasing frequency, which passed through a new cutoff fre-
quency and transferred into real branches, namely the evanes-
cent modes became propagating modes. A few of them with
large imaginary wavenumbers emerged from a zero frequency
and ended at the Im(k) axis or at the cutoff frequency (in the
given frequency range).

There were four propagating modes below the first cut-
off frequency, which were the familiar extensional modes (E
modes), torsional modes (T modes), flexural modes about the
y-axis (Fy modes), and flexural modes about the z-axis (Fz
modes). The first order modes of the four mode types are
marked in Fig. 5(b). Most complex branches emerged from
a zero frequency, and their imaginary parts progressively de-
creased with increasing frequency and eventually ended at the
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(a)

(b)

Figure 6. Dispersion curves for orthotropic composite bars: (a) d/h = 1 and
(b) d/h = 5.

minima of the real or imaginary branches. Some branches con-
nected two purely imaginary branches, emerging from the ex-
treme point of one imaginary branch and ending at the extreme
point of the other imaginary branch, which appeared at high
frequencies.

3.4. Influence of Width-to-Thickness Ratio
on Dispersion Curves

To illustrate the influences of the width-to-thickness ratio on
the dispersion curves, we performed calculations for two other
rectangular orthotropic composite bars with d/h = 1 (square
bar) and d/h = 5, as shown in Fig. 6, with the same color
scheme as in Fig. 4. The comparison with Fig. 5 showed that
the width-to-thickness ratio had significant influences on the
guided wave dispersion, including real, imaginary, and com-
plex branches. As the width-to-thickness ratio increased, more
modes occurred (in the given frequency range), and the first lo-
cal inflection point at the real branch appeared for higher-order
modes. The lowest local minimum appeared on the seven real

Figure 7. Dispersion curves of orthotropic composite bars with three different
width to thickness ratios.

branches for a square bar, which emanated from the third cut-
off frequency (marked with a circle in Fig. 6(a)).

For ease of comparison, Fig. 7 shows the dispersion curves
of three orthotropic composite bars with d/h = 1, d/h = 2,
andd/h = 5, only including real and imaginary branches.
The complex branches are omitted to keep the figures clear.
The plate thickness was fixed at h = 1 mm. Evidently, the
cutoff frequencies were lowered more and more as the width
increased. Moreover, the lowest flexural modes were nearly
identical for these three rectangular bars, which meant that
such modes were not sensitive to the width. To confirm this,
we also calculated the dispersion curves for an infinite plate, as
shown in Fig. 8. Only purely real and imaginary branches are
presented for brevity. We compare the phase dispersion curves
of the first several modes for a rectangular bar with d/h = 5

with those for an infinite flat plate, as shown in Fig. 9. The
dispersion characteristics for the rectangular bar were signifi-
cantly different from those for an infinite plate. For the plate,
there were only three propagating modes below the first cutoff
frequency, and the first cutoff frequency was larger than that
of the bar. The lowest flexural mode of the rectangular bar
was almost the same as that in the infinite plate. The phase
velocity of the extension mode of the bar was lower than that
of the plate because of the width constraint. With increasing
frequency, the phase velocity of the lowest flexural (labeled
as Fy0) and extensional (labeled as E0) modes tended to the
Rayleigh wave velocity, like the case of the infinite plate.

4. CONCLUSIONS

Guided waves in rectangular orthotropic composite bars
were studied using the presented RLPAI method. The positive
agreement between our calculations and the available numer-
ical results validated our method. The RLPAI method shines
new light onto guided wave problems in complicated structures
or complex media, which are often very demanding for con-
ventional approaches. The conclusions obtained in this paper
are summarized below.

1. An RLPAI method was successfully developed to calcu-
late the dispersion relations of guided waves in rectan-
gular bars, which uses analytical integration instead of
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Figure 8. Dispersion curves of an infinite orthotropic composite plate.

Figure 9. Phase dispersion curves of the first several modes for a bar with
d/h = 5 and an infinite plate.

numerical integration in the conventional Legendre poly-
nomial method and dramatically improves the computa-
tional efficiency.

2. There are many purely imaginary modes starting from a
cut-off frequency and ending at an adjacent cutoff fre-
quency with increasing frequency, and some complex
modes started from a zero frequency and collapsed onto
the minima of the real branches. As the frequency
increased, the evanescent mode became a propagating
mode.

3. The width-to-thickness ratio had significant influences on
guided wave dispersion, including real, imaginary, and
complex branches. As the width-to-thickness ratio in-
creased, more modes appeared and the cutoff frequency
became smaller.

4. The width had almost no effect on the lowest flexural
mode (flexure about the width axis). The phase velocity
of the lowest extensional mode for a rectangular bar was
smaller than that for an infinite plate. With increasing
frequency, the phase velocity of the lowest flexural and
extensional modes tended to the Rayleigh wave velocity,
like the case of an infinite plate.
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APPENDIX A

The explicit expressions for the element are:

An,p,m,j11 = − C11u(m,n, 0, 0, i, j, 0, 0);

An,p,m,j22 = − C66u(m,n, 0, 0, i, j, 0, 0);

An,p,m,j33 = − C55u(m,n, 0, 0, i, j, 0, 0);

An,p,m,j12 = An,p,m,j21 = 0;

An,p,m,j13 = An,p,m,j31 = 0;

An,p,m,j23 = An,p,m,j32 = 0;

Bn,p,m,j12 = i(C12 + C66)u(m,n, 0, 0, i, j, 0, 1) +

iC66ky(m,n, 0, 0, i, j, 0, 0);

Bn,p,m,j13 = i(C13 + C55)u(m,n, 0, 0, i, j, 1, 0) +

iC55kz(m,n, 0, 0, i, j, 0, 0);

Bn,p,m,j21 = i(C12 + C66)u(m,n, 0, 0, i, j, 0, 1) +

iC12ky(m,n, 0, 0, i, j, 0, 0);

Bn,p,m,j31 = i(C13 + C55)u(m,n, 0, 0, i, j, 1, 0) +

iC13kz(m,n, 0, 0, i, j, 0, 0);

Bn,p,m,j11 = 0;

Bn,p,m,j22 = 0;

Bn,p,m,j23 = Bn,p,m,j32 = 0;

Bn,p,m,j33 = 0;

Cn,p,m,j11 = C55u(m,n, 0, 0, i, j, 2, 0) +

C66u(m,n, 0, 0, i, j, 0, 2) +

C55kz(m,n, 0, 0, i, j, 1, 0) +

C66ky(m,n, 0, 0, i, j, 0, 1);

Cn,p,m,j22 = C44u(m,n, 0, 0, i, j, 2, 0) +

C22u(m,n, 0, 0, i, j, 0, 2) +

C44kz(m,n, 0, 0, i, j, 1, 0) +

C22ky(m,n, 0, 0, i, j, 0, 1);

Cn,p,m,j23 = (C23 + C44)u(m,n, 0, 0, i, j, 1, 1) +

C44kz(m,n, 0, 0, i, j, 0, 1) +

C23ky(m,n, 0, 0, i, j, 1, 0);

Cn,p,m,j32 = (C23 + C44)u(m,n, 0, 0, i, j, 1, 1) +

C23kz(m,n, 0, 0, i, j, 0, 1) +

C44ky(m,n, 0, 0, i, j, 1, 0);

Cn,p,m,j33 = C33u(m,n, 0, 0, i, j, 2, 0) +

C44u(m,n, 0, 0, i, j, 0, 2) +

C33kz(m,n, 0, 0, i, j, 1, 0) +

C44ky(m,n, 0, 0, i, j, 0, 1);

Cn,p,m,j12 = Cn,p,m,j21 = 0;

Cn,p,m,j13 = Cn,p,m,j31 = 0;

Mn,p,m,j = ρu(m,n, 0, 0, i, j, 0, 0);

where

u(m,n, o, p, i, j, k, l) =∫ d

0

∫ h

0

Q∗i (z)Q
∗
j (y)zoyp

∂k+lQm(z)Qn(y)

∂zk∂yl
dzdy;

kz(m,n, o, p, i, j, k, l) =∫ d

0

∫ h

0

Q∗i (z)Q
∗
j (y)zoyp

∂F (y, z)

∂z

∂k+lQm(z)Qn(y)

∂zk∂yl
dzdy;

ky(m,n, o, p, i, j, k, l) =∫ d

0

∫ h

0

Q∗i (z)Q
∗
j (y)zoyp

∂F (y, z)

∂y

∂k+lQm(z)Qn(y)

∂zk∂yl
dzdy.

APPENDIX B

I4 and I5 can be obtained based on the properties of the
Heaviside function h(t), yielding the following:

I4 = (−1)aPn(−1)Pm(−1) − Pn(1)Pm(1);

I5 = (−1)aPn(−1)

[
d

dt
Pm(t)

]
t=−1

− Pn(1)

[
d

dt
Pm(t)

]
t=1

;

(A.1)

where [
d

dt
Pn(t)

]
t=−1

= (−1)n+1 Γ(n+ 2)

2Γ(n)
.

Rewriting Pm(t) and invoking orthogonality,36 we obtain

Pm(t) =

m/2∑
s=0

(−1)s
(2m− 2s)!

2ms!(m− s)!(m− 2s)!
tm−2s. (A.2)

International Journal of Acoustics and Vibration, Vol. 26, No. 3, 2021 229

http://dx.doi.org/10.1515/secm-2013-0042
https://am.ippt.pan.pl/am/article/view/v65p3
http://dx.doi.org/10.1063/1.4953847
http://dx.doi.org/10.1007/978-3-642-37515-6_1
http://dx.doi.org/10.1016/S0041-624X(03)00097-0
http://assets.cambridge.org/97805215/48892/frontmatter/9780521548892_frontmatter.pdf
http://assets.cambridge.org/97805215/48892/frontmatter/9780521548892_frontmatter.pdf


X. Zhang, et al.: A RECURSIVE LEGENDRE POLYNOMIAL ANALYTICAL INTEGRAL METHOD FOR THE FAST AND EFFICIENT MODELLING. . .

When a+m ≥ n, a+m−n = even, andm−2s+a = n+2p,

I1 =

∫ 1

−1
taPn(t)Pm(t)dt =

m/2∑
s=0

(−1)s
(2m−2s)!

2ms!(m−s)!(m−2s)!

2n+1(n+2p)!(n+p)!

p!(2n+2p+1)!
.

(A.3)

Otherwise, I1 = 0.
When a + m − 1 ≥ n, a + m − n − 1 = even, and m −

2s+ a− 1 = n+ 2p,

I2 =

∫ 1

−1
taPn(t)

d

dt
Pm(t)dt =

m/2∑
s=0

(−1)s
(2m−2s)!

2ms!(m−s)!(m−2s)!

2n+1(n+2p)!(n+p)!

p!(2n+2p)!
.

(A.4)

Otherwise, I2 = 0.
When a + m − 2 ≥ n, a + m − n − 2 = even, and m −

2s+ a− 2 = n+ 2p,

I3 =

∫ 1

−1
taPn(t)

d2

dt2
Pm(t)dt =

m/2∑
s=0

(−1)s
(2m−2s)!

2ms!(m−s)!(m−2s)!

2n+1(n+2p)!(n+p)!

p!(2n+2p−1)!
.

(A.5)

Otherwise I3 = 0.
Actually,

u(m,n, o, p, i, j, k, l) =∫ d

0

∫ h

0

Q∗i (z)Q
∗
j (y)zoyp

∂k+lQm(z)Qn(y)

∂zk∂yl
dzdy =∫ h

0

Q∗i (z)z
o ∂

kQm(z)

∂zk
dz ×

∫ d

0

Q∗j (y)yp
∂lQn(y)

∂yl
dy;

kz(m,n, o, p, i, j, k, l) =∫ d

0

∫ h

0

Q∗i (z)Q
∗
j (y)zoyp

∂F (y, z)

∂z

∂k+lQm(z)Qn(y)

∂zk∂yl
dzdy =∫ h

0

Q∗i (z)z
o ∂

kQm(z)

∂zk
∂f(z)

∂z
dz ×

∫ d

0

Q∗j (y)yp
∂lQn(y)

∂yl
dy;

and

ky(m,n, o, p, i, j, k, l) =∫ d

0

∫ h

0

Q∗i (z)Q
∗
j (y)zoyp

∂F (y, z)

∂y

∂k+lQm(z)Qn(y)

∂zk∂yl
dzdy =∫ h

0

Q∗i (z)z
o ∂

kQm(z)

∂zk
dz ×

∫ d

0

Q∗j (y)yp
∂lQn(y)

∂yl
∂π(y)

∂y
dy.

All the integrals can be converted into two integrals multi-
plied by each other. Thus, the original double integral can be
calculated by the above analytical integral, for example:

u(m,n, 1, 0, i, j, 0, 1) =∫ d

0

∫ h

0

Q∗i (z)Q
∗
j (y)zQm(z)

∂Qn(y)

∂y
dzdy =∫ h

0

Q∗i (z)Qm(z)dz ×
∫ d

0

Q∗j (y)
∂Qn(y)

∂y
dy =∫ h

0

√
2i+ 1

h
Pi

(
2z − h

h

)√
2m+ 1

h
Pm

(
2z − h

h

)
zdz ×

∫ d

0

√
2j + 1

d
Pj

(
2y − d

d

) ∂
√

2n+1
d Pn

(
2y−d
d

)
∂y

dy =√
(2i+ 1)(2m+ 1)(2j + 1)(2n+ 1)

h2d2
·∫ h

0

Pi

(
2z − h

h

)
Pm

(
2z − h

h

)
zdz ×

∫ d

0

Pj

(
2y − d

d

) ∂Pn

(
2y−d
d

)
∂y

dy =

1

2d

√
(2i+ 1)(2m+ 1)(2j + 1)(2n+ 1) ·∫ 1

−1
Pi(t)Pm(t)(t+ 1)dt×

∫ 1

−1
Pj(s)

∂Pn(s)

∂s
ds =

1

2d

√
(2i+ 1)(2m+ 1)(2j + 1)(2n+ 1) ·(∫ 1

−1
tPi(t)Pm(t)dt+

∫ 1

−1
Pi(t)Pm(t)dt

)
×∫ 1

−1
Pj(s)

∂Pn(s)

∂s
ds.
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