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The primary structure of a spacecraft that involves the central cylinder is designed to meet a specific value of
fundamental lateral mode frequency. Though this frequency can be theoretically estimated by using a finite element
model, its experimental verification is only possible when the entire spacecraft is made ready. However, static load
tests are done on the primary structure of the spacecraft as soon as the structure is realized. In this work, a
methodology to determine the fundamental bending mode frequency of a spacecraft from the deflections measured
when the structure alone is subjected to static load tests is developed. An expression relating the fundamental
lateral bending mode frequency of a spacecraft, having several masses attached at different locations, and the
deflection at its tip is derived. Two spacecraft, one of 3000 kg class and the other of 6000 kg class are taken as
examples. The fundamental lateral frequencies are determined using this methodology. These frequencies are also
obtained through resonance search tests. It is shown that the derived expression will be very useful in estimating
the fundamental lateral mode frequency of a spacecraft with the help of the measured deflection.

NOMENCLATURE

a Length of the beam beyond the
attached mass

b Length of the beam on which uniformly
distributed mass is acting

E Young’s modulus of the material
g Acceleration due to gravity
I Area moment of inertia of the cross section
l Length of the beam
l1, l2 Distances to the masses M1 and M2

M Attached concentrated mass
M1, M2 Attached concentrated masses at distances

l1 and l2
α A parameter in relating frequency with

deflection
δtip Deflection at the tip
ωn Natural frequency in rad/s
ω1 Fundamental natural frequency in rad/s
ω11, ω22 Natural frequencies when only M1 is

present, only M2 is present
ρ Mass per unit length of the beam

1. INTRODUCTION

It is well known that the natural frequency of a single-
degree-of-freedom system is directly related to its deflection
caused by a load that corresponds to its weight. This principle
can be used for determining the fundamental bending mode
frequency of a beam having negligible self-mass with a mass
attached at some location. If it is a cantilever having a mass
at the tip, the natural frequency of the fundamental bending

mode, denoted by ωn, can be shown to be1:

ωn
2 =

g

δtip
; (1)

where δtip is the deflection at the free end of the cantilever when
a static force due to the acceleration of 1 g of the mass is ap-
plied.

In most of the practical cases, the masses are attached at
several locations on the beam, consequently static loads act
at various locations, and the above relation is not valid. The
natural frequencies of all such cases can be represented in the
following general form2, 3:

ωn
2 = α

g

δtip
; (2)

with parameter α being different for different loading condi-
tions. The value of α is 1.0 for a cantilever with tip mass. It
can be shown that α = 1.55 for a cantilever with a uniformly
distributed load (UDL).2

In spacecraft having a central cylinder, the fundamental
lateral mode of vibration involves the first bending mode of
the central cylinder and the theories concerning vibrations of
beams can be applied for this mode.3, 4 In a simple form, this
mode can be considered like the fundamental bending of a can-
tilever, the main cylinder of the spacecraft being the cantilever.
The design of the central cylinder is to achieve the fundamental
lateral bending mode frequency greater than a specified value,
for example 10 Hz. The thickness of the cylinder, and hence
the mass of the cylinder, is decided by the value of the funda-
mental lateral bending mode frequency. Therefore, an accurate
estimation of the frequency of this mode is essential for an op-
timum design of the cylinder.
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The frequency of the bending mode can be theoretically es-
timated using a finite element model. As the spacecraft is an
assemblage of several elements, the accuracy of the predic-
tion depends on how accurately the flexibilities of these joints
are represented in the finite element model. The frequency of
this mode can be experimentally obtained through a resonance
search test on the spacecraft. However, the test can be per-
formed only when the entire spacecraft is built. This is too late
in the spacecraft life cycle. Any experimental methodology
that can give a close estimate of the natural frequency, without
the entire spacecraft being available but flexibilities of all these
joints included would be well appreciated. The frequency of
the spacecraft will be verified at a later stage through dynamic
tests.

Well before the entire spacecraft is assembled, the spacecraft
structure alone undergoes a static load test. Since the lateral
bending mode frequency is related to the static deflection, it is
prudent to expect that it should be possible to estimate the fre-
quency of the spacecraft from the deflections measured while
static loads that correspond to 1 g are applied on the structure.
The most important parameter required to estimate the natural
frequency from its static deflection is the value of the param-
eter α for the given load distribution. As presented earlier,
the values of this parameter are reported for a concentrated
mass at the tip (α = 1.0) and for a uniform mass along the
cantilever (α = 1.55). The spacecraft will have several con-
centrated masses at different locations along with some mass
uniformly distributed over the structure. There are no works
reported on the values of α for cantilevers with such mass dis-
tributions. Such relations are not existing except for simple
cases like cantilever with tip mass etc. In the absence of the
values of α for such mass distributions, one uses the value of
1.0 which leads to large errors in the estimated values of fre-
quencies. Hence, this method is not suitable for determining
the natural frequency of the spacecraft, unless the value of α
can be determined. The present work aims at bridging this gap.

It is well known that the fundamental lateral bending mode
is directly related to the deflection due to static loads. There are
several works that relate the natural frequency with the static
deflection. Bert,5 Chai and Low6 and Low7 presented such re-
lations for beams and Jones,8 Bert5 and Radhakrishnan et. al.,9

investigated them for plates. It is to be noted in the Rayleigh-
Ritz method10, 11 for determining the natural frequency10–13 the
function assumed is close to the static deflection shape, indicat-
ing the possible relation between the natural frequency and the
static deflection. Such relations are usefully applied in many
applications such as cantilevered sensors14 etc. Bert5 proposed
such relations for determining the natural frequencies of sev-
eral systems encountered in practice. They included a system
with several identical springs and masses connected in a series,
axial vibration of a rod having a mass at the tip etc. The influ-
ence of boundary conditions was also investigated by Bert.5

Their study showed that α varies between 1.27 and 1.55, the
latter being for the cantilever. It is to be noted that the beam in
these studies has a uniform mass and there are no concentrated
masses. Works on relations for beams with several concen-
trated masses are not reported.

The objective of the present work is to establish the relation
between the frequency of the fundamental bending mode of a
spacecraft and the deflection at its tip under static loads. The
spacecraft is a beam with several masses attached at various
locations along a UDL. An expression to determine the param-

eter α is derived. Once the parameter α is determined, the
frequency of the fundamental mode can be estimated using the
value of the deflection at the tip. The deflection at the tip can be
taken from a finite element model or it can be from a static load
test. If the deflection at the tip is taken from a finite element
model, the errors / uncertainties introduced by the modeling
of the joints will still be present. If the deflections are mea-
sured during a static load test, it indirectly accounts for these
errors. As the intention is to establish the methodology, other
sources of errors need to be minimized and hence static load
tests were conducted and the deflections measured were used
instead of the numerically estimated deflections. The method-
ology is applied to two typical spacecrafts. The frequencies of
the fundamental bending modes of these spacecrafts are esti-
mated from their static deflections with values of α determined
using the expressions derived in this work. As a validation of
the methodology, these frequencies are compared with the fre-
quencies of the spacecraft obtained through a resonance search
test.

2. STRUCTURE WITH CONCENTRATED
MASSES

Consider a cantilever of length l. Assume that the cross sec-
tion is uniform having an area moment of inertia of I . The
cantilever is made of material having Young’s modulus E. As-
sume that the mass of the cantilever is negligible. The objective
is to derive an expression for determining the parameter α. As
mentioned before, the value of α was 1.0 for a cantilever with
a tip mass. In a spacecraft, the mass will not be concentrated
only at the tip, instead it could be distributed over several lo-
cations. The deflections are normally measured at the tip. The
objective is to relate the fundamental bending mode frequency
with the deflection at the tip. Deriving this relation directly
for a case with general mass distribution is a difficult task and
hence it is sequentially built up.

2.1. Structure with a Single Mass
Let the cantilever be of length l + a with the mass M be-

ing attached at a distance of l from the fixed end. The natural
frequency of such a cantilever is:

ωn
2 =

3EI

Ml3
. (3)

The deflection at the tip is:

δtip =
Mgl3

3EI
+
Mgl2

2EI
a. (4)

Writing the natural frequency in the form of Eq. (2), the pa-
rameter α can be shown to be:

α = 1 +
3a

2l
. (5)

2.2. Structure with Two Masses
Assume that the cantilever has two concentrated masses,

with one mass being at the tip. The mass M1 is at a distance
of l1 from the fixed end and M2 is at a distance of l2 from the
fixed end. The mass M2 was at the tip. Using the postulate by
Dunkerley,15, 16 the fundamental natural frequency of the beam
ω1 is given by:

1

ω1
2
=

1

ω11
2
+

1

ω22
2
; (6)
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where ω11 is the natural frequency of the beam when only M1

is present (that is, all other masses are absent) and ω22 was
the natural frequency if only M2 is present (that is, all other
masses are absent). Applying this methodology to the present
case, the expression for the natural frequency became:

ω1
2 =

3EI

M1l1
3 +M2l2

3 . (7)

The deflection at the tip due to the weight of the masses
attached is:

δtip =
M1gl1

3

3EI
+
M2gl2

3

3EI
+
M1gl1

2

2EI
(l2 − l1). (8)

Relating Eqs. (6) and (7) we get:

α = 1 +
3

2

M1l1
2(l2 − l1)

M1l1
3 +M2l2

3 . (9)

Eq. (9) reduces to Eq. (5) if we set M2 = 0, l1 = l and l2 =
l1 + a.

Let us assume that the mass M2 is not at the tip of the can-
tilever. The mass M1 is mounted at a distance of l1 from the
fixed end and M2 is at a distance of l2 from the fixed end. As-
sume that the tip of the cantilever is at a distance of a from
M2. This means that the length of the cantilever is l2 + a. The
natural frequency of such a system can be determined using
Eq. (7). However, the expression for the deflection at the tip
gets modified as:

δtip =

M1gl1
3

3EI
+
M2gl2

3

3EI
+
M1gl1

2

2EI
(l2 − l1 + a) +

M2gl2
2

2EI
a.

(10)

Consequently, the parameter α is given by:

α = 1 +
3

2

M1l1
2 (l2 − l1 + a) +M2l2

2a

M1l1
3 +M2l2

3 . (11)

If we set a = 0, Eq. (11) reduces to Eq. (9).
If we denote the length of the beam as l, the expression for

α can be cast in a convenient form as:

α = 1 +
3

2

M1l1
2 (l − l1) +M2l2

2(l − l2)

M1l1
3 +M2l2

3 . (12)

2.3. Structure with Several Masses
Consider a cantilever having length l. Assume that several

masses are attached at different locations on the cantilever. Let
the mass M1 be attached at a distance of l1 from the fixed end
and M2 be attached at a distance of l2 from the fixed end etc.
The expression for the fundamental natural frequency of such
a cantilever is:

ω1
2 =

3EI∑
Mili

3 . (13)

The deflection at the tip of it is given by:

δtip =

∑
Migli

3

3EI
+

∑
Migli

2

2EI
(l − li) . (14)

Therefore, the parameter α becomes:

α = 1 +
3

2

∑
Mili

2 (l − li)∑
Mili

3 . (15)

Equation (15) can be used to determine the parameter α of
a cantilever with several masses attached. If the deflection at
the tip of the structure for a gravity load of 1 g is known, the
frequency of the fundamental bending mode can be estimated
using Eq. (2) incorporating the value of α obtained through
Eq. (15). This methodology is later demonstrated with two
examples.

3. STRUCTURE WITH UNIFORM AND
CONCENTRATED MASSES

In many situations, a part of the load will be acting as a uni-
form load along the length of the beam, in addition to the con-
centrated masses. The uniform mass is not due to the weight of
the cylinder, but due to its continuous connection to the equip-
ment panels.

3.1. Cantilever with Uniform Load
Consider a cantilever with mass per unit length ρ. The natu-

ral frequency of this cantilever is1, 2:

ωn
2 = 3.522

EI
ρl4

. (16)

The deflection at the tip is:

δtip =
ρgl4

8EI
. (17)

Expressing the natural frequency in terms of deflection at the
tip:

α = 1.55; (18)

which is a well-known5 result.
Assume the cantilever with a total length of l + a is loaded

to a distance of l from the fixed end. The natural frequency of
this cantilever is given by Eq. (16). The deflection at the tip is:

δtip =
ρgl4

8EI

(
1 +

8

6

a

l

)
. (19)

Expressing the natural frequency in terms of deflection at the
tip, for this cantilever:

α = 1.55

(
1 +

8

6

a

l

)
. (20)

3.2. Cantilever with Uniform Load and Point
Mass

Assume that the cantilever is loaded uniformly to a distance
of b from the fixed end. A point mass of M is attached at a
distance of l from the fixed end. The total length of the can-
tilever is l + a. The natural frequency of this cantilever can be
obtained as15, 16:

1

ω1
2
=
Ml3

3EI
+

ρb4

3.522EI
. (21)

The deflection at the location where the load ends is:

δρ =
ρgl4

8EI
+

Mg
3EI

(
3lb2

2
− b3

2

)
. (22)

The deflection at the tip is:

δtip =
Mgl3

3EI

(
1 +

3a

2l

)
+
ρgb4

8EI

(
1 +

8

6

(l + a− b)

b

)
. (23)
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Expressing the natural frequency in terms of deflection at the
tip, for this cantilever:

α =
Mgl3

3 (1 + 3a
2l ) +

ρgb4

8 (1 + 8
6

(l+a−b)
b )

Ml3

3 + ρb4

3.522

. (24)

3.3. Cantilever with Uniform Load and
Several Masses

Consider a cantilever with a uniform mass along with two
masses attached. Assume that the cantilever is loaded uni-
formly to a distance of b from the fixed end. A point mass
of M1 is attached at a distance of l1 from the fixed end and
another point mass of M2 is attached at a distance of l2 from
the fixed end. The total length of the cantilever is l2 + a. The
natural frequency of this cantilever is given by:

1

ω1
2
=
M1l1

3

3EI
+
M2l2

3

3EI
+

ρb4

3.522EI
. (25)

The deflection at the tip is:

δtip =
M1gl1

3

3EI

(
1 +

3 (l2 − l1 + a)

2l1

)
+
M2gl2

3

3EI

+
M2gl2

2

2EI
a+

ρgb4

8EI

(
1 +

8

6

(l2 − b+ a)

b

)
. (26)

Denoting the total length as l:

δtip =
M1gl1

3

3EI
+
M1gl1

2

2EI
(l − l1) +

M2gl2
3

3EI

+
M2gl2

2

2EI
(l − l2) +

ρgb4

8EI

(
1 +

8

6

(l − b)

b

)
. (27)

Expressing the natural frequency in terms of deflection at
the tip, following a series of complex algebraic operations:

α =

1+
3

2

M1l1
2 (l − l1) +M2l2

2 (l − l2) +
ρb3

3 (l − 0.736b)

M1l1
3 +M2l2

3 + 0.242ρb4
.

(28)

Now assume that there are several masses attached to the
cantilever. Let the mass M1 be at distance l1 from the fixed
end and M2 be at distance l2 from the fixed end and so on,
as shown in Fig. 1. The total length of the cantilever was l.
Assume that the cantilever is loaded uniformly to a distance of
b from the fixed end. The expression for the natural frequency
is:

1

ω1
2
=

∑
Mili

3

3EI
+

ρb4

3.522EI
. (29)

The parameter α is given by:

α = 1 +
3

2

∑
Mili

2 (l − li) +
ρb3

3 (l − 0.736 b)∑
Mili

3 + 0.242 ρb4
. (30)

Equation (30) is the most general expression for determining
α, where the cantilever had a uniformly distributed mass along
with several concentrated masses attached. In this work, trans-
verse shear effects and the rotary inertia17–19 were not consid-
ered. Incorporation of the above lead to a very complex rela-
tion and hence not attempted here. The influence of the above
parameters on the first mode was thought to not be that signif-
icant as the ratio of the length of the cylinder to the effective
cross-sectional area was quite large.

Figure 1. Cantilever with masses attached.

Figure 2. Schematic of the structure of spacecraft 1 and static loading.

4. EXAMPLE: SPACECRAFT 1

A spacecraft having a mass of about 3400 kg was considered
as one example, referred here as spacecraft 1. The frequency
of the fundamental lateral mode of this spacecraft determined
through a resonance search test was 13.7 Hz, details are given
later.

4.1. Details of the Spacecraft
Figure 2 shows a schematic of the structure of the spacecraft.

It consisted of a central cylinder having diameter of approxi-
mately 1200 mm and length 3100 mm. The cylinder was made
of honeycomb sandwich construction, the honeycomb core be-
ing 12 mm thick. The face sheets were made of CFRP (Carbon
Fiber Reinforced Plastics) laminates. Each face sheet had a
thickness of approximately 0.9 mm at the bottom and reduces
progressively to the top. The first bending mode of the central
cylinder was the fundamental lateral mode of vibration of the
spacecraft.

There were four horizontal decks connected to the cylinder,
as shown in Fig. 2. They were: Bottom Deck (at a distance
of 90 mm from the base), Intermediate Deck 1 (at a distance
of 547 mm from the base), Intermediate Deck 2 (at a distance
of 1001 mm from the base) and Top Deck (at a distance of
3106 mm from the base). The lateral loads acting on the verti-
cal decks were transferred to the cylinder through these panels
and they will be acting on the cylinder at the respective inter-
faces. Thus, there will be 4 concentrated loads acting on the
cylinder. They were 170 kg, 210 kg, 400 kg and 420 kg at the
interfaces of the bottom deck, intermediate deck 1, intermedi-
ate deck 2, and the top deck.

Apart from the above, two propellant tanks were mounted
inside the cylinder. Each tank was connected to the cylinder at
24 points that lie in one plane. The lateral load on the tank was
transferred to the cylinder as a tangential load. The oxidizer
tank, having a mass of 1228 kg, was mounted at a distance
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Figure 3. Loads and load application points in spacecraft 1.

of 730 mm and the fuel tank, having a mass of 761 kg, was
mounted at a distance of 1920 mm from the base of the space-
craft. The cylinder of the spacecraft was subjected to concen-
trated loads at 6 planes. The masses of some elements such
as the cylinder and shear panels amounting to 243 kg can be
considered as a UDL. Details of the concentrated masses and
their application points are shown in Fig. 3 and Table 1. The
total mass of the spacecraft is 3432 kg.

4.2. Details of Static Load Tests
Figure 4 shows the static load test setup. The structure was

mounted on a test rig. The satellite is normally assembled to
the launch vehicle adaptor using a clamp band. To facilitate
the assembly of the clamp band during the static test, a test
adaptor was introduced between the spacecraft and the test rig.
The loads were applied using hydraulic jacks and distributed
to various points through whiffle-tree system. The elements of
the test system are indicated in Fig. 4. Similar techniques20 are
employed by other spacecraft industries.

The test structure consisted of the central cylinder with an
interface ring, four horizontal decks and the shear panels. It
did not include the vertical decks. The direction of loading is
shown in Fig. 2. The spacecraft did not have any load-carrying
vertical decks placed normal to the direction of loading. There
were two vertical decks orthogonal to it called the North and
South decks, which carried most of the spacecraft equipment.
These vertical decks were connected to the cylinder through
shear panels designated as the North and South shear panels.

When a spacecraft undergoes an acceleration along the di-
rection of the loading as shown in Fig. 2, they act normal to
the North and South shear panels. As shear panels are very
flexible for loads normal to them, the loads from the vertical
decks were transferred to the cylinder through the horizontal
decks, as in-plane loads in the horizontal decks. Hence during
the static load test, the loads of the vertical decks were applied
at the horizontal decks as in-plane loads. Thus, the lateral load
applied on the horizontal decks is the sum of the load that was
acting directly on the horizontal deck and the part of the load of
the vertical deck which gets transferred to the horizontal decks.
Figure 2 shows the loading on the horizontal decks. Distribu-
tion of the load of the vertical deck among the horizontal decks
is arrived at based on a finite element model.

Figure 4. Static load test setup for spacecraft 1.

The propellant tanks were connected to the cylinder at sev-
eral locations through a set of radially flexible attachments
called tabs (see Fig. 5). The loads that act on tanks were trans-
ferred to the cylinder at their respective interfaces. The actual
fuel and oxidizer tanks were not used during the static test-
ing, instead tank simulators having interfaces identical to the
actual tanks in terms of flexibility were used (Fig. 5). Loads
were applied at the top and bottom of the tank simulator (see
Figs. 5 and 3). Distribution of force at the interfaces was veri-
fied whether they are as in the flight spacecraft, through a finite
element model.

The static load tests were conducted on the spacecraft struc-
ture simulating launch loads. As the launch loads act along
longitudinal and lateral directions simultaneously, the static
loading was in the combined fashion. To determine the natural
frequency, the deflection under a 1 g equivalent static load with
the loads acting only in the lateral direction was needed. There
were some characterization tests done which will have only the
lateral loads. Results of those tests were selected where only
the lateral loads were applied and used for determining the nat-
ural frequency. The loads applied during those tests need not
correspond to 1 g. In the case of the present spacecraft, a static
load of 0.6 g, which corresponds to a load of 1913 kgf was
applied. From the results for 0.6 g, the deflection for 1 g is
determined and used for determining the natural frequency.

The loads were measured using appropriate load cells. The
load cell had an accuracy of ±0.5 % of the range. For example,
the accuracy of the load cell having the range 5000 kgf was
±25 kgf. It was not possible to apply the uniformly distributed
load. Thus, the total load considered corresponded to 3189 kg.
Error caused by the absence of this load during the static load
test is discussed later.
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Figure 5. Propellant tank simulator for static test.

Figure 6. Measured deflection at the tip of spacecraft 1.

4.3. Measured Static Deflection

The deflections were measured using Linear Variable Differ-
ential Transducers (LVDT). LVDTs were mounted on a frame
which was isolated from the loading frame. These LVDTs had
an accuracy of 20 microns and measured up to 10 mm.

A total load of 1913 kgf, which corresponds to an accelera-
tion of 0.6 g was applied. The deflections at four locations on
the top deck were measured and the average value of 1.7 mm
was taken as the deflection at the tip of the spacecraft. Figure 6
shows the measured deflection at a typical location. Correct-
ing for the deformation due to the test rig and adaptor, which
is explained later, the deflection at the tip was 1.3 mm. Corre-
spondingly, the deflection for 1 g was 2.17 mm.

As mentioned before, the uniformly distributed load corre-
sponding to 243 kg was not applied during the static load test
due to practical limitations. Deflection due to UDL also needed
to be added to the measured deflection. Deflection at the tip of
the structure due to this load was theoretically estimated. The

Table 1. Determination of α for Spacecraft 1.

Distance from the Mass (kg) Mili
3 Mili

2 (l−li)
I/F of spacecraft
90 170 0.12 4.15
547 210 34.4 160.8
730 1228 477.7 1555
1001 400 400 844
1920 761 5386 3327
3106 420 11741 0
UDL 243 1761 640
Total 3432 19800 6531

deflection estimated using a finite element based mathematical
model and it was found to be about 0.1 mm. This deflection
was negligible compared to the deflection of 2.17 mm caused
by other loads. For determining the natural frequency, the de-
flection that needed to be considered was that of the cylinder.
As load was applied on the deck, the measured deflection in-
cluded the displacement of the deck due to this in-plane load.
This was theoretically estimated using a finite element model
and it was 0.02 mm. The displacement at the edge of the top
deck was computed and the deformation at the cylinder-top
deck interface was computed. The difference between them
was 0.02 mm compared to the deflection of 2.17 mm in the top
deck and hence it was neglected.

4.4. Fundamental Mode Frequency
This spacecraft can be considered as a cantilever with 6

masses along with a uniformly distributed load, as given in
Table 1. The distance to the free end is 3106 mm.

Using the expression derived in this work, i.e., Eq. (30), the
value of α can be calculated as 1.49.

For the UDL, the parameters used were, b = 3.106 m and
ρ= 78.2 kg/m. It is to be noted that the value of α was com-
puted considering all the loads, including the UDL. In Table 1,
the value given against UDL in the third column was 0.242 ρb4

and that in the fourth column was ρb3

3 (l − 0.736 b).
The frequency of the fundamental mode was estimated as

13.0 Hz, using Eq. (2) with the value of α as 1.49. As men-
tioned before, the frequency of the fundamental mode of the
spacecraft obtained from a resonance search test was 13.7 Hz.
As per Dunkerley’s postulate,15, 16 the natural frequency de-
termined will be the lower bound, meaning that the estimated
natural frequency will be lower than the actual.

If we had used the conventional method (α = 1), the fre-
quency would have been estimated as 10.7 Hz. The expression
derived in this work allows a closer estimation of the frequency
of the fundamental mode.

The derived relation between the frequency and the static
deflection does not incorporate the transverse shear deforma-
tion and rotary inertia. Incorporation of the above may im-
prove the estimation of the frequency. It is to be noted that
the measured static deflection included the transverse shear de-
formation, but the expression for α did not incorporate them.
These points may explain the difference between the estimated
natural frequency and the frequency obtained through the res-
onance search test.

There may be a question that how such a complex system
can be represented by a beam model and still get accurate re-
sults. It should be noted that the static deflection used in the
estimation of the natural frequency was a measured quantity of
the complex system which indirectly includes the stiffness of
all joints, material properties etc. If we had used the deflection
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computed using a finite element model, these kinds of errors
would have remained.

Thus, the lateral bending mode frequency of a spacecraft can
be estimated from the deflection of the primary structure mea-
sured during the static load tests, with a reasonable accuracy
using the expression derived here for α. This information can
be available well before the assembly of the spacecraft.

4.5. Correction for the Flexibility of the Base
If the test rig and the adaptor are quite rigid, there will not

be any deformation developed at the interface of the spacecraft.
As they are not infinitely rigid, there will be some amount of
rotation as well as linear deformation at the base of the struc-
ture. The rotation at the base causes a lateral displacement
of the structure which is proportional to the distance from the
base which is in addition to the deflection due to the bending.
The measured deflection will have the above two components
as well. To arrive at the deflection due to the bending, these de-
flections need to be subtracted from the measured deflection.

The deflection due to the rotation of the base can be deter-
mined if the angle of rotation is known. This deflection will
be equal to the product of the angle of rotation (in rad) and
the distance from the base. The rotation at the base is very
small and hence difficult to be measured directly. Therefore,
this was determined in this work through a different approach.
The rotation that is generated at the top of the adaptor results
in longitudinal displacements in opposite directions at the di-
ametrically opposite locations at the top of the adaptor. The
longitudinal deformation measured at the top of the adaptor
was 0.05 mm. As this location was at distance of 600 mm from
the center (radius of the cylinder), the rotation at the adaptor
top was 0.09× 10−3 rad. Though this rotation was very small,
it produces a lateral movement of 0.3 mm at the topmost point
of the structure, which was at a distance of 3106 mm.

The top of the test adaptor has a lateral movement of
0.1 mm. Though very negligible, this displacement also gets
added to the measured deflection.

Combining the two, the top of the structure had an additional
deformation of 0.4 mm over the deflection due to the bending.
Therefore, the deflection due to bending alone was 1.3 mm (1.7
– 0.4).

4.6. Validation of the Methodology
Validation of the proposed methodology can be done by

comparing the estimated natural frequency with the natural fre-
quency obtained through a resonance search test.

The resonance search test was performed using shaker sys-
tems. The spacecraft was mounted on the slip table of the
shaker systems. As the spacecraft interfaces and shaker in-
terfaces were different, a vibration test fixture was employed
to mount the spacecraft on the slip table. The setup for such a
test is shown in Fig. 7.

The resonance search test was done by applying a sinusoidal
excitation of amplitude 0.15 g at the base of the spacecraft. The
frequency was swept from 5 Hz to 100 Hz. The acceleration
responses on the top deck of the spacecraft were measured and
the transmissibility of acceleration is determined. A typical
transmissibility plot at the top deck of a spacecraft is shown
in Fig. 8. The frequency at which the transmissibility was the
maximum is taken as the resonance frequency. The resonance
frequency of this specific spacecraft is found to be 13.7 Hz.

Figure 7. Test setup for the resonance search test.

Figure 8. Transmissibility at a typical location in spacecraft.

5. EXAMPLE: SPACECRAFT 2

Another example considered was a spacecraft having a mass
of about 5700 kg, referred here as spacecraft 2. The frequency
of the fundamental lateral mode of this spacecraft determined
through a resonance search test was 11.7 Hz. As the method-
ology adopted for the resonance search test is identical to that
of spacecraft 1, they are not described. The primary bending
of the central cylinder was the fundamental lateral mode of the
spacecraft in this case as well.

5.1. Details of Spacecraft
The structure of the spacecraft consisted of a central cylin-

der having diameter of approximately 1200 mm and length
4887 mm. The cylinder was made of honeycomb sandwich
construction, the honeycomb core being 12 mm thick. The
face sheets were made of CFRP laminates having thickness of
approximately 2.5 mm at the bottom and reduces progressively
to the top.
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Figure 9. Loads and load application points in spacecraft 2.

There were four horizontal decks (Fig. 9) connected to the
cylinder. They were the Bottom Deck (at a distance of 105 mm
from the base), Intermediate Deck 1 (at a distance of 785 mm
from the base), Intermediate Deck 2 (at a distance of 3373 mm
from the base) and the Top Deck (at a distance of 4887 mm
from the base). The loads acting on the vertical decks were
transferred to the cylinder through these panels.

As in spacecraft 1, two propellant tanks are mounted inside
the cylinder. The oxidizer tank had a mass of 1947 kg and was
mounted at a distance of 265 mm. The fuel tank had a mass of
1127 kg and was mounted at a distance of 1985 mm from the
base of the spacecraft. Thus, the cylinder of the spacecraft was
subjected to concentrated loads at 6 locations. As in spacecraft
1, a mass of 293 kg was considered as uniformly distributed
load (UDL). Details of the masses and their application points
are shown in Fig. 9.

5.2. Details of Static Load Tests
The methodology used for the testing was the same as de-

scribed for Spacecraft 1. The structure was mounted on a test
rig through an adaptor and the loads were applied using hy-
draulic jacks.

As discussed previously, flexibility of the test rig and the
adaptor caused additional deflections. Though these can be
distinguished and it was possible to separate them out as
demonstrated for Spacecraft 1, the correction should not be
quite high. Therefore, the tests rig as well as the adaptor were
stiffened for the testing of Spacecraft 2.

The deflections were measured using LVDTs. The deflec-
tions were measured at 3 locations on the top deck. These
locations are shown in Fig. 10.

It was not possible to apply the uniformly distributed load
of 293 kgf. Thus, the total load considered corresponds to
5364 kgf. Due to the absence of this load during the static
load test, the error caused was expected to be much less as
explained for spacecraft 1. As discussed previously for space-
craft 1, results of the static load tests where only lateral loads

Figure 10. Deflection measurement locations on top deck of spacecraft 2.

Figure 11. Measured deflection at the top deck of spacecraft 2.

are applied were considered. In this case, it corresponds to
2.6 g with a mass of 5364 kg.

5.3. Measured Static Deflection
The measured deflection at the tip of the spacecraft is

10.9 mm as shown in Fig. 11.
The load-deflection relation was linear. This was true with

spacecraft 1 also, though results are not presented. After in-
corporating the corrections as done in the case of spacecraft
1, the deflection due to bending was 8.9 mm. The deflection
for a load that corresponds to a gravity acceleration of 1 g was
3.42 mm.

5.4. Fundamental Mode Frequency
This spacecraft can be considered as a cantilever with 6

masses along with a uniformly distributed load, as given in
Table 2. The distance to the free end was 4887 mm.

Applying the expression derived in this work, i.e., Eq. (30),
the value of α can be calculated as 1.622.

For the UDL, the parameters used were, b = 4.887 m and
ρ = 60 kg/m. It is to be noted that the value of αwas computed
considering all the loads, including the UDL. The value given
against UDL in the third column of Table 2 is 0.242 ρb4 and
that in the fourth column was ρb3

3 (l − 0.736 b).

Table 2. Determination of α for spacecraft 2.

Distance from the Mass (kg) Mili
3 Mili

2 (l−li)
I/F of spacecraft
265 1947 36 631
785 1181 571 2985
1985 1127 8815 12887
3373 839 32197 14452
4887 270 31513 0
UDL 293 8282 2334
Total 5657 73132 30955

(81414) (33289)
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The frequency of the fundamental mode was estimated to be
10.83 Hz, using Eq. (2) with the value of α as 1.613. As men-
tioned before, the frequency of the fundamental mode of the
spacecraft obtained from a resonance search test was 11.7 Hz.
If we had used the conventional method (α = 1), the frequency
would have been estimated as 8.5 Hz. Thus, well before the
spacecraft is realized and the resonance search test is carried
out, based on the deflection measured at the tip and incorporat-
ing the value of the parameter α determined using the expres-
sion derived in this work, the lateral bending mode frequency
can be estimated with reasonable accuracy.

6. SUMMARY & CONCLUSIONS

A methodology to determine the fundamental lateral bend-
ing mode frequency of a spacecraft with a central cylinder
is developed which is based on its lateral deflection. To ac-
complish this, an expression relating the fundamental lateral
mode frequency and the deflection at its tip is derived consid-
ering a spacecraft with masses attached at several locations.
The most preferred deflection to be considered is that at the
tip of the spacecraft, measured during a static load test. The
measured deflection during a static load test will have addi-
tional components due to the flexibility of the test rig and the
test adaptor. These components can be differentiated through
suitable measurements at relevant locations and the deflection
due to bending alone can be determined. This methodology is
demonstrated for a 3000 kg class and a 6000 kg class space-
craft. The frequencies that are estimated from the deflections
are compared with the frequencies obtained through a reso-
nance search test on each spacecraft. It is seen that the fun-
damental bending mode frequency of the spacecraft can be
conveniently and accurately estimated based on the deflection
measured during static load tests on the primary structure. The
frequencies estimated through this methodology are found to
be about 0.8 Hz lower than the frequencies of the spacecraft
obtained through the resonance search tests.
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