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This paper studies ship bridge extensions called “bridge wings”, which are one of the most critical areas of impor-
tance in ship vibration. These extensions, which have been modeled at the laboratory scale, have been analyzed
using both experimental and finite element analysis methods. Bridge wing models have been constructed with
varying inclination angles, and the natural frequencies and mode shapes obtained, both experimentally and nu-
merically, have been compared. In this way, the effects of design properties on the results have been emphasized.
Besides, the natural frequency discrepancies between the experimental and finite element analyses have been found
to be very low. Another important result of this study has been obtained such that a certain support angle has been
detected which the mode shape transition occurs in resonance. Natural frequency and mode shape analyses of
the plates which have been supported with beams with varying inclination angles and achievement of mode shape
transition phenomenon can be considered as the novelty about the contribution of this study to the state-of-the-art.

1. INTRODUCTION

With increasing ship size and speed, shipboard vibration
has become a great concern in the design and construction
of vessels. Excessive ship vibration is avoided for passenger
comfort and crew habitability. In addition to undesired ef-
fects on humans, excessive ship vibration may result in fatigue
failure of local structural members or malfunction of machin-
ery and equipment. In this study, numerical and experimental
modal analyses regarding ship bridge extensions called “bridge
wings” were conducted, and the effect of the support angle on
the wing models was emphasized.

Frame-type structures are frequently used in the design of
bridges, towers, cranes, buildings, ships, aerospace structures
and electronic equipment. Several investigators have stud-
ied the natural vibrations of frames. The dynamic behavior
of frame structures can be predicted using certain analytical
and numerical methods. The finite element method (FEM) has
been very commonly used in recent years in this field. A de-
tailed literature review of frame structures such as bridge wings
is presented below.

Basci et al.1 improved the accuracy of procedures for gen-
erating consistent mass matrices for structural elements, which
may then be integrated into a standard finite element program.
They achieved this by using exact displacement functions for
the elements rather than approximate ones, and they derived
these displacement functions by solving the differential equa-
tions regulating the free vibration behavior of structural com-
ponents.

The study conducted by Albarracin and Grossi2 is about de-
termining the eigenfrequencies of a frame composed of a beam
supported by a column and subjected to intermediate elastic
constraints. Elastic restraints are used to secure the frame’s

ends against rotation and translation. The transverse and axial
vibration theory of an Euler–Bernoulli beam is considered to
regulate the individual members of the frame.

According to Ansell,3 the dynamic element method (DEM)
produces more accurate results than the standard finite element
method (FEM) when the same number of degrees of freedom is
utilized. This is because polynomial shape functions were in-
troduced, incorporating frequency dependency into mass ma-
trix expressions. This paper illustrates how this impacts free
vibration analysis, as well as solutions to nonlinear eigenvalue
problems. In addition, various numerical techniques are dis-
cussed for resolving these polynomial problems. The polyno-
mial matrix formulations for stiffness and mass matrices are
presented for a beam, a bar, and a cable element. Numeri-
cal examples show how DEM can be employed in frame-type
structures with a comparison of efficiency with standard FEM.

Antes et al.4 indicate that, since the theory of Tymoshenko,
especially on higher frequencies, yields more reliable results
than the theory of Euler-Bernoulli, systems of beams, such as
frames, should be examined according to this refined theory
under arbitrary dynamic excitation. Following the derivation
of the basic fundamental solutions for a lateral unit point force
and a single unit moment, the deflection and rotation of the
beam cross-section are provided as integral equation forms of
the governing second-order differential equation system in the
Laplace and frequency domains in their study. The study in-
cluded two examples to illustrate the accuracy of the method
compared to standard finite element findings.

Bokaian5 demonstrated the impact of a constant axial ten-
sile strain on the natural frequencies and mode shapes of a uni-
form single-span beam subjected to various end circumstances.
Numerical measurements in this study reveal that the fluctua-
tion in the normalized natural frequency parameter with the
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normalized tension parameter is nearly identical for clamped-
pinned and pinned-free beams and similarly comparable for
clamped-clamped and clamped-sliding beams; only a slight
difference exists in the variance in the sliding-free beam be-
tween the subsequent pair and free beam. This variation may
be accurately described for pinned-pinned, pinned-sliding, and
sliding-sliding beams as follows: When the beam vibrates in a
third mode or higher, this formula may be utilized for beams
with other types of end constraints.

Géradin and Chen6 introduced a precise and direct tech-
nique for modeling beam structures. This technique is based
on the use of transfer and dynamic stiffness matrices in con-
junction. This technique initially divides the entire structure
into substructures depending on the required master degrees of
freedom. The global dynamic stiffness matrix (DSM) for each
substructure is derived directly by rearranging the appropriate
global transfer matrix. Thus, the internal degrees of freedom
of each substructure are omitted from the model. The results
are compared to those produced using alternative model reduc-
tion techniques, such as static and dynamic model reduction, as
well as experimental results.

Heppler et al.7 investigated the dynamics of a two-member
open frame structure that traveled in and out-of-plane. The
frames are modeled according to the theory of Euler-Bernoulli
beams and are generalized by allowing an arrangeable angle
between the beams and a payload attachment at the end of
the second beam. The motion equations are derived from the
Hamilton principle, and the criteria of orthogonality are shown.
It has been proven to be possible to decouple the in- and out-
of-plane motions by inserting axial deformation elements in
the supposed displacement areas.

Howson and Williams8 introduced a convenient, dynamic
stiffness matrix method for determining the natural frequency
of a plane frame with certainty in their study. The mass distri-
bution of the constituent members was assumed to be uniform,
as were the effects of axial load, rotatory inertia, and shear de-
flection. The first four in-plane, natural flexural frequencies
of an H-shaped frame were investigated experimentally and
theoretically for a variety of column lengths and axial loads.
Theory and experiment were demonstrated to be reasonably
consistent.

Lin and Ro9 presented a hybrid analytical/numerical method
for efficiently analyzing the dynamics of planar serial frame
structures, which employs a numerical implementation of the
solution to the motion equation via a transfer matrix. Through
analyzing the transverse and longitudinal motions of each seg-
ment concurrently and taking into account the compatibility
requirements for each frame angle, the total number of un-
specified variables in the whole frame structure system can be
reduced to six, which can then be specified using boundary
conditions. The present study aimed to decrease the matrix
dimensions associated with the finite element methods along
with certain other analytical methods.

Mead10 investigated natural frequencies and transverse vi-
bration modes for two basic redundant systems with straight
uniformed Euler–Bernoulli beams in which internal axial loads

are self-balanced (e.g., loads due to non-uniform thermal
strains). Computed vibration modes demonstrated that when
the axial modes reach their critical values, the buckled beam(s)
distort with massive amplitudes, but the unbuckled beam(s)
move either as rigid bodies or with bending that deteriorates
swiftly from the ends to a near-rigid-body movement over the
center part of the beam. These findings explain several com-
puted results relating to the flexural modes and frequencies of
flat plates with non-uniform thermal stress distributions.

Utilizing the dynamic ratio coefficient method, Moon and
Choi11 established a free and forced vibration analysis algo-
rithm for frame structures. The principle behind this method
was the transfer of the coefficient of dynamic stiffness, which
was linked with the force and the displacement vector in each
node from the left to the right end of the structure. The nu-
merical findings of the transfer dynamic stiffness coefficient
method were compared with the finite element method and ex-
periment results for a space frame structure. The validity and
practicality of the dynamic stiffness transmission were vali-
dated accurately in the resolution of dynamic problems.

According to Ohga et al.,12 the combined method for fi-
nite element-transfer matrix has the advantage of decreasing
the matrix size to less than that achieved through the standard
method of finite element. Their study outlined the analytical
procedure for bending and buckling problems and suggested
techniques for handling the structure with intermediate condi-
tions. Different numerical examples of these problems proved
the effectiveness and precision of this method. These examples
are consistent with the method of the finite element and others.

Rafezy et al.13 introduced a global analysis approach to
calculate the naturally occurring frequency of asymmetrical,
three-dimensional frame structures in which mainframes oper-
ate in two orthogonal directions and whose properties are vari-
able at one or more story levels over the height of the struc-
ture gradually. A continuum approach was used to formulate
the governing differential equations for the substitution system
in the form of a basic dynamic members stiffness matrix. In
conjunction with the Wittrick–Williams method, the required
natural frequencies were finally identified using a gradual can-
tilever to ensure that no natural frequency was overlooked. The
solution can be easily obtained by hand when the structure can
be realistically depicted using a uniform cantilever. In order
to compare the precision of the current approach with that of
complete finite element analysis, a parametric study compris-
ing four asymmetrical three-dimensional frame structures was
performed.

A new differential quadrature element method (DQEM) to
measure the weighting coefficients of a higher order of deriva-
tives was addressed by Wang et al.14 Additionally, the appli-
cation of the DQEM was discussed in the analysis of problems
regarding free vibration for beam and beam structures. Based
on the innovative approach that applies boundary conditions
without using the delta method, the DQEM calculates weight-
ing coefficients. This study demonstrates how the DQEM com-
bined the differential quadrature method’s (DQM) rapid con-
vergence and high accuracy with the generality of the finite
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element method (FEM) for structural analysis.
According to Yuan et al.,15 when accurate dynamic stiffness

matrices are used to compute natural frequencies and vibra-
tion modes for skeletal structures and some other structures, a
complex transcendental eigenvalue problem arises. This study
proposes a novel, mathematically elegant, and computation-
ally efficient method for computing natural frequencies and
vibration modes with high accuracy and reliability. First of
all, the transcendental problem is lowered to a generalized lin-
ear problem using Newton’s method at the exact natural fre-
quency determined with the algorithm of Wittrick–Williams.
Then, using a conventional inverse iteration or subspace it-
eration method, the generalized linear eigenvalue problem is
effectively solved. Numeric examples, including certain chal-
lenging circumstances (e.g., with coincident, natural frequen-
cies, rigid body motions, and large structures), reveal the out-
standing performance of this method.

In order to eliminate detrimental vibrations generated by the
main engine or propellers, long bridge wings that extend over
deckhouses are typically reinforced with bracing connected to
the upper decks, among others. Noguchi et al.16 optimized the
arrangement of the bracing structurally using a genetic algo-
rithm by examining the natural frequencies of the wing struc-
tures. This structure maintains the optimal weight distribu-
tion and serves as a guide for anti-vibration structural design.
The structural arrangement is explored in comparison to the
planned structures that were previously described in this study.

It is critical to understand the dynamic properties of beam
structures in order to design them properly. Ratazzi et al.17 in-
vestigated the free in-plane vibrations of a system composed
of two orthogonal beam members connected via an internal
elastic hinge. At one end, this system is clamped, while the
other is elastically connected. The vibrations of the elastically
connected end were investigated under various boundary con-
ditions, including classical conditions such as clamped, simply
supported, and free. According to the Bernoulli-Euler theory,
the beam system was assumed to behave. Hamilton’s principle
is used to determine the governing equations of motion for this
structural system incorporating free bending vibration. Natu-
ral frequencies are accurately defined utilizing the calculus of
variations technique and the method of separation of variable
s. Special consideration was made during the frequency analy-
sis of the elastic hinge’s flexibility and placement. The results
were remarkably close to those produced using the finite ele-
ment method, employing published values for specific cases in
the model and measurements in an experimental device.

Grossi and Albarracin18 discussed the application of the cal-
culus of variations to derive the boundary and eigenvalue prob-
lems that characterize the dynamic behavior of frame struc-
tures with elastically restricted ends and intermediate points
and precisely specified eigenfrequencies. Additionally, the
study introduced appropriate functionals along with a thorough
description of the related domains.

Siddika et al.19 used ANSYS software and shaking tables
to conduct an analysis of free vibration and investigate the be-
havior of framed structures at various vibrational frequencies.

In the laboratory, a small-scale uniaxial shaking table was de-
veloped that produced low to moderate vibrations in terms of
frequency and velocity. Moment resisting framed structures
were tested on a shaking table and analyzed using the ANSYS
program. They were constructed with connecting beams and
column elements of mild steel wire in various dimensions. Ad-
ditionally, the effect of the mass and stiffness of the structures
on their natural frequency and deflection in response to various
ground vibrations were researched and analyzed. The results
of the tests revealed that this shaking table complied with the
overall principle of free vibration. For structures with the same
lateral stiffness, the height had an inverse effect on the natural
frequency. After a few shaking cycles, the structure’s inher-
ent frequency began to diminish as the stiffness decreased. As
a result, it was determined that the constructed shaking table
was suitable for free vibration analysis.

According to Daneshmand et al.,20 vibration analysis of
complex structures or problems requiring a large number of
modes requires either fine meshing or the use of higher-order
polynomials as shape functions in conventional finite element
analysis. Due to the difficulty of predicting the vibration mode
of a complex structure a priori, a uniform fine mesh is fre-
quently used, wasting several degrees of freedom investigat-
ing various local modes. The proposed wavelet element ap-
proach allows for structural vibration analysis using a coarse
mesh first and then adaptively improving the results through
multi-level refinement of the model’s necessary sections. This
approach yields accurate data while requiring fewer degrees
of freedom and computation. For frame structure vibration
analysis, the B-spline wavelet scaling functions on the interval
(BSWI) were used as trial functions. These functions combine
the versatility of the finite element method with the accuracy
of the B-spline function approximation, as well as the mul-
tiresolution wavelet strategy. Rather than using typical poly-
nomial interpolation, shape functions and wavelet-based ele-
ments were formed using scaling functions at a certain scale.
The vibrations of cantilever beams and plane structures were
investigated in this paper to validate the proposed method. The
analyses and findings illustrated both the multi-level procedure
and local wavelet enhancement. Additionally, the results were
consistent with those obtained using the standard finite element
method and analytical solutions.

Mehmood21 sought to comprehend the dynamic behavior of
frames subjected to moving point loads. The vibration analy-
sis was carried out using the finite element method and numer-
ical time integration method (new mark method). The effect
of the velocity of the moving load on the dynamic magnifica-
tion factor was described as the ratio of the highest dynamic
displacement at the corresponding node over time to the static
displacement at the structure’s midpoint. Additionally, the im-
pact of the spring stiffness attached to the frame at the beam
and column intersection points was examined.

Rezaiee-Pajand et al.22 used the differential transform
method to perform free in-plane vibration analysis on a frame
with four arbitrarily inclined members. The related structural
eigenvalue problem was analytically formulated using four dif-
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Figure 1. A crude oil tanker with large bridge wings.

Figure 2. Bridge wing model (Dimensions in millimeters).

ferential equations and sixteen boundary and compatibility cri-
teria. The frequency parameters and mode forms of the frame
were estimated for a range of structural variables, including
joint angles, spring stiffness, and member flexural rigidity. Fi-
nally, the authors’ finite element program was used to validate
the solution acquired by the suggested method.

According to Inoue and Sueoka,23 the transfer influence
coefficient method is a beneficial tool for analyzing the dy-
namic response of a system with various degrees of freedom.
The transfer influence coefficient method addressed several of
the transfer matrix method’s drawbacks and displayed certain
advantages in terms of computational correctness and speed.
However, this method could not be used to handle truss and
rahmen structures since the algorithm is incapable of model-
ing the branches and links that make up a closed-loop in truss

(a)

(b)

Figure 3. Solid model of the 35-degree supported bridge wing.

and rahmen structures. This study presents a novel algorithm
using the transfer influence coefficient method to perform an
in-plane free vibration analysis of frame structures with closed
loops. The new algorithm maintains the original algorithm’s
computational accuracy and speed advantages. The advantages
are highlighted through a comparison of a free vibration anal-
ysis to a standard procedure.

In the study of Civalek and Avcar,24 the free vibration
and buckling analyses have been conducted for function-
ally graded carbon nanotube-reinforced (FG-CNTR) laminated
non-rectangular plates, i.e., quadrilateral and skew plates, us-
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Table 1. Natural frequencies of bridge wing models obtained using FEM.

Mode Type
Natural Frequency (Hz)

200 250 300 350 400 450 500 550 600

First Flexural 93.90 97.92 99.32 99.40 98.66 96.66 93.06 85.50 71.36

First Torsional 113.22 117.61 117.04 112.12 102.90 88.60 74.04 59.78 45.96

Second Flexural 173.49 183.41 187.69 185.24 174.38 156.04 135.91 118.51 107.41

Second Torsional 199.08 220.58 223.73 215.78 204.98 192.54 184.16 178.13 170.51

Table 2. Regression constants for natural frequency functions.

Mode Type a b c d e

First Flexural -0.000053 0.007674 -0.429505 10.893597 -5.081212

First Torsional 0.000028 -0.002910 0.012348 3.501334 56.980303

Second Flexural 0.000113 -0.014997 0.583110 -6.567252 173.341818

Second Torsional -0.000150 0.028118 -1.926864 55.103077 -333.343636

ing a four-nodded straight-sided transformation method. At
first, the related equations of motion and buckling of quadri-
lateral plate have been given, and then, these equations are
transformed from the irregular physical domain into a square
computational domain using the geometric transformation for-
mulation via discrete singular convolution (DSC). Detailed nu-
merical solutions are performed, and obtained parametric re-
sults are presented to show the effects of carbon nanotube
(CNT) volume fraction, CNT distribution pattern, geome-
try of skew and quadrilateral plate, lamination layup, skew
and corner angle, thickness-to-length ratio on the vibration,
and buckling analyses of FG-CNTR-laminated composite non-
rectangular plates with different boundary conditions. Some
detailed results related to critical buckling and frequency of
FG-CNTR non-rectangular plates have been reported which
can serve as benchmark solutions for future investigations.

In the study by Hadji et al.,25 an analytical solution for the
free vibration of nanoplates made of functionally graded ma-
terials (FGMs) under various boundary conditions is provided.
In this context, a new refined plate theory with four variables
based on the theory of non-local elasticity including the small-
scale influences is adopted. Using the rule of mixture, the ma-
terial properties of nanoplates are supposed to vary continu-
ously across the thickness direction. Based on Eringen’s non-
local elasticity theory, the equations of motion of functionally
graded (FG) nanoplate are derived using Hamilton’s principle,
and the obtained equations are solved analytically.

This study which focuses on ship bridge extensions called
“bridge wings”, which are one of the most critical areas of im-
portance in ship vibration, have been modeled at the laboratory
scale and been analyzed using both experimental and finite el-
ement analysis methods. Bridge wing models have been con-
structed with varying inclination angles, and the natural fre-
quencies and mode shapes have been obtained and compared.
The effects of design properties on the results have been ex-
amined, as well. Another important aim of the study can be
stated such that there can be found a certain support angle
which the mode shape transition occurs. Natural frequency and
mode shape analyses of the plates which have been supported
with beams with varying inclination angles and achievement
of mode shape transition phenomenon can be considered as

the novelty of this study.

2. BRIDGE WING MODELS

Bridge extensions called “bridge wings” lie on both sides of
ship bridges when the deck breadths are very high. This kind
of bridge wing can commonly be found on crude oil tankers
and large container ships, as shown in Fig. 1. These struc-
tures allow ship personnel to see the sides of the ship during
maneuvers and to locate special navigation equipment called
repeaters. Large bridge wing structures are one of most critical
parts of a ship when considering vibration.

Since the length of the bridge wing primarily depends on the
deck and bridge breadths, there is no flexibility in the design of
the length of the bridge wing. To achieve stability with regard
to vibration, these structures use transversal and perpendicu-
lar supports. In this study, laboratory-scale bridge wings were
modeled as a composition of frame and plane elements with a
certain constant length and various support angles. The side
view of the model is shown in Fig. 2.

The three-dimensional solid models were created using the
CATIA modeling software, which is a commercial design and
modeling software. Nine different models were created with
support angles (α) of 20, 25, 30, 35, 40, 45, 50, 55 and 60
degrees. The realistic three-dimensional solid model of the 35-
degree supported bridge wing model is shown in Fig. 3.

Four horizontal (top) and 4 support girders were used to con-
struct the model. The breadth of the model is 500 mm, and the
girders are equally spaced across that breadth. The girders are
50x30x2 rectangular profiles. The top horizontal girders are
covered with a plate with a thickness of 2 mm. There is an
extra transversal beam that connects the top horizontal girders
at the free end of the model.

3. FINITE ELEMENT ANALYSES

In this section, the finite element method (FEM) is used as
the numerical modal analysis method for inclined supported
frame structures. The commercial finite element analysis soft-
ware called ABAQUS was used for meshing, natural frequency
calculations (eigenvalue extraction) and mode shape determi-
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(a) First Flexural Mode

(b) First Torsional Mode

(c) Second Flexural Mode

(d) Second Torsional Mode

Figure 4. Mode shapes of the 35-degree supported bridge wing model (FEM).

nations. Fig. 5 shows the mesh model of the 35-degree sup-
ported bridge wing frame structure.

In the mesh models for all 9 structures, both tetrahedral and
hexahedral three-dimensional elements with an average size of
10 millimeters were used. The mapped meshing algorithm was
applied as much as possible. The density, modulus of elasticity
and Poisson ratio were calculated to be 7850 kg/m3, 200000
MPa and 0.3, respectively. The first four natural frequencies
with respect to mode type for all models are shown in Table
1. Additionally, the corresponding mode shapes are shown in

Figure 5. Mesh model of the 35-degree supported bridge wing frame structure.

Figure 6. A photograph showing the modal testing on the structure.

Fig. 4.
By analyzing the data in Table 1, which lists the first four

natural frequencies obtained by the FEM and with respect to
the bridge wing models’ mode type, we determined a 4th de-
gree polynomial relation between the support angles and the
natural frequencies. Then, by conducting regressions over the
first four modes, we derived Eq. (1) in which f stands for nat-
ural frequency (Hz) and α stands for support angle (degrees).
The regression constants for the natural frequency function are
given in Table 2.

f = a.α4 + b.α3 + c.α2 + d.α+ e (1)

The plots of these regression functions are shown in Fig. 7.
The finite element method was applied to all types of bridge

wing models, and the same mode shapes with respect to mode
type were obtained in the same order, except for the order
change between the first flexural and first torsional modes after
the 40-degree supported model, which can be clearly seen in
Fig. 7. Until the 45-degree supported model was simulated, the
first flexural modes were always observed before the first tor-
sional modes. However, starting with the 45-degree supported
model, the order of these modes switched such that the first
torsional modes were observed before the first flexural modes.
The 42-degree support angle was detected as the support angle
at which the mode shape transition begins.

4. EXPERIMENTAL MODAL ANALYSES

Experimental Modal Analysis (EMA) is an effective instru-
ment for describing, understanding and modeling a structure’s
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Figure 7. Natural frequency regression plots.

Figure 8. Data acquisition system.

dynamic behavior. It is able to a structure’s natural frequen-
cies as well as their mode shapes and can also verify accuracy
and calibrate the finite element model. Scaled modal models
require a precise force measurement. This can be achieved
with electrodynamic and servohydraulic exciters controlled by
a signal generator via a power amplifier. A more convenient
and economical excitation method is a hammer fitted with
a high-quality piezoelectric force transducer. In applications
where a high crest factor and a limited ability to shape the in-
put force spectrum are of no concern, impact hammer testing
is an ideal source of excitation. Impact hammers are highly
portable for field work and provide no unwanted mass loading
to the structure during testing.

The roving hammer impact test method was selected as the
experimental modal analysis technique. To implement this
technique, the accelerometer was fixed to a point over the

mesh on the top plate of the structure, and the impact ham-
mer was applied to each mesh point (nodal point) on the struc-
ture’s elements. The impact forces from the hammer and the
responses from the sensor (accelerometer) were collected by
a data recorder and analyzer (B&K PULSE LAN-XI Data
Acquisition Hardware and Modal Test Consultant Software).
An image of the running data recorder and analyzer system
connected to the computer captured during the experiment is
shown in Fig. 8. Then, using these data, the Frequency Re-
sponse Functions (FRFs) were obtained. Using modal anal-
ysis software (B&K Connect) and FRFs obtained from the
recorder, we calculated the structures’ natural frequencies and
mode shapes. The impact hammer (Endevco 2302-10) had a
sensitivity of 2.27 mV/N with a head mass of 100 grams. The
impact tip was an aluminum tip with a diameter of 6.4 millime-
ters. A miniature piezoelectric uniaxial CCLD accelerometer

62 International Journal of Acoustics and Vibration, Vol. 27, No. 1, 2022



A. Yucel: NUMERICAL AND EXPERIMENTAL MODAL ANALYSES OF INCLINED SUPPORTED BRIDGE WING STRUCTURES

Table 3. Natural frequencies of bridge wing models obtained with EMA.

Mode Type
Natural Frequency (Hz)

200 250 300 350 400 450 500 550 600

First Flexural 87.28 89.10 92.34 92.63 91.84 86.43 88.96 78.97 63.79

First Torsional 108.39 111.34 111.32 105.72 95.54 82.91 69.48 55.83 43.04

Second Flexural 160.40 165.08 170.07 170.63 156.09 140.31 127.83 109.38 96.69

Second Torsional 184.35 204.41 212.91 197.80 188.01 181.54 166.62 170.18 155.68

Table 4. Natural frequencies of bridge wing models obtained with FEM and EMA with discrepancies.

Mode Type
Natural Frequency (Hz)

200 250 300 350 400 450 500 550 600

First Flexural (FEM)
First Flexural (EMA)
Discrepancy (%)

93.90
87.28
7.58

97.92
89.10
9.90

99.32
92.34
7.56

99.40
92.63
7.31

98.66
91.84
7.43

96.66
86.43
11.84

93.06
88.96
4.61

85.50
78.97
8.27

71.36
63.79
11.87

First Torsional (FEM)
First Torsional (EMA)
Discrepancy (%)

113.22
108.39
4.46

117.61
111.34
5.63

117.04
111.32
5.14

112.12
105.72
6.05

102.90
95.54
7.70

88.60
82.91
6.86

74.04
69.48
6.56

59.78
55.83
7.08

45.96
43.04
6.78

Second Flexural (FEM)
Second Flexural (EMA)
Discrepancy (%)

173.49
160.40
8.16

183.41
165.08
11.10

187.69
170.07
10.36

185.24
170.63
8.56

174.38
156.09
11.72

156.04
140.31
11.21

135.91
127.83
6.32

118.51
109.38
8.35

107.41
96.69
11.09

Second Torsional (FEM)
Second Torsional (EMA)
Discrepancy (%)

199.08
184.35
7.99

220.58
204.41
7.91

223.73
212.91
5.08

215.78
197.80
9.09

204.98
188.01
9.03

192.54
181.54
6.06

184.16
166.62
10.53

178.13
170.18
4.67

170.51
155.68
9.53

Figure 9. Data for the selected nodal points.

(B&K 4507) with a sensitivity of 100 mV/g was used to collect
the time data. The accelerometer had a frequency range of 0.3-
6000 Hz and a weight of 4.8 grams. The system’s sampling
frequency was 2048 Hz.

All 9 bridge wing models examined in the finite element
analyses section were constructed at the laboratory scale with
the same dimensions and clamped to the wall of our laboratory

side by side (the top plates of the bridge wings were on the
same level), as shown in Fig. 10.

The mesh, with hammer hitting and sensor nodal points, is
shown in Fig. 11. The sensor is located on nodal point 62 (in
the red circle).

A screen from the B&K Modal Test Consultant software
taken while conducting the experiments is shown in Fig. 9. The
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(a)

(b)

(c)

(d)

Figure 10. All models constructed for experimental modal analyses.

phase and FRFs of the selected (red nodal hit arrows) nodes are
also shown in Fig. 9.

Table 3 presents the first four natural frequencies obtained
with EMA with respect to mode type for all models. The cor-
responding mode shapes are also shown in Fig. 12.

As seen in Fig. 12, the same mode shapes were obtained
with experimental modal analysis for the selected model (35

Figure 11. EMA mesh (hammer points) for the 35-degree supported bridge
wing construction.

degrees) with respect to FEM. In Table 4, the overall frequency
values obtained from finite element and experimental modal
analyses for all models are listed, and the discrepancies are
also included. The discrepancy formula is given by Eq. (2).

Discrepancy (%) =
FEM − EMA

EMA
100 (2)

5. CONCLUSION

Examining both the finite element and experimental modal
analyses yields the following conclusions.

Table 4 presents the overall frequency values obtained by
finite element and experimental modal analyses for all mod-
els, including discrepancies. It is noted that the experimental
results are always smaller than those obtained with the finite el-
ement method. The maximum discrepancy between FEM and
EMA is approximately 12%. There are several explanations
for this. In EMA,

• The constructions did not have the same (ideal) material
mechanical properties as in the FEM.

• The constructions were heavily coated and painted.

• The constructions were not theoretically clamped as in
FEM.

• The weldings did not ideally mimic the surface contacts
in the FEM.

In addition, as seen in Fig. 7, the natural frequencies decrease
as the support angle increases. In the FEM and EMA, the same
mode shapes were obtained in the same order except for the or-
der change between the first flexural and first torsional modes
after the 40-degree supported model, which can be clearly seen
in Fig. 7. Until the 45-degree supported model was simulated,
the first flexural modes were always observed before the first
torsional modes. However, starting from the 45-degree sup-
ported model, the order of these modes switched such that
the first torsional modes were observed before the first flex-
ural modes. A mode shape transition phenomenon was also
detected in the study.
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(a) First Flexural Mode

(b) First Torsional Mode

(c) Second Flexural Mode

(d) Second Torsional Mode

Figure 12. Mode shapes of the 35-degree supported bridge wing model
(EMA).

As the results of the comparison between the finite element
values and the experimental values demonstrate, the correla-
tion between the FEM and EMA has been validated. In future
work, the bridge wing width and length can be varied, and a
single formula representing the natural frequency can be con-
structed to also consider the bridge wing width and length.
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