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In this study, numerical modal analyses are conducted on steel plates supported with various numbers of transverse
beams. Natural frequency and mode shapes are obtained for each model. The same analyses are also repeated
for plates with various thicknesses. Finally, the correlation between the number of supporting beams and natural
frequencies is examined. The change in natural frequencies with respect to plate thickness is emphasized. In addi-
tion, general surface regression formulas of flexural natural frequencies with respect to the number of supporting
beams and plate thicknesses are obtained.

1. INTRODUCTION

Steel plates can be reinforced or supported with various
numbers of transverse beams. The number of transverse beams
and the thickness of plates can change the natural frequencies
and mode shapes of these structures. The goal of this study
is to present a relationship between the change in the num-
ber of transverse beams and natural frequencies. This study
also emphasizes the effect of plate thickness. A detailed lit-
erature review is conducted concerning beam-reinforced and
beam-supported plates.

Mróz and Rozvany derived the optimal support location as
an elastic design for a given compliance and a plastic design
for a specific safety factor of plastic collapse.1 After, they for-
mulated the optimal design problem, including the cost of sup-
port based on position and considered both rigid and flexible
or yielding supports.

Jang et al. used a sprung structure model to develop a fast
gradient-based optimization approach in order to find the opti-
mal support locations of beam and plate structures under self-
weight.2 They formulated the problem of support locations
with continuous design variables to use this gradient-based al-
gorithm. They assumed that the beam or plate structure was
supported by a set of distributed springs that are attached to
all nodes of a discretized model. Spring stiffness was con-
sidered a continuous variable, with limited stiffness values for
the springs during unsupported and supported states. The elas-
tically supported structures show significantly different struc-
tural behaviors from other structures. Therefore, choosing an
objective function that meets the design goals and ensuring
convergence to distinct states without some intermediate states
are not easy to do. An extensive research was carried out to
address this issue and to suggest an appropriate objective func-
tion. Also, an optimization formulation using this objective
function is given, and this formulation is checked for validity
and usefulness with some numerical problems.

Sapountzakis proposed an improved model to analyze plates
stiffened by parallel beams, including creep and shrinkage ef-

fects.3 The model allows static analysis of reinforced con-
crete plates stiffened by arbitrarily placed parallel reinforced
concrete or steel beams with deformable connections. It also
considers the effect of creep and shrinkage effects relative to
the time of casting and the time of loading. Accordingly, the
stiffening beams are isolated from the plate by sections in the
lower outer surface, suggesting that the plate and the beams
can slip in all directions of the connection without separating,
even under arising tractions at the fictitious interfaces. These
tractions are integrated according to each half of the interface
width, resulting in two interface lines. The loading of the
beams and the additional loading of the plate are defined along
these two lines. Continuity conditions are applied in all di-
rections of the interfaces to establish the unknown distribution
of the plates and beams, considering their relation with inter-
face slip through shear connector stiffness. Using two interface
lines for each beam allows for the distribution of the interface
transverse shear forces nonuniformly and consideration of the
nonuniform torsional response of the beams, which yields a
better response definition of the plate-beam system. The plate
and the beams are analyzed on their deformed shape, consid-
ering second-order effects. Six order boundary value problems
are formulated and solved using the analog equation method
(AEM). The nonlinearly coupled plate and beam problems are
solved using iterative numerical methods. This model better
defines the response of the plate-beam system and allows for
the evaluation of the shear forces at the interfaces in both direc-
tions. This has particular importance in the design of prefabri-
cated ribbed plates. There seems to be considerable discrepan-
cies between the lateral deflections of plate-beam systems and
other models since these tend to neglect plane and axial forces
and deformations. It also offers numerical examples with great
practical interest.

Most results on the inverse problem of determining loads
on elastic beams or plates under transverse vibration refer to a
single beam or single plate. Kawano and Morassi determined
the sources in multispan systems by connecting either two Eu-
ler–Bernoulli elastic beams or two rectangular Kirchhoff–Love
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elastic plates.4 They assumed the structural material to be ho-
mogeneous and isotropic. Here, the transverse load is given as
g(t)f(x), where g(t) is a known function of time and f(x) is the
unknown term based on the position variable x. Under some
given assumptions, a uniqueness result for f(x) is proven for
dynamic response observations at interior points in a small-
time interval. The authors also included a numerical imple-
mentation of the method to demonstrate the possible applica-
tion of the results for the practical identification of the source
term.

He and Feng conducted a vibration analysis on an elastically
connected multiple beam (ECMB) system under a moving os-
cillator and applied a finite sine-Fourier transform to the dy-
namic partial differential equations of the ECMB according to
space coordinates.5 They used a numerical integration to solve
the equations and derived the expression for vibration analysis
of the ECMB based on a finite sine-Fourier inverse transform.
The developed method and the ANSYS numerical method al-
lowed the vibration analysis of a four-layer beam system un-
der a moving oscillator at different speeds. The findings were
in good coherence with the ANSYS numerical calculation re-
sults, with less than 2% calculation differences between the
two, verifying the correctness of the developed method. This
method is also applied to a beam-rail system on a railway line
in China, where the effect of the train speed and interlayer stiff-
ness on the vibration of the beam-rail system was examined.
The maximum dynamic deflection of the rail under the train
load was found always to be near the midspan, while that of
the track plate, base plate, and bridge only occurred once the
train traveled through the midspan. It was shown that the in-
terlayer stiffness had a high effect on the vibration of the rail
and the track plate and only a slight influence on the vibration
of the base plate and the bridge.

Takabatake and Nagareda conducted a simplified analysis
of elastic plates with edge beams, presenting a simplified an-
alytical method for rectangular plates with edge beams under
the validity of the Kirchhoff–Love hypotheses.6 The accuracy
of the Galerkin method depends on the shape functions. Still,
the suitable shape functions that meet the boundary conditions
of plates with edge beams are not easy to determine. Thus,
the plate supported with edge beams is replaced with a plate
supported with edges that are elastically restrained against
translation and rotation. The shape functions in the current
plate use the shape functions of beams supported with equiv-
alent translational and torsional stiffness. Using the Galerkin
method, one can propose approximate but accurate solutions
for static and dynamic problems of rectangular plates with
edge beams. The numerical findings obtained from this theory
for isotropic plates with edge beams are in accordance with
those obtained from the finite element method (FEM) using
FEM code MSC/NASTRAN.

Sapountzakis and Katsikadelis conducted a dynamic analy-
sis of elastic plates reinforced with beams of a doubly sym-
metrical cross section and presented a solution to the dynamic
problem.7 Their model associates the rise in plane forces and
deformations of the plate and the axial forces and the deforma-
tions of the beam with the combined response of the system.

In the analysis, the beams are isolated from the plate by sec-
tions parallel to the lower outer surface. This analysis is based
on establishing a flexibility matrix according to a set of nodal
mass points using AEM for the static plate problem. A lumped
mass matrix is constructed from the tributary mass areas to the
nodal mass points. The model considers both free and forced
transverse vibrations, yielding numerical examples with great
practical interest. The discrepancy in the eigenfrequencies ob-
tained by this analysis better matches the response of the plate-
beam system, while the corresponding eigenfrequencies ignore
the in plane forces and deformations.

Seo et al. developed a power flow analysis method to esti-
mate the vibrational responses of reinforced beam-plate cou-
pled structures at medium to high frequencies.8 This method
was applied to simply supported rectangular plates reinforced
with multiparallel beams using the power flow coupling re-
lationships at the beam–plate junctions and the zero intensity
conditions at the plate edges. Numerical simulations were used
to compare the power flow energy density and intensity fields
between two plates with a single beam and eight beams and
classical displacement solutions. As a result, the fields were
in agreement with global decay and attenuation patterns of en-
ergy density.

Rook and Singh defined a computational strategy based on
component mobility and modal synthesis approaches to calcu-
late structural power flow through multidimensional connec-
tions.9 They presented sample case: a beam (shaft), ball bear-
ings, and an elastic machinery casing plate, highlighting the
calculation of structural intensity. They outlined a new presyn-
thetic algorithm to determine effective stiffness for ball bear-
ings, considering the compliance of the neighboring structure.
The finite element method was used to make the computations
easier and to generate structural intensity results in postsynthe-
sis mode.

Chiba and Yoshida presented a free vibration analysis by
the Rayleigh-Ritz method for a rectangular plate-beam cou-
pled system.10 Their system consisted of a cantilever rectan-
gular plate and either a pair of beams or a single beam con-
nected to the free end side furthest from the support. They
provided natural frequencies and vibration modes for various
system configurations (length ratio between the plate and the
beam, aspect ratio of the plate, and distance between beams).
An experiment was performed with 0.5 mm-thick polystyrene
test plates to confirm the validity of the analysis and the find-
ings observed were in good coherence.

Hu and Hartley performed an elastic analysis on thin plates
with beam supports and presented the findings for two model
types: 1) a boundary condition where the plate and the
edge beam are connected continuously; and, 2) an attached
beam element where the connection is not fully displacement-
compatible.11 The authors provided some overall guidelines
for the numerical analysis of plates with attached beams. For
example, the discontinuation of a beam support along a plate
edge leads to a special singular condition. The validity of a
mathematical model under this condition would pique the in-
terest of structural designers. They based the numerical model-
ing of thin plates on the direct boundary element method, fully

260 International Journal of Acoustics and Vibration, Vol. 26, No. 3, 2021



A. Yucel.: NUMERICAL MODAL ANALYSES OF BEAM-SUPPORTED PLATES WITH VARYING THICKNESSES

defining the procedures used in attaching edge beams. They
also gave numerical results for square plates in comparison
with established cases. These functional computations have
been used to solve problems involving thin plates of general
plan shape and transverse loading.

Galbrun examined the modeling of vibration transmission
through plate/beam structures that are typical in lightweight
buildings.12 They performed key experiments on simple struc-
tures to determine the applicability and limitations of basic
theories, including a single plate connected to a beam along
its center, two parallel plates attached to a beam along their
center (opposite or offset plates), and four plates connected to
a beam along their edges. The analysis is centered around the
applicability of modeling a beam as a one-dimensional element
in point-connected systems. Statistical energy analysis (SEA)
formed the framework for all predictions, while the theories
were independent of SEA. The findings indicated that simple
point models are only applicable to single plate, beam systems,
and parallel opposite plates connected to a beam along their
center, albeit solely at low to mid frequencies (below 2 kHz).
They also examined transmission between two parallel plates
connected to a beam with closely spaced screws. Accordingly,
the rigid and pinned line predictions could provide some limits
for transmission between panels on the same side of a wall.

Shu and Du offered a new method to implement clamped
and simply supported boundary conditions in the free vibra-
tion analysis of beams and plates using generalized differen-
tial quadrature (GDQ).13 Their approach replaced the bound-
ary conditions with the governing equations, called the satisfy-
ing the boundary conditions in the general solution (SBCGS)
approach. Accordingly, SBCGE overcomes the limitations of
previous approaches when treating boundary conditions. They
compared SBCGE with the modifying weighting coefficient
matrices (MWCM) method, applying both methods to the vi-
bration analysis of beams and plates under combinations of
simply supported and clamped boundary conditions.

Mitra et al. presented a large-amplitude free vibration anal-
ysis of uniaxially single stiffened rectangular plates subjected
to transverse loading under simply supported boundary con-
ditions.14 Their mathematical formulation was based on the
energy principle and geometric nonlinearity was explained by
considering nonlinear strain-displacement relations. The static
problem was solved by an iterative scheme and the dynamic
problem by taking the static displacement field as an initial as-
sumption. They investigated the effect of stiffener position,
plate aspect ratio, and stiffener-to-plate thickness ratio on a
large amplitude dynamic behavior. Furthermore, the dynamic
behavior was supplied with backbone curves in a dimension-
less frequency-amplitude plane.

Mackerle listed references to papers on the finite element
vibration analysis of beams, plates, and shells between 1994
and 1998, including 361 citations.15 This list also contained
the vibration analyses of composite materials and structural el-
ements with cracks/contacts.

Sapountzakis and Katsikadelis presented a solution to the
problem of plates reinforced with beams.16 Their model con-
sidered an increase in plane forces and deformations of the

plate and the axial forces and deformations of the beam due
to the combined response of the system. In the analysis, the
beams are isolated from the plate by sections parallel to the
lower outer surface. Forces producing lateral deflection and in
plane deformation to the plate and lateral deflection and ax-
ial deformation to the beam are established using continuity
conditions at the interface. The nonlinearly coupled plate and
beam problems are solved using AEM. This model better de-
fines the response of the plate-beam system, allowing to assess
the shear forces at the interface, which is key for the design
of composite or prefabricated ribbed plates. The arising de-
flections are significantly smaller than those obtained in other
models.

Aydoğdu and Taşkın investigated the free vibration of a sim-
ply supported functionally graded (FG) beam.17 The Young
modulus of the beam changed in the thickness direction based
on power law and exponential law. Hamilton’s principle is
used to find the governing equations and the Navier-type solu-
tion method is used to obtain frequencies. The analysis utilizes
different higher-order shear deformation theories and classical
beam theories, yielding outcomes for different material prop-
erties and slenderness ratios.

Sinha et al. focused on numerical and experimental studies
on the free vibration of woven glass fiber laminated compos-
ite stiffened plates.18 The authors tested thirty-four stiffened
plates with different parameters fabricated from woven glass
fiber and binder (epoxy and hardener) in an FFT analyzer to
obtain their natural frequencies. They used a finite element
model for the validation of experimental findings. A compari-
son of the experimental and numerical results indicates agree-
ment, highlighting significant effects of parameters on funda-
mental frequency.

Mikkola and Shabana investigated a nonincremental solu-
tion for the finite rotation and large deformation analysis of
plates.19 Their method is based on absolute nodal coordinate
formulation and yields plate elements that can exactly repre-
sent rigid body motion. The method makes use of the continu-
ity conditions on all the displacement gradients, avoiding non-
smoothness of the plate mid-surface at the nodal points. Differ-
ent from other finite element formulations that give highly non-
linear inertial forces for 3D elements, this method yields a con-
stant mass matrix, equating the centrifugal and Coriolis inertia
forces to zero. Besides, it has less reliance on some of the as-
sumptions of the classical and Mindlin plate models that auto-
matically meet objectivity requirements. It obtains a relatively
simple expression for elastic forces using a general continuum
mechanics approach. The study further discusses the general-
ization of this model to shell elements using two different plate
elements: one that guarantees continuity of displacement gra-
dients between nodal points and one that does not. Numerical
results are given to show the use of the method in the large ro-
tation and deformation analysis of plates and shells and are
compared with those from existing incremental approaches.
Accordingly, the solution obtained by this method meets the
principle of work and energy. The findings are obtained using
the explicit numerical integration method. The model promises
some potential applications, such as high-speed metal forming,
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vehicle crashworthiness, rotor blades, and tires.
Sun and Wei presented a frequency domain formulation of

the singular boundary method (SBM) to analyze thin elastic
plates subjected to dynamic loads.20 SBM takes the funda-
mental solutions for the dynamic thin plate problem in the
frequency domain as its base functions. The origin intensity
factors (OIFs) are derived for the kernels of SBM to isolate
singularities and to ensure that the source points comply with
the collocation points. Along with SBM, the exponential win-
dow method (EWM) is applied for transient analysis to obtain
time-domain outcomes. The authors conducted several exam-
ples under harmonic and transient loads and compared these
with exact solutions and finite element solutions to show the
efficacy and accuracy of their method.

Kukreti and Cheraghi presented a procedure to analyze stiff-
ened plate systems (a plate supported by a network of steel
girders).21 They considered two types of plate systems: 1)
where the beams are parallel to the span (a ribbed plate sys-
tem); and, 2) where the ribs and cross beams are perpendicular
to the span (a grid plate system). The rigid connection of the
beams to the plate is assumed, which is common in highway
bridge decks and building-floor systems. The analysis is based
on energy principles. They proposed a formulation of the de-
flection function for the plate, which helps calculate the mo-
ments in the plate due to general static loading. The findings
are compared with the finite element method. In conclusion,
the function could well represent plate behavior and was more
efficient in terms of calculations.

In the study of Sobhani et al., the natural frequency
responses of joined hemispherical-cylindrical-conical shells
made of composite three-phase materials have been utilized
in the framework of First-Order Shear Deformation The-
ory (FOSDT).22 The joined hemispherical-cylindrical-conical
shells were assumed to be made of hybrid porous nanocom-
posite material with three phases including a matrix of epoxy,
macroscale carbon fiber, and nanoscale 3D Graphene Foams
(3GFs). To obtain the equivalent mechanical properties of the
Hybrid Matrix (HM) including polymer epoxy and 3GFs, the
well-known rule of the mixture was used.

Civalek and Avcar presented the free vibration and buckling
analyses of functionally graded carbon nanotube-reinforced
(FG-CNTR) laminated non-rectangular plates, i.e., quadrilat-
eral and skew plates, using a four-noded straight-sided trans-
formation method.23 Initially, the related equations of motion
and buckling of quadrilateral plates were given, and subse-
quently, these equations were transformed from the irregular
physical domain into a square computational domain using the
geometric transformation formulation via a discrete singular
convolution (DSC). The discretization of these equations was
obtained via a two-different regularized kernel, i.e., regularized
Shannon’s delta (RSD) and Lagrange-delta sequence (LDS)
kernels in conjunction with the discrete singular convolution
numerical integration. The convergence and accuracy of the
present DSC transformation were verified via existing litera-
ture results for different cases.

In the study of Hadji and Avcar, a free vibration analysis
of the square sandwich plate with functionally graded (FG)

Figure 1. The 6-beam model with a plate thickness of 8 mm.

porous face sheets and isotropic homogenous core was per-
formed under various boundary conditions.24 For this purpose,
the material properties of the sandwich plate were supposed to
vary continuously through the thickness direction according to
the volume fraction of constituents that were defined with the
modified rule of the mixture including porosity volume frac-
tion with four different types of porosity distribution over the
cross-section.

In the work by AlSaid-Alwan and Avcar, an analytical so-
lution of the free vibration of the beam composed of function-
ally graded materials (FGMs) was presented utilizing different
beam theories.25 The comparison of the supposed beam theory
for free vibration of functionally graded (FG) beam was exam-
ined. With this goal in mind, the Euler-Bernoulli, Rayleigh,
Shear, and Timoshenko beam theories were employed. The
functionally graded material properties were assumed to vary
continuously through the thickness direction of the beam with
respect to the volume fraction of constituents. The governing
equations of the free vibration of the FG beams were derived in
the frameworks of four beam theories. Analytically, the result-
ing equations were solved versus simply supported boundary
conditions.. To verify the results, comparisons were carried
out with the available results.

In the study of Zhang et al., the two-dimensional gener-
alized finite integral transform (FIT) approach was extended
for new accurate thermal buckling analysis of fully clamped
orthotropic thin plates.26 The clamped-clamped beam func-
tions, which can automatically satisfy boundary conditions of
the plate and orthogonality as an integral kernel to construct
generalized integral transform pairs, were adopted. Through
performing the transformation, the governing thermal buckling
equation can be directly changed into solving linear algebraic
equations, which reduces the complexity of the encountered
mathematical problems and provides a more efficient solution.
The obtained analytical thermal buckling solutions, including
critical temperatures and mode shapes, match well with the
finite element method (FEM) results, which verifies the preci-
sion and validity of the employed approach.

2. ANALYSES OF BEAM-SUPPORTED
PLATE MODELS

The number of transverse beams varied between 3 and 10.
Therefore, 8 different plate models for a certain plate thickness
were constructed. The beams were equally spaced lengthwise
over the plate, which is 2000 mm long, and the beams were
60x20 steel profiles. The model plate had a width of 800 mm.
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Figure 2. The finite element model of the 6-beam model with a plate thickness
of 8 mm.

Table 1. Natural frequencies of the sample model.

Mode No Natural Frequency Mode Type

1 30.12 Hz First flexural mode

2 53.35 Hz First torsional mode

3 83.44 Hz Second flexural mode

4 91.57 Hz Second torsional mode

The plate thicknesses varied between 2 and 16 mm (increasing
by 2 mm). Therefore, we had 8 plate thickness values for each
system. Finally, 64 different models were constructed. The 6-
beam model with a plate thickness of 8 mm is shown in Fig. 1.

The beams were rigidly modeled, and rigid elements were
applied. The plate element size is 20 mm. The model was
meshed using a structured hexahedral algorithm. The den-
sity, modulus of elasticity and Poisson ratio were 7850 kg/m3,
200000 MPa and 0.3, respectively. The finite element model is
shown in Fig. 2.

When we reviewed the analysis results of the 6-beam model
with a plate thickness of 8 mm, the first 4 natural frequencies
are listed in Table 1. The mode shapes are also given in Figs. 3–
6.

The same analysis procedures were applied to all 64 mod-
els. In the analyses, the eigenvalues were extracted in the
range of 0–1200 Hz. The modes shapes were also plotted for
each model. The mode shapes repeatedly followed one flexu-
ral shape and one torsional shape. The mode shapes in which
only the center span deforms are shown in Fig. 7.

Following the 64 numerical analyses, the results shown in
Table 2 are obtained, which shows the first 3 in-plane flexural
modes for the constructed models.

Figure 8 shows the relation of frequencies for the first 3
modes of the 8 mm thickness plate with respect to the num-
ber of beams. When this graphic for all plate thicknesses was
plotted, the same behavior was observed between the frequen-
cies and number of beams. The figure shows that there is a
quadratic relationship between the frequencies and number of
beams.

In Fig. 8, quadratic regressions were also performed to ob-
tain the formulas for the first 3 flexural frequencies with respect
to the number of supporting transverse beams. The regression
functions for each plate thickness are listed in Table 3.

Table 3 shows a relationship between the thickness depen-

Figure 3. First flexural mode.

Figure 4. First torsional mode.

Figure 5. Second flexural mode.

Figure 6. Second torsional mode.
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Table 2. Natural frequencies of all models.

Number of Transverse Beams

3 4 5 6 7 8 9 10
Pl

at
e

T
hi

ck
ne

ss
(m

m
)

1.18 Hz 2.65 Hz 4.71 Hz 7.54 Hz 12.13 Hz 16.20 Hz 22.74 Hz 27.62 Hz
2 3.24 Hz 7.32 Hz 13.05 Hz 20.92 Hz 33.83 Hz 45.35 Hz 64.07 Hz 78.19 Hz

6.37 Hz 14.39 Hz 25.73 Hz 41.39 Hz 67.35 Hz 90.82 Hz 129.61 Hz 159.47 Hz
2.35 Hz 5.29 Hz 9.43 Hz 15.70 Hz 24.26 Hz 32.39 Hz 45.47 Hz 55.20 Hz

4 6.49 Hz 14.63 Hz 28.09 Hz 41.82 Hz 67.59 Hz 90.59 Hz 127.92 Hz 156.06 Hz
12.73 Hz 28.76 Hz 51.42 Hz 82.69 Hz 134.44 Hz 181.15 Hz 258.19 Hz 317.33 Hz
3.53 Hz 7.94 Hz 14.14 Hz 22.60 Hz 36.38 Hz 48.57 Hz 68.15 Hz 82.73 Hz

6 9.73 Hz 21.93 Hz 42.62 Hz 62.66 Hz 101.24 Hz 135.62 Hz 191.34 Hz 233.28 Hz
19.09 Hz 43.11 Hz 77.04 Hz 123.80 Hz 201.02 Hz 270.56 Hz 384.02 Hz 472.04 Hz
4.70 Hz 10.59 Hz 18.84 Hz 30.12 Hz 48.47 Hz 64.71 Hz 90.76 Hz 110.13 Hz

8 12.97 Hz 29.23 Hz 56.77 Hz 83.44 Hz 134.69 Hz 180.32 Hz 254.03 Hz 309.54 Hz
25.45 Hz 57.43 Hz 102.54 Hz 164.63 Hz 266.81 Hz 358.51 Hz 508.32 Hz 621.74 Hz
5.88 Hz 13.23 Hz 23.54 Hz 37.63 Hz 60.54 Hz 80.79 Hz 113.28 Hz 137.33 Hz

10 15.64 Hz 36.51 Hz 70.87 Hz 104.11 Hz 167.87 Hz 224.63 Hz 316.01 Hz 384.40 Hz
31.78 Hz 71.69 Hz 127.89 Hz 205.03 Hz 331.57 Hz 444.64 Hz 628.13 Hz 765.03 Hz
7.04 Hz 15.87 Hz 28.24 Hz 45.12 Hz 72.56 Hz 96.80 Hz 135.67 Hz 164.28 Hz

12 19.44 Hz 43.78 Hz 84.93 Hz 124.61 Hz 200.73 Hz 268.40 Hz 376.89 Hz 457.45 Hz
38.12 Hz 85.88 Hz 153.04 Hz 245.04 Hz 395.04 Hz 528.57 Hz 743.49 Hz 900.05 Hz
8.22 Hz 18.50 Hz 32.92 Hz 52.38 Hz 84.54 Hz 112.71 Hz 157.90 Hz 190.99 Hz

14 22.67 Hz 51.00 Hz 98.92 Hz 145.13 Hz 233.19 Hz 311.05 Hz 436.58 Hz 528.37 Hz
44.43 Hz 99.98 Hz 177.93 Hz 284.43 Hz 457.52 Hz 609.92 Hz 852.78 Hz 1029.00 Hz
9.39 Hz 21.13 Hz 37.57 Hz 60.01 Hz 96.46 Hz 128.53 Hz 179.95 Hz 217.44 Hz

16 25.89 Hz 58.20 Hz 112.83 Hz 165.39 Hz 265.19 Hz 353.99 Hz 494.93 Hz 596.77 Hz
50.73 Hz 113.89 Hz 202.54 Hz 323.17 Hz 518.24 Hz 688.41 Hz 958.34 Hz 1149.30 Hz

Figure 7. Center span flexural (93.09 Hz) and torsional (97.34 Hz) modes.

dent regression functions and plate thicknesses. Some gen-
eral surface regressions over the frequency functions taking the
plate thicknesses into consideration were conducted. In this
way, the general frequency functions which take the number
of supporting beams and plate thickness as inputs and calcula-
tions of the first 3 flexural natural frequencies were obtained.
The general surface regression plots are shown in Figs. 9–11.

As we consider,

n = number of transverse supporting beams,

t = plate thickness (mm), and

f = natural frequency (Hz),

Figure 8. Frequency regressions with respect to number of beams.

the general natural frequency functions for the first 3 flexural
modes are were obtained as follows.

f1(n, t) = (63.4) + (−22.33)·n + (−6.51)·t+
+ (1.728)·n2 + (1.902)·n·t;

f2(n, t) = (171.7) + (−61.02)·n + (−17.56)·t+
+ (4.784)·n2 + (5.186)·n·t;

f3(n, t) = (335.6) + (−120.7)·n + (−33.8)·t+
+ (9.668)·n2 + (9.976)·n·t.
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Figure 9. Surface regression plot for the first flexural mode.

Figure 10. Surface regression plot for the second flexural mode.

Figure 11. Surface regression plot for the third flexural mode.

3. CONCLUSION

Table 2, which gives the flexural natural frequencies of all
models, clearly shows that the natural frequencies increased as
the number of beams and plate thicknesses increased. The re-
sults show that there is a quadratic relationship between natural
frequencies and the number of supporting transverse beams.
This regression is clearly shown in Fig. 8. In addition, an
examination of all the mode shapes showed that the mode
shapes repeatedly follow one flexural shape and one torsional
shape. The table of natural frequencies with respect to plate
thicknesses showed that there was a relationship between the
frequency functions and plate thicknesses. Some surface re-
gressions over the frequency functions taking the plate thick-
nesses into consideration were conducted and overall general
frequency functions were obtained with input variables being
the number of supporting beams and plate thickness. The sup-
porting transverse beams were equally spaced lengthwise over
the plate, which is 2000 mm long, and the model plate had a
width of 800 mm. In future work, the model plate width and

Table 3. Regression functions.

n = Number of Transverse Beams

Pl
at

e
T

hi
ck

ne
ss

(m
m

)

f1 = (0.3923)·n2 + (-1.2360)·n + (1.2451)
2 f2 = (1.1455)·n2 + (-3.9609)·n + (4.5791)

f3 = (2.4496)·n2 + (-9.5942)·n + (12.8985)
f1 = (0.7640)·n2 + (-2.2141)·n + (1.8635)

4 f2 = (2.2459)·n2 + (-7.4501)·n + (8.3942)
f3 = (4.8453)·n2 + (-18.6997)·n + (24.7352)
f1 = (1.1719)·n2 + (-3.6571)·n + (3.6110)

6 f2 = (3.3340)·n2 + (-10.8488)·n + (11.9525)
f3 = (7.1318)·n2 + (-26.8444)·n + (34.5638)
f1 = (1.5569)·n2 + (-4.8252)·n + (4.7011)

8 f2 = (4.3983)·n2 + (-14.0598)·n + (15.0946)
f3 = (9.2603)·n2 + (-33.4961)·n + (41.0395)
f1 = (1.9354)·n2 + (-5.9327)·n + (5.6608)

10 f2 = (5.3952)·n2 + (-16.5207)·n + (16.1158)
f3 = (11.1720)·n2 + (-38.1918)·n + (43.2955)
f1 = (2.3051)·n2 + (-6.9570)·n + (6.4250)

12 f2 = (6.3822)·n2 + (-19.1811)·n + (18.5515)
f3 = (12.8055)·n2 + (-40.3035)·n + (39.8636)
f1 = (2.6749)·n2 + (-8.0125)·n + (7.2944)

14 f2 = (7.2818)·n2 + (-20.9467)·n + (18.6298)
f3 = (14.2468)·n2 + (-40.8632)·n + (33.3841)
f1 = (3.0252)·n2 + (-8.8545)·n + (7.6656)

16 f2 = (8.0857)·n2 + (-21.7434)·n + (16.4122)
f3 = (15.4318)·n2 + (-39.1261)·n + (21.8871)

length will be varied, and a single formula giving the natural
frequency that also considers the model plate width and length
will be constructed.
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