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Size-dependent effects of a cantilevered piezoelectrically actuated micropipe conveying fluid are investigated.
Based on the modified strain gradient beam theory, the model of system is obtained using Hamilton’s princi-
ple. The motion equation is discretized into ordinary differential equations by Generalized Differential Quadrature
Method (GDQM). A stability analysis of the system is completed through eigenvalue analysis. Numerical results
show the effect of geometrical shape size, and length scale parameters on critical flow velocity, and critical volt-
age. Results prove that the modified strain gradient theory (MSGT) has a higher critical flow velocity and critical
voltage than predicted by modified couple stress theory (MCST) and classical theory (CT).

1. INTRODUCTION

Pipe conveying fluid is widely used in important compo-
nents of some engineering machinery. Since the middle of
the last century, various vibration analyses of pipe conveying
fluid have been performed by many scholars. Interested read-
ers can refer to monographs1 and the review’s paper.2 Com-
pared with the macro-scale pipes conveying fluid, micro-scale
pipes conveying fluid are often used to make microreactors,3

current−carrying devices,4 and microsensors.5 It is of great
practical significance to study the vibration characteristics of
micro-scale pipes conveying fluid.

Scholars have shown in the past decades that the micro-scale
structures have size-dependent phenomena. Lam et al.6 devel-
oped a modified set of second-order deformation metrics, the
dilatation gradient vector, the deviatoric stretch gradient tensor,
and the rotation gradient tensor, and derived the correspond-
ing work-conjugate stress metrics as the basic strain and stress
measures for a strain gradient theory for elasticity, i.e., the
modified strain gradient theory. Tang and Alici7, 8 presented
a method to obtain the length-scale factors for silicon can-
tilevers by using the experimental data provided by the micro-
and nanoindentation measurements. The natural frequency and
deflection models for micro-and nano-sized silicon cantilevers
are provided to incorporate the effect of the length-scale fac-
tors. Dehrouyeh-Semnani9 investigated the static bending of
thin plane-strain microbeam based on modified couple stress
and strain gradient elasticity constitutive beam models. The
modified couple stress and strain gradient elasticity of the
Euler−Bernoulli beam models overestimate the bending rigid-
ity of the micro-cantilever when the size effect is significant.

The size effect in the structural behavior of systems can also
be found in some literature10–15 based on the modified strain
gradient theory.

A few research results have been obtained for the micro-
scale pipes conveying fluid on the microscale theory of some
of the above documents. Several achievements have been made
in the research of micro-scale pipe conveying fluid in the last
ten years. Rinaldi et al.16 presented the first set of results on
the effects of miniaturization on stability, damping, and fre-
quency shifts in straight micromachined pipes containing an
internal flow. Wang17 established a theoretical model for fluid-
conveying microtubes using the modified couple stress theory
and explored the effects of the internal material length scale pa-
rameter on the natural frequencies and the critical flow veloc-
ities. Xia and Wang18 developed a microstructure−dependent
Timoshenko model for the microscale pipes containing inter-
nal fluid using modified couple stress theory. Yin et al.19

proposed a microstructure-dependent Bernoulli−Euler model
for microscale pipes containing internal fluid by using the
strain gradient and analyzed the vibration and stability of mi-
croscale simply supported pipe. Yang et al.20 demonstrated
the microstructure−dependent size effect. The post−buckling
configurations, nonlinear frequency, and response were pre-
sented.

Hosseini et al.21 investigated the size−dependent stabil-
ity analysis of the cantilever micropipes conveying fluid and
examined the effect of length scale parameter, outside diam-
eter, aspect ratio, and the type of microstructure model on
the mechanical behaviors of micropipes. Deng et al.22 ex-
amined the free vibration and stability of multi−span FGM
micropipe conveying fluid. A hybrid method, which com-
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bines reverberation-ray matrix and wave propagation, is de-
veloped in consideration of the natural frequencies of the sys-
tem. Ghazavi et al.23 analyzed the in-plane and out-of-plane
vibrations and stability of curved microtubes. The size effects
were also studied on the basis of strain gradient theory, and
the results were compared with those obtained on the basis
of couple stress and classical elasticity theory. On the other
hand, the application of piezoelectric materials in engineer-
ing structures has drawn increasing attention. Rezazadeh et
al.24 illustrated the effectiveness of a pair of surface−bonded
piezoelectric patches to enhance controlling the pull-in voltage
of fixed-fixed and cantilever micro-electro-mechanical (MEM)
actuators subjected to residual stress, fringing field, and axial
stress effects. Abbasnejad et al.25 investigated the effect of
applying piezoelectric layers on the stability of the fluid con-
veying micropipes. The effect of piezoelectric voltage on fre-
quencies and critical flow velocities was thoroughly discussed
using eigenfrequency branches. Hosseini et al.26 studied the
forced vibrations of double piezoelectric functionally graded
material micropipes conveying fluid carrying a moving load
based on the flexoelectricity theory and modified couple stress
theory. Hosseini et al.27 also demonstrated the divergence and
flutter instability of a cantilever piezoelectric carbon nanotube
and discussed the effects of different parameters such as piezo-
electric voltage, surface residual stress, surface elasticity con-
stant, and surface piezoelectric constant, on the critical flutter
velocity of the CNT.

The classical continuum theory of elasticity shows the un-
certainly in describing the mechanical behavior of the system
considering the study of microscale pipe conveying fluid. The-
ories of higher order, such as, modified couple stress theory
and strain gradient theory, can effectively describe the me-
chanical behavior of micro-scale structures, as presented by
the aforementioned literature.17, 18, 20 However, the discussion
of the piezoelectrically actuated microbeams28 and micropipe
conveying fluid25 did not involve the influence of the size ef-
fect and only established a model using classical theory. The
authors believe that the dynamic model established by this
method is insufficient to reflect the mechanical behavior of
piezoelectrically actuated micropipe conveying pipe.

The goal of this paper is to investigate the size-dependent
effect of piezoelectrically actuated micropipe conveying fluid
by using modified strain gradient theory. The governing equa-
tion of motion of the system is obtained using strain energy
together with Hamilton’s principle. The Generalized Differen-
tial Quadrature Method (GDQM) is used to calculate the nat-
ural frequency and flutter critical flow velocity and voltage of
micro-scale pipe conveying fluid, and the effect of geometrical
parameters is discussed.

2. MATHEMATICAL MODELLING

The modified strain gradient elasticity theory for micropipe
conveying fluid is presented in the literature.19 Interested read-
ers can refer to the literature19 for additional details on this the-
ory. The basic equations associated with the modified strain
gradient and the couple stress theories will be omitted. The
size effect is considered for the micropipe and the piezoelectric
layer. The Knudsen number (the ratio of the molecular mean
free path length of fluid to the inner diameter of micropipe) in
the current problem is sufficiently small due to the influence of

Figure 1. Schematic views of the piezoelectrically actuated micro-pipe con-
veying fluid.

fluid flow based on the classical equations of fluid dynamics.
The assumptions made in this paper are as follows: (1) The
fluid in the micropipes is ideal, that is, the inviscid and incom-
pressible fluid. (2) The fluid velocity in the pipe is constant.
(3) The length of the pipe is far greater than the diameter of
the pipe, and the materials of the pipes are the same and uni-
form. (4) Only the in-plane vibration of the pipe is considered.
(5) The Poisson’s effect was neglected.

A cantilevered piezoelectrically actuated micropipe convey-
ing fluid is shown in Fig. 1. A pipe of lengthL, pipe density ρp,
outer layer width wout, and inner layer width win, outer layer
height hout, inner layer height hin are considered isotropic
with a pair of piezoelectric layers bonded on its surfaces, each
piezoelectric layer has a thickness hp, and the widthwp of each
piezoelectric layer is equal to the outer layer width wout, that
is, wp = wout. The fluid in the pipe is incompressible fluid
with density ρf and axial flow velocity U . The piezoelectric
layered cantilever pipe is considered to be an Euler−Bernoulli
type. x and y represent the axial and transverse directions, re-
spectively; the transverse one, in the y-direction, is represented
by w(x, t).

On the basis of the modified strain gradient theory,29 the
potential energy of pipe includes the following terms21

Ub=
1

2

∫ L

0

(
Sb ·

(
∂2w

∂x2

)2

+Kb ·
(
∂3w(x, t)

∂x3

)2
)
dx; (1)

where

Kb = Ib(2Gbl
2
0 + 4

5Gbl
2
1);

Sb = EbIb + 2GbAbl
2
0 + 8

15GbAbl
2
1 +GbAbl

2
2;

(2)

Ab = houtwout − hinwin, Ib =
wouth

3
out

12
− winh

3
in

12
; (3)

in which, Eb and Gb are the elastic and shear modulus of the
pipe in the classical elasticity theory, respectively. l0, l1, and
l2 denote the three independent material length scale param-
eters related to the constitutive equations of the higher-order
stresses. In the reference,21 material scale parameters l0, l1,
and l2 are independent material length scale parameters re-
spectively associated with dilatation, deviatoric stretch, and ro-
tation gradients. The length scale parameters in this paper do
not denote real material length scale parameters. So, the value
of the material length scale parameters is just an arbitrary as-
sumption.

Applying a voltage Vp on the piezoelectric layers located on
the micro-pipe surfaces, the piezoelectric voltage will lead to a
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follower force as provided below:24

Fp = −2woutē31Vp; (4)

where ē31 the equivalent piezoelectric coefficient.
Considering the piezoelectrically exciting force as the fol-

lower force, the potential energy related to the piezoelectric
layers can be written as:25

ΠFx =
1

2
Fp

∫ L

0

(
∂w

∂x

)2

dx; (5)

and

δΠFy = Fp
∂w

∂x
δw

∣∣∣∣
x=L

; (6)

where ΠFx
and ΠFy

denote the work respectively conducted
by the x- and y-components of the follower force Fp . Cur-
rent authors indicate that equation (6) does not appear in the.25

Some literature works reveal that actuated force Fp is not in-
cluded in the equations of the boundary conditions. However,
the authors use the same method to re-deduce the governing
equations and the boundary conditions. The process of deriva-
tion shows that Eq. (6) cannot be omitted.

The potential energy of the piezoelectric layer includes the
following terms21:

Up =
1

2

∫ L

0

(
Sp ·

(
∂2w

∂x2

)2

+Kp ·
(
∂3w(x, t)

∂x3

)2
)
dx;

(7)
where

Kp = Ip(2Gpl
2
0 +

4

5
Gpl

2
1);

Sp = EpIp + 2GpApl
2
0 +

8

15
GpApl

2
1 +GpApl

2
2; (8)

Ap = 2wphp, Ip =
2wbhp

3
(
3h2out

4
+ h2p +

3

2
houthp); (9)

where Ep and Gp are the elastic and shear modulus of piezo-
electric layer in the classical elasticity theory, respectively.

The kinetic energy includes the following terms

T (t) = Tb + Tp + Tf =

1
2ρbAb

∫ L
0

(
∂w(x,t)
∂t

)2
dx+ 1

2ρpAp
∫ L
0

(
∂w(x,t)
∂t

)2
dx+

1
2ρfAf

∫ L
0

((
∂w
∂t + U ∂w

∂x

)2)
dx;

(10)
where Af = hinwin.

The governing equation of the transverse motion can be ob-
tained by the minimization of the Lagrangian using the varia-
tional principle:∫ t

0

(δT − δΠ)dt =

∫ t2

t1

MU(ẇL + Uw′L)δwLdt; (11)

where
δΠ = δΠb + δΠFx + δΠFy + δΠp. (12)

Substituting expressions (1), (4), (5), (6), (7), and (10) into

Eq. (11) and using the integral transformation

δ
∫ t2
t1

(T − U) dt−
∫

t2

t1
MU0(ẇL + Uw′L)δwLdt

= −(ρbAb + ρpAp +mf )
∫ t2
t1

∫ L
0
ẅdxdt+

(ρbAb + ρpAp +mf )
∫ L
0
ẇ δw|t2t1dx+

−mfU
2
0

∫ t2
t1

∫ L
0
w′′dxdt+mfU

2
0

∫ t2
t1
w′ δw|L0 dt+

mfU0

∫ L
0
w′ δw|t2t1dx+mfU0

∫ t2
t1
ẇ δw|L0

−2mfU0

∫ t2
t1

∫ L
0
ẇ′δwdxdt− (Sp + Sb)

∫ t2
t1
w′′ δw′|L0 dt

+(Sp + Sb)
∫ t2
t1
w′′′ δw|L0 dt−

(Sp + Sb)
∫ t2
t1

∫ L
0
w′′′′δwdxdt−

Fp
∫ t2
t1
w′δw|L0 dt+ Fp

∫ t2
t1

∫ L
0
w′′δwdxdt−

(Kp +Kb)
∫ t2
t1
w′′′ δw′′|L0 dt+

(Kp +Kb)
∫ t2
t1
w′′′′ δw′|L0 dt−

(Kp +Kb)
∫ t2
t1
w′′′′′ δw|L0 dt+

(Kp +Kb)
∫ t2
t1

∫ L
0
w′′′′′′δwdxdt−∫ t2

t1
MU0(ẇL + U0w

′
L)δwLdt−

Fp
∫ t2
t1
w′LδwLdt = 0.

(13)
The governing equation of motion is derived as follows:

(ρpAp + ρbAb +mf )
∂2w

∂t2
+ (Sp + Sb)

∂4w

∂x4
−

(Kp+Kb)
∂6w

∂x6
−Fp

∂2w

∂x2
+mfU

2
0

∂2w

∂x2
+2mfU0

∂2w

∂x∂t
= 0.

(14)

The corresponding boundary conditions from Hamilton’s
method for cantilevered micro-pipe conveying fluid are writ-
ten as follows

x = 0 : [(Sb + Sp)w
′′′ − (Kp +Kb)w

′′′′′] δw = 0;

[−(Sb + Sp)w
′′+(Kb +Kp)w

′′′′] δw′ = 0;

(Kp +Kb)w
′′′δw′′ = 0; (15)

x = L : [−(Sb + Sp)w
′′′+(Kp +Kb)w

′′′′′] δw = 0;

[(Sb + Sp)w
′′ − (Kb +Kp)w

′′′′] δw′ = 0;

(Kp +Kb)w
′′′δw′′ = 0. (16)

For a pipe with a cantilever, the classical boundary condi-
tions at ends of pipe are as follows:

x = 0 :w = 0, w′ = 0;

x = L :(Sb + Sp)w
′′ − (Kb +Kp)w

′′′′ = 0;

− (Sb + Sp)w
′′′ − (Kp +Kb)w

′′′′′ = 0. (17)

Two possible boundary conditions at both ends are available
for non-classical boundary conditions. One of the higher-order
boundary conditions can be written as:

x = 0 : (Kp +Kb)w
′′′ = 0 or w′′ = 0;

x = L : (Kp +Kb)w
′′′ = 0 or w′′ = 0.

(18)

The boundary conditions in Eq. (17)–(18) can be reduced to
the following four boundary conditions:
BC1:

x = 0 : w = 0, w′ = 0, w′′ = 0;
x = L : −(Sb + Sp)w

′′ + (Kb +Kp)w
′′′′ = 0;

−(Sb + Sp)w
′′′ + (Kp +Kb)w

′′′′′ = 0, (Kp +Kb)w
′′′ = 0.

(19)
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BC2:

x = 0 : w = 0, w′ = 0, w′′ = 0;

x = L :− (Sb + Sp)w
′′ + (Kb +Kp)w

′′′′ = 0;

− (Sb + Sp)w
′′′ + (Kp +Kb)w

′′′′′ = 0, w′′ = 0.
(20)

BC3:

x = 0 : w = 0, w′ = 0, w′′′ = 0;

x = L :− (Sb + Sp)w
′′ + (Kb +Kp)w

′′′′ = 0;

− (Sb + Sp)w
′′′ + (Kp +Kb)w

′′′′′ = 0;

(Kp +Kb)w
′′′ = 0. (21)

BC4:

x = 0 : w = 0, w′ = 0, w′′′ = 0;

x = L :− (Sb + Sp)w
′′ + (Kb +Kp)w

′′′′ = 0;

− (Sb + Sp)w
′′′ + (Kp +Kb)w

′′′′′ = 0, w′′ = 0.
(22)

References30, 31 indicate that parameter µ is a coefficient of
the flow velocity profile representing the size effect of micro-
flow. By introducing the parameter µ into the governing
Eq. (14), one obtains:

(ρpAp + ρbAb +mf )
∂2w

∂t2
+ (Sp + Sb)

∂4w

∂x4
−

(Kp+Kb)
∂6w

∂x6
−Fp

∂2w

∂x2
+µmfU

2
0

∂2w

∂x2
+2mfU0

∂2w

∂x∂t
= 0.

(23)

The flow velocity field of a Poiseuille-flow problem with
a rectangular cross-section can be expressed as a Fourier
sum30, 32:

vx =
4h2in
π3

∆p

ηL

∞∑
n=2k+1

1

n3

[
1−

cosh(nπ y
hin

)

cosh(nπ win

2hin
)

]
sin(nπ

z

hin
);

(24)
where ∆p is the pressure difference between the two ends of
the pipe,and η is the viscosity of the internal fluid. The param-
eter µ can be given by32:

µ =
A
∫
A
v2xdA(∫

A
vxdA

)2 . (25)

3. PROCEDURES OF SOLUTION

The following dimensionless quantities are defined to sim-
plyfy the Eq. (23):

w∗ =
w

L
, ξ =

x

L
, t∗ =

√
EpIp + EbIb

(ρpAp + ρbAb +mf )L4
t;

β =
mf

ρpAp + ρbAb +mf
, S∗ =

Sp + Sb
EpIp + EbIb

;

K∗ =
Kp +Kb

EpIp + EbIb
, F̃p =

FpL
2

EpIp + EbIb
;

U = U0L

√
M

EpIp + EbIb
. (26)

In dimensionless terms, disregarding the sign ”*”, substitut-
ing (26) into Eq. (23), the dimensionless governing equation
can be shown as follows:

∂2w
∂t2 + S̃ ∂

4w
∂x4 − K̃ ∂6w

∂x6 − F̃p ∂
2w
∂x2 + µU2 ∂2w

∂x2

+2
√
βU ∂2w

∂x∂t = 0.
(27)

The corresponding dimensionless boundaries include the fol-
lowing:
BC1:

ξ = 0 :w = 0, w′ = 0, w′′ = 0;

ξ = L :− S̃w′′ + K̃w′′′′ = 0, w′′′′′ = 0, w′′′ = 0. (28)

BC2:

ξ = 0 :w = 0, w′ = 0, w′′ = 0;

ξ = 1 :w′′′′ = 0− S̃w′′′ + K̃w′′′′′ = 0, w′′ = 0. (29)

BC3:

ξ = 0 :w = 0, w′ = 0, w′′′ = 0;

ξ = 1 :− S̃w′′ + K̃w′′′′ = 0, w′′′′′ = 0, w′′′ = 0. (30)

BC4:

ξ = 0 :w = 0, w′ = 0, w′′′ = 0;

ξ = 1 :w′′′′ = 0− S̃w′′′ + K̃w′′′′′ = 0, w′′ = 0. (31)

. The GDQM method is used to descretize the governing equa-
tion and boundary conditions to obtain the eigenvalues of mi-
cropipe conveying fluid. The GDQM can also be employed to
solve the various vibration problem (33, 34).

The mesh is divided as follows

xi =
1− cos((i− 1)π/(N − 1))

2
(i = 1, 2, , 3, · · · , N − 1, N). (32)

On the basis of the algorithm of GDQM, the independent vari-
able vector is

{W} = {W1,W2,W3,W4, · · · ,WN−1,WN ,

WN+1, WN+4}T

= {w1, w
′
1, w

′′
1 , w2, w3, · · · ,

wN−1, wN , w
′
N−1, w

′′
N}T . (33)

Setting wb = {w1, w
′
1, w

′′
1 , w

′′
N , w

′
N , wN} and

wd = {w2, w3, w4, · · · , wN−1, wN , wN+1}T , and dis-
cretizing Eqs. (27)–(31) by the GDQM, one obtains:

ẇi + S̃

N+4∑
j=1

E
(4)
ij Wj − K̃

N+4∑
j=1

E
(6)
ij Wj+

(F̃p + µU2)

N+4∑
j=1

E
(2)
ij Wj + 2

√
βU

N+4∑
j=1

E
(1)
ij Ẇj = 0,

i = 2, 3, · · ·N − 2. (34)
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BC1:

W1 = 0,

N+4∑
j=1

E
(1)
1j Wj = 0,

N+4∑
j=1

E
(2)
1j Wj = 0;

− S̃
N+4∑
j=1

E
(2)
NjWj + K̃

N+4∑
j=1

E
(4)
NjWj = 0;

N+4∑
j=1

E
(5)
NjWj = 0,

N+4∑
j=1

E
(3)
NjWj = 0. (35)

BC2:

W1 = 0,

N+4∑
j=1

E
(1)
1j Wj = 0,

N+4∑
j=1

E
(2)
1j Wj = 0;

N+4∑
j=1

E
(4)
NjWj = 0,

N+4∑
j=1

E
(2)
NjWj = 0;

− S̃
N+4∑
j=1

E
(3)
NjWj + K̃

N+4∑
j=1

E
(5)
NjWj = 0. (36)

BC3:

W1 = 0,

N+4∑
j=1

E
(1)
1j Wj = 0,

N+4∑
j=1

E
(3)
1j Wj = 0;

− S̃
N+4∑
j=1

E
(2)
NjWj + K̃

N+4∑
j=1

E
(4)
NjWj = 0;

N+4∑
j=1

E
(5)
NjWj = 0,

N+4∑
j=1

E
(3)
NjWj = 0. (37)

BC4:

W1 = 0,

N+4∑
j=1

E
(1)
1j Wj = 0,

N+4∑
j=1

E
(3)
1j Wj = 0;

N+4∑
j=1

E
(4)
NjWj = 0,

N+4∑
j=1

E
(2)
NjWj = 0;

− S̃
N+4∑
j=1

E
(3)
NjWj + K̃

N+4∑
j=1

E
(5)
NjWj = 0. (38)

In Eqs. (34)–(38), the coefficients E(r)
ij (r = 1, 2, · · · , 6) are

the weighting coefficient of the rth-order derivative at a grid
point ξi can be obtained from the literature (34). According to
the literature,19 Eq.(34) and one of the boundary (35)-(38) can
be rewritten in matrix form:[

[Kbb] [Kbd]
[Kdb] [Kdd]

]{
{wb}
{wd}

}
+

[
[0] [0]

[Gdb] [Gdd]

]{
{ẇb}
{ẇd}

}
+

[
[0] [0]

[Mdb] [Mdd]

]{
{ẅb}
{ẅd}

}
=

[
[0]
[0]

]
. (39)

The first equation of Eq. (39) can be solved as follows:

{wb} = −[Kbb]
−1

[Kbd] {wd} . (40)

Table 1. The material contents of the microcantilever piezoelectrically actu-
ated micro−pipe conveying fluid

Parameters Microcantilever Piezoelectric
pipe layer

Length (µm) 800.0 800.0
Young’s modulus (GPa) 169.0 78.6
Mass density (kg/m3) 2331 7500
Poisson’s ratio 0.06 0.3
e31 -9.29

Substituting Eq. (40) into the second formula of Eq. (39), one
obtains:

[M ] {ẅd}+ [C] {ẇd}+ [K] [wd] = 0; (41)

where

M = − [Mdb] [Kbb]
−1

[Kdb] + [Mdd] ;

C = − [Gdb] [Kbb]
−1

[Kdb] + [Gdd] ;

K = − [Kdb] [Kbb]
−1

[Kdb] + [Kdd] . (42)

To determine the nondimensional eigenvalues of the mi-
cropipe conveying fluid for a given piezoelectric voltage, the
solution of Eq. (41) is assumed to be:

wj = Aje
λjt. (43)

Substituting Eq. (43) into Eq. (41), the following relation is
obtained: (

[M]λ2 + [C]λ+ [K]
)
A = 0. (44)

According to linear algebraic knowledge, the characteristic
equation of the system can be obtained as follows:∣∣Mλ2+Cλ+K

∣∣=0. (45)

The imaginary component of the eigenvalue λ is the dimen-
sionless natural frequency of the system, and the real compo-
nent of λ is related to the damping, which can be used to iden-
tify the stability of the system.

4. NUMERICAL RESULTS AND DISCUSSION

To show the correction of the present algorithm, a compar-
ison is made between the present method and Ref.21 Figure 2
shows the variation of first eigenvalues of micro-pipes pre-
dicted by CT, MSGT, and MCST with dimensionless fluid ve-
locity U for D = 100 µm, (a) imaginary part and (b) real part.
In Fig. 2, the values of those parameters are the same as those
in Ref.21 The results demonstrate a very good agreement with
the numerical results obtained in Ref.21

The numerical results of the micropipe conveying fluid
for cantilever piezoelectrically actuated micropipes based on
MSGT are presented. The fluid density used in the simulation
is 1000 kg/m3, and the geometrical and material properties of
the micro-pipe and the piezoelectric layers are listed in Table 1.
The geometrical shape of the micropipes is made uniformly by
letting hin/hout = α, win/wout = γ, and L = 800.0 µm, and
the geometrical shape of the micro piezoelectric layer can be
set by letting thickness hp = 0.01 µm, and width wp = wout.
All three material length scale parameters are assumed to be
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Figure 2. Comparison of first eigenvalues of micro-pipes got by CT, MCST
and MSGT with dimensionless fluid velocity U for D = 100µm, (a) imagi-
nary part and (b) real part.

the same, that is, `0 = `1 = `2 = ` = 17.6 µm(29). The influ-
ence of various boundary conditions on the vibration behavior
of the system was initially studied. In Fig. 3, the real part of
the third-order modal versus fluid velocity U is shown under
the following parameters V = 20.0 vol, hout = 40.0 µm, and
hin = 38.0 µm, wout = 50.0 µm. Figure 3 shows that, the
unstable critical flow velocity is Ucr = 23.18 in the present pa-
rameters, and the critical flow velocity under the four boundary
conditions shows almost no difference. Therefore, the authors
only considered using one of the four boundary conditions, that
is, the first boundary condition, in the following analysis.

Figure 4 shows that considering the size effect of micro-flow
and micro-structure, the coefficient µ, which represents the ef-
fect of the flow velocity profile, is equal to 1.3746 with the
same parameters in Fig. 3. The choice of µ=1.3746 decreases
the critical flow velocity and the unstable critical flow velocity
is Ucr = 14.25.

The system degenerates to a cantilever beam when the fluid
velocity is zero. The critical dimensionless load (20.05) of the
Beck problem for the cantilever beam is denoted as.35 Fig-
ure 5 shows the first three order imaginary and real parts of the
eigenvalue versus the applied DC voltage in these parameters
U = 0.0, hout = 30.0 µm, hin = 20.0 µm, win = 48.0 µm,
wout = 50.0 µm. Figsures 5(a) and (b) respectively in-
dicate the flutter instability is Vcr = 57.29 and frequency
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Figure 3. Real part of eigenvalue versus flow velocity under four kinds of
boundary.
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Figure 4. Real part of eigenvalue versus flow velocity under the coefficient
µ=1.0 and µ=1.3746.

ωcr = 11.02. The corresponding dimensionless piezoelec-
tric force at this point is 20.07, which is in good agreement
with the foregoing description. However, the system does
not undergo divergence instability, which is not in agreement
with.28 The present authors believes that the possible reason
that the Galerkin method’s modal number is adopted by two
order modal in.28 Figure 5 shows that the second flutter insta-
bility is obtained at Vcr = 365.16 by increasing the piezoelec-
tric voltage.

Figure 6 shows the evolution of the four lowest complex
eigenfrequencies of the system with increasing flow velocity
under the piezoelectric voltage V = 40.0 vol, hout = 30.0 µm,
hin = 20.0 µm, win = 48.0 µm, wout = 50.0 µm. In
classical theory, Fig. 6(a) shows that the flutter unstable point
of the system appears at the fluid velocity Ucr = 7.139 and
the unstable critical frequency ωcr=26.452 of the third-order
mode. Fig. 6(b) reveals that the flutter unstable point of the
system in the modified coupled stress theory appears at the
fluid velocity Ucr = 13.728 and the unstable critical frequency
ωcr=45.721 of the third-order mode. In the modified strain
gradient theory, as seen in Fig. 5(c), the flutter unstable point
of the system appears at the fluid velocity Ucr = 22.156 and
third-order mode unstable critical frequency ωcr=71.714 of
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Figure 5. Flutter instabilities in the cantilever micropipe with U = 0.0, l0 =
l1 = l2 = 0: (a) imaginary parts, (b) real parts.

the third-order mode. The value of the micro-scale parame-
ters has a significant influence on the stability of micro pipe
conveying fluid.

Figure 7 depicts the variation of flutter critical flow velocity
and micro-pipe voltage with the parameter α, which is equal
to the ratio of parameter hin/hout and the other parameter
hin = 20 µm, wout = 50.0 µm, γ = 0.90, V = 20.0 vol.
Figure 7(a) shows that the critical flow velocity Ucr increases
in the modified couple stress and strain gradient theory by rais-
ing the value α, that is, the external geometric height parameter
hout. Figure 7(b) reveals the critical voltage Vcr decreases un-
der the special parameter U = 4.0 by increasing the value of
α. In Figs. 7 and 8 the black, red, and blue lines denote the
classical, modified couple stress, and modified strain gradient
theories, respectively.

Figure 8 depicts the variation of the critical fluid velocities
and critical voltage of micro-pipes concerning the parameters
γ, which is equal to the parameter ratiowin/wout and the other
parameters win = 30.0 µm, hin = 20 µm, α = 0.95 . In
Fig. 8(a), the critical flow velocity with voltage V = 20.0 has a
hysteretic phenomenon, as indicated in the study of Paidoussis
(1). In Fig. 8(b) the critical voltage Vcr decreases with the
increasing γ parameter under flow velocity U = 3.50 .

Figure 9 shows the variation of critical fluid velocity and
voltage of micro-pipes considering size-dependent effect `
and the other parameters α = 0.95, γ=0.4 under modified
strain gradient theory. Fig. 9(a) shows the effect of the size-
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Figure 6. Dimensionless complex frequency of the lowest four modes of a
cantilevered piezoelectrically actuated micropipe as a function of the dimen-
sionless flow with (a) classic theory, (b) modified couple stress theory, and (c)
modified strain gradient theory.

dependent effect ` on the flutter critical flow velocity with the
parameter V = 5.0. In Fig. 9(b) with the special parameter
U = 3.50 when the size-dependent effect ` increasing, the
flutter critical voltage Vcr also increases.

The instability region in the (U , V ) plane for a cantilevered
pipe conveying fluid is shown in Fig. 10 considering the fol-
lowing parameters: α = 0.95, γ=0.4, win = 30.0 µm, and
hin = 20 µm. Three different theories are applied. This fig-
ure shows the parameter region in the (U , V ) plane is divided
into two sub-regions according to different behaviors. The sta-
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Figure 7. Flutter critical flow velocity and voltage with parameter ratio α,
black line (classical theory), red line (modified couple stress theory); blue line
(modified strain gradient theory), (a) dimensionless critical flow velocity Ucr

and (b) critical voltage Vcr .

ble region under the class theory is smaller than under couple
stress theory or strain gradient theory. The instability region
has a considerable difference in the present parameters. How-
ever, the trend of the unstable boundary curves is consistent.
The difference among flutter boundaries obtained by different
theories is relatively large.

5. CONCLUSION

This paper introduced a cantilevered piezoelectrically actu-
ated micropipe conveying fluid to enhance the analysis of the
mechanical behavior. The modified strain gradient theory is
used instead of the classical theory to build the equation of sys-
tem motion and the corresponding boundary. The size effect
on the stability of the system was illustrated. By employing
the GDQM, the various numerical results revealed the effect of
geometrical shape size, length scale parameter on critical flow
velocity, and critical voltage. The main results are included as
follows:

1. The influence of four boundary conditions derived from
the principle on system’s stability is the same.

2. The critical flow and critical voltage obtained by the mod-
ified couple stress and strain gradient theory were higher
than those obtained by classical theory under the same
geometric and material parameters.
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Figure 8. Flutter critical flow velocity and voltage concerning parameter ratio
γ, (a)dimensionless critical flow velocity Ucr and (b) critical voltage Vcr .

3. Various geometric and scale parameters had an important
influence on the critical flow velocity and voltage of the
system. The height hout of the outer rectangle section
changes with the parameter α when the hin of the inner
rectangle section is unchangeable. The critical flow ve-
locity Ucr increases with the parameter α. However, the
critical voltage Vcr decreased. Similarly, the parameter
γ is the ratio of the inner rectangle section width win and
the outer rectangle section widthwout ,the effect of which
is the same with the parameter α . The critical flow ve-
locity and voltage also increased with the size-dependent
effect `.

The authors need point out that the current dynamic model
was created without considering geometric nonlinearity. How-
ever, this paper focused on the stable analysis of the system,
and it was reasonable to adopt the current model. A further
discussion about the nonlinear post-instability behavior of the
cantilever can be found in the author’s follow-up articles.

ACKNOWLEDGEMENT

The research was partially supported by the National Natural
Science Foundation of China (GrantNumbers11872043), and
the Opening Project of Sichuan Province University Key Lab-
oratory of Bridge Non-destruction Detecting and Engineering
Computing (GrantNumbers2016QZJ03), and Fund Project of
Sichuan University of Science and Engineering in hit-haunting

International Journal of Acoustics and Vibration, Vol. 26, No. 4, 2021 303



L. Yun-dong, et al.: SIZE-DEPENDENT STABILITY OF A CANTILEVERED PIEZOELECTRICALLY ACTUATED MICROPIPE CONVEYING FLUID

0 5 10 15 20
0

500

1000

1500

2000

ℓ

V
c
r

(b)

Figure 9. Flutter critical flow velocity and voltage of as size-dependent effect
` (a)dimensionless critical flow velocity Ucr and (b) critical voltage Vcr .

for talents (GrantNumbers2016RCL31 and 2018RCL11), and
Key projects of Department of Education of Sichuan Province
(GrantNumbers18ZA0353), and Zigong Science and Technol-
ogy Program(GrantNumbers2020YGJC03). The authors thank
the anonymous reviewers for their helpful suggestions.

REFERENCES
1 Paidoussis, M. P. Fluid-structure interactions: slender

structures and axial flow,Vol. 1, Elsevier Academic Press,
London, (1998).

2 Ibrahim, R. Overview of mechanics of pipes convey-
ing fluids,part I: Fundamental studies, Journal of Pres-
sure Vessel Technology, 132(3), 034001:1-32, (2010).
https://dx.doi.org/10.1115/1.4001271

3 Kim, K.-H. Moldovan, N. and Espinosa, H. D.
A nanofountain probe with sub-100 nm molecu-
lar writing resolution, Small, 1(6), 632-635,(2005).
https://dx.doi.org/10.1115/1.4001271

4 Pagona, G. and Tagmatarchis, N. Carbon nanotubes: ma-
terials for medicinal chemistry and biotechnological appli-
cations, Current medicinal chemistry, 13(15), 1789-1798,
(2006). https://dx.doi.org/10.2174/092986706777452524

5 Longhurst,M. and Quirke, N. Temperature-driven
pumping of fluid through single-walled carbon

0 5 10 15 20
0

500

1000

1500

2000

U
cr

V
c
r

 

 

classical theory

couple stress theory

strain gradient theory

Figure 10. Flutter critical flow velocity Ucr and voltage Vcr in different
elastic theory.

nanotubes, Nano letter, 7(11), 3324-3328, (2007).
https://dx.doi.org/10.1021/nl071537e

6 Lam, D., Yang, F., Chong, A., Wang, J., and Tong, P. Exper-
iments and theory in strain gradient elasticity, Journal of the
Mechanics & Physics of Solids, 51(8), 1477-1508, (2003).
https://dx.doi.org/10.1016/S0022-5096(03)00053-X

7 Tang, C. and Alici, G. Evaluation of length-scale effects
for mechanical behaviour of micro- and nanocantilevers: I.
Experimental determination of length-scale factors, Jour-
nal of Physics D: Applied Physics, 44(33), 335501, (2011).
https://dx.doi.org/10.1088/0022-3727/44/33/335501

8 Tang, C. and Alici, G. Evaluation of length-scale effects
for mechanical behaviour of micro- and nanocantilevers: II.
Experimental verification of deflection models using atomic
force microscopy, Journal of Physics D: Applied Physics,
44(33), 335502, (2011). https://dx.doi.org/10.1088/0022-
3727/44/33/335502

9 Dehrouyeh-Semnani, A. M. A discussion on different non-
classical constitutive models of microbeam, International
Journal of Engineering Science, 85(11), 66-73, (2014).
https://dx.doi.org/10.1016/j.ijengsci.2014.07.008

10 Liebold, C. and Mller, w. Comparison of gradient
elasticity models for the bending of micromaterials,
Computational Materials Science, 116, 52-61, (2016).
https://dx.doi.org/10.1016/j.commatsci.2015.10.031

11 Lei, J., He, Y., Guo,S. Li, Z.and Liu, D. Size-dependent vi-
bration of nickel cantilever microbeams: Experiment and
gradient elasticity, Aip Advances, 6(10), 51-59, (2016).
https://dx.doi.org/10.1063/1.4964660

12 Li, Z., He, Y., Lei, J.,Han, S., Guo, S. and
Liu.,D. Experimental investigation on size-dependent
highermode vibration of cantilever microbeams, Mi-
crosystem Technologies, 25(8), 30050-3015, (2019).
https://dx.doi.org/10.1007/s00542-018-4244-0

13 Wi, D.and Sodemann, A. Investigation of the size effect
on the resonant behavior of mesoscale cantilever beams,
Journal of Vibration and Control, 25(23-24), 2946-2955,
(2019). https://dx.doi.org/10.1177/1077546319872311

304 International Journal of Acoustics and Vibration, Vol. 26, No. 4, 2021

http://dx.doi.org/10.1115/1.4001271
http://dx.doi.org/10.1115/1.4001271
http://dx.doi.org/10.2174/092986706777452524
http://dx.doi.org/10.1021/nl071537e
http://dx.doi.org/10.1016/S0022-5096(03)00053-X
http://dx.doi.org/10.1088/0022-3727/44/33/335501
http://dx.doi.org/10.1088/0022-3727/44/33/335502
http://dx.doi.org/10.1088/0022-3727/44/33/335502
http://dx.doi.org/10.1016/j.ijengsci.2014.07.008
http://dx.doi.org/10.1016/j.commatsci.2015.10.031
http://dx.doi.org/10.1063/1.4964660
http://dx.doi.org/10.1007/s00542-018-4244-0
http://dx.doi.org/10.1177/1077546319872311


L. Yun-dong, et al.: SIZE-DEPENDENT STABILITY OF A CANTILEVERED PIEZOELECTRICALLY ACTUATED MICROPIPE CONVEYING FLUID

14 Wu, Q. and Qi, G., Quantum dynamics for al-doped
graphene composite sheet under hydrogen atom impact,
Applied Mathematical Modelling, 90, 1120-1129, (2021).
https://dx.doi.org/10.1016/j.apm.2020.10.025

15 Wu,Q., Yao, M., Li, M., Cao, D. and Bai, B.
Nonlinear coupling vibrations of graphene com-
posite laminated sheets impacted by particles, Ap-
plied Mathematical Modelling, 93, 75-88, (2021).
https://dx.doi.org/10.1016/j.apm.2020.12.008

16 Rinaldi, S., Prabhakar, S., Vengallatore, S. and Paıdoussis,
M. P. Dynamics of microscale pipes containing internal
fluid flow: Damping, frequency shift, and stability, Jour-
nal of Sound and Vibration, 329 (8), 1081-1088, (2010).
https://dx.doi.org/10.1016/j.jsv.2009.10.025

17 Wang, L. Size-dependent vibration characteris-
tics of fluid-conveying microtubes, Journal of
Fluids and Structures, 26(4), 675-684, (2010).
https://dx.doi.org/10.1016/j.jfluidstructs.2010.02.005

18 Xia, W. and Wang, L. Microfluid-induced vibration and
stability of structures modeled as microscale pipes con-
veying fluid based on non-classical timoshenko beam the-
ory, Microfluidics and nanofluidics, 9(45), 955-962, (2010).
https://dx.doi.org/10.1007/s10404-010-0618-z

19 Yin, L., Qian, Q. and Wang, L. Strain gradient beam model
for dynamics of microscale pipes conveying fluid, Ap-
plied Mathematical Modelling, 35(6), 2864-2873, (2011).
https://dx.doi.org/10.1016/j.apm.2010.11.069

20 Yang,T.-Z., Ji, S., Yang, X.-D. and Fang, B. Microfluid-
induced nonlinear free vibration of microtubes, Interna-
tional Journal of Engineering Science, 76, 47-55, (2014).
https://dx.doi.org/10.1016/j.ijengsci.2013.11.014

21 Hosseini, M. and Bahaadini, R., Size dependent sta-
bility analysis of cantilever micro-pipes conveying fluid
based on modified strain gradient theory, International
Journal of Engineering Science, 101, 1-13, (2016).
https://dx.doi.org/10.1016/j.ijengsci.2015.12.012

22 Deng, J., Liu, Y. and Liu, W. Size-dependent vibra-
tion analysis of multi-span functionally graded mate-
rial micropipes conveying fluid using a hybrid method,
Microfluidics and nanofluidics, 21(8), 1-15, (2017).
https://dx.doi.org/10.1007/s10404-017-1967-7

23 M. Ghazavi, H. Molki, et al., Nonlinear vibra-
tion and stability analysis of the curved microtube
conveying fluid as a model of the micro coriolis
flowmeters based on strain gradient theory, Applied
Mathematical Modelling, 45, 1020-1030, (2017).
https://dx.doi.org/10.1016/j.apm.2017.01.048

24 Rezazadeh, G., Tahmasebi, A. and Zubstov, M.
Application of piezoelectric layers in electrostatic
mem actuators: controlling of pull-in voltage, Mi-
crosystem technologies, 12(12), 1163-1170, (2006).
https://dx.doi.org/10.1007/s00542-006-0245-5

25 Abbasnejad, B., Shabani, R.and Rezazadeh, G. Stability
analysis of a piezoelectrically actuated micropipe convey-
ing fluid, Microfluidics and Nanofluidics, 19(3), 577-584,
(2015). https://dx.doi.org/10.1007/s10404-015-1584-2

26 Hosseini, M., Maryam, A. Z. B. and Bahaadini, R.
Forced vibrations of fluid-conveyed double piezoelec-
tric functionally graded micropipes subjected to moving
load, Microfluidics and Nanofluidics, 21(8), 134, (2017).
https://dx.doi.org/10.1007/s10404-017-1963-y

27 Hosseini, M., Bahaadini, R. and Jamali, B. Nonlocal in-
stability of cantilever piezoelectric carbon nanotubes by
considering surface effects subjected to axial flow, Jour-
nal of Vibration and Control, 24(9), 1809-1825, (2018).
https://dx.doi.org/10.1177/1077546316669063

28 Rezazadeh, G., Fathalilou, M. and Shabani, R. Static and
dynamic stabilities of a microbeam actuated by a piezo-
electric voltage, Microsystem Technologies, 15(12), 1785,
(2009). https://dx.doi.org/10.1007/s00542-009-0917-z

29 Lam, D. C.,Yang, F., Chong, A., Wang, J. and Tong, P. Ex-
periments and theory in strain gradient elasticity, Journal
of the Mechanics and Physics of Solids, 51(8), 1477-1508,
(2003). https://dx.doi.org/10.1016/S0022-5096(03)00053-
X

30 Wang, L., Liu, H. T., Ni, Q. and Wu,Y. Flexural vibra-
tions of microscale pipes conveying fluid by considering
the size effects of micro-flow and microstructure, Inational
Journal of Engineering Science,71(10), 92-101, (2013).
https://dx.doi.org/10.1016/j.ijengsci.2013.06.006

31 Dai, H. L., Wang, L. and Ni,Q. Dynamics and pull-in in-
stability of electrostatically actuated microbeams conveying
fluid, Microfluidics and Nanofluidics, 18(1), 49-55, (2015).
https://dx.doi.org/10.1007/s10404-014-1407-x

32 Bruus, H. Theoretical Microfluidics, Oxford university
press, Oxford, 2008.

33 Du, H., Lim,M. and Lin, R. Application of generalized dif-
ferential quadrature method to structural problems, Inter-
national Journal for Numerical Methods in Engineering,
37(11), 1881-1896, (1994).
https://dx.doi.org/10.1002/nme.1620371107

34 Wu, T. and Liu, G. Application of generalized differential
quadrature rule to sixth-order differential equations, Com-
munications in Numerical Methods in Engineering, 16(11),
777-784, (2000).
https://dx.doi.org/10.1002/1099-
0887(200011)16:11<777::AID-CNM375>3.0.CO;2-6

35 Naschie, M. Stress, Stability,Chaos in Structural Engineer-
ing: An Energy Approach, McGraw Hill, London, (1990).

International Journal of Acoustics and Vibration, Vol. 26, No. 4, 2021 305

http://dx.doi.org/10.1016/j.apm.2020.10.025
http://dx.doi.org/10.1016/j.apm.2020.12.008
http://dx.doi.org/10.1016/j.jsv.2009.10.025
http://dx.doi.org/10.1016/j.jfluidstructs.2010.02.005
http://dx.doi.org/10.1007/s10404-010-0618-z
http://dx.doi.org/10.1016/j.apm.2010.11.069
http://dx.doi.org/10.1016/j.ijengsci.2013.11.014
http://dx.doi.org/10.1016/j.ijengsci.2015.12.012
http://dx.doi.org/10.1007/s10404-017-1967-7
http://dx.doi.org/10.1016/j.apm.2017.01.048
http://dx.doi.org/10.1007/s00542-006-0245-5
http://dx.doi.org/10.1007/s10404-015-1584-2
http://dx.doi.org/10.1007/s10404-017-1963-y
http://dx.doi.org/10.1177/1077546316669063
http://dx.doi.org/10.1007/s00542-009-0917-z
http://dx.doi.org/10.1016/S0022-5096(03)00053-X
http://dx.doi.org/10.1016/S0022-5096(03)00053-X
http://dx.doi.org/10.1016/j.ijengsci.2013.06.006
http://dx.doi.org/10.1007/s10404-014-1407-x
http://dx.doi.org/10.1002/nme.1620371107
http://dx.doi.org/10.1002/1099-0887(200011)16:11$%3C$777::AID-CNM375$%3E$3.0.CO;2-6
http://dx.doi.org/10.1002/1099-0887(200011)16:11$%3C$777::AID-CNM375$%3E$3.0.CO;2-6

	Introduction
	Mathematical Modelling 
	Procedures of solution
	Numerical results and discussion
	Conclusion 
	REFERENCES

