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This article establishes the vibrational response of laminates and sandwich plates inserted in an elastic medium.
The quasi-3D elasticity equations are used for this purpose. The two-parameter Pasternak’s model is utilized to
give the interaction between the elastic foundation and the presented plate. The virtual displacement principle is
applied to obtain governing dynamic equations. Many validation examples are displayed to show the accuracy
and efficiency of the current model. The effects of various parameters like lamination scheme, material properties,
aspect and thickness ratios, number of layers, and elastic foundation parameters on vibrations of laminates and
sandwich plates are investigated.

1. INTRODUCTION

Numerous research works dealing with the vibrational prob-
lem of composite plates and laminates can be observed in the
literature. Such studies are done utilizing both numerical and
analytical approaches. Here, we restrict our attention to the vi-
bration frequencies of plates lying on elastic foundations. The
impacts of foundation parameters on the vibrational responses
of composite plates have not had enough attention in the liter-
ature.

Three-dimensional (3D) investigation of plates has for some
time been an objective for the individuals who work in this
field. Such an examination gives sensible outcomes as well as
permits further actual experiences, which cannot, in any case,
be anticipated by the 2D investigation. Within a thirty year
period, a few endeavors have been created for 3D vibration
examination of thick plates. However, the majority of them
concentrated on rectangular plates.

Two-dimensional theories diminish the elements of issues
from three to two by presenting a few concerns in mathemat-
ical modeling. This outcome has somewhat straightforward
articulations and induction of solutions. These disentangle-
ments inherently achieve errors, and hence improved specula-
tions should not ignore specific modes for thicker plates.

A review of the literature found that Bhattacharya1 pre-
sented the vibrations of cross-ply laminated plates lying on an
elastic foundation. Lal et al.2 studied the effect of founda-
tion parameters on the free vibration of laminates lying on an
elastic foundation. Ayvaz and Oguzhan3 presented frequency
parameters of plates laying on elastic foundations employing
a revised Vlasov model. Pirbodaghi et al.4 explored the vi-
brational study of thin multilayered plates resting on elastic
foundations. Akgöz and Civalek5 offered free vibration of thin
laminates lying on elastic foundations. Nedri et al.6 presented

the free vibration of multilayered composite plates lying on
elastic foundations utilizing a developed hyperbolic shear de-
formation theory. Akgöz and Civalek7 presented the thermo-
mechanical size-dependent buckling analysis of embedded FG
microbeams. Mercan et al.8 presented the free vibration be-
havior of FG circular cylindrical shells. Akgöz and Civalek9

discussed the static bending behavior of single-walled carbon
nanotubes embedded in an elastic medium. Haciyev et al.10, 11

presented the vibration of bi-directional exponentially graded
orthotropic and inhomogeneous with spatial coordinates plates
resting on the two-parameter elastic or inhomogeneous vis-
coelastic foundation. Ozdemir12 studied the vibrational analy-
sis of thick plates resting on Winkler’s foundation based upon
Mindlin’s theory. Rahmani et al.13 studied the vibration of
anti-symmetric laminates lying on viscoelastic foundations in
a thermal environment. Mahmure et al.14 discussed the free
vibration of thin-walled composite shells reinforced with car-
bon nanotubes resting on a two-parameter foundation. Go-
hari et al.15 developed an analytical solution for the electro-
mechanical flexural response of smart laminated piezoelectric
composite rectangular plates. Gohari et al.16 discussed a new
analytical flexural solution for thick multi-layered composite
hybrid rectangular plates resting on Winkler elastic founda-
tion. Yang et al.17 discussed the free vibration and impact re-
sponse of composite plates with interfacial delamination based
on the improved layerwise theory with finite element imple-
mentation. Guo et al.18 presented the free vibration analysis
of delaminated composite plates resting on an elastic founda-
tion. Huang et al.19 investigated the delamination impact on
the nonlinear vibrational study of the composite plate lying
on an elastic foundation. Avey et al.20 presented the solution
of nonlinear free vibration of composite shells reinforced with
carbon nanotubes and resting on elastic soils.

In this paper, an established quasi-3D laminated plate the-
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Figure 1. Schematic diagram for the geometry of the laminated plate resting
on a two-parameter elastic foundation.

ory is implemented for the vibration of symmetric and anti-
symmetric fiber-reinforced laminates and composite plates ly-
ing on elastic foundations. It should be mentioned that such
a refined theory takes into account that no hypothesis would
be created in the progress of the formulas. Numerical results
for different lamination schemes are described. Comparisons
are done with outcomes available from other assets wherever
possible. The analysis is employed to examine the effects of
thickness and aspect ratios and elastic foundation factors on
the frequency parameters of isotropic and cross-ply laminated
plates. Numerical outcomes are illustrated explicitly.

2. BASIC EQUATIONS

Consider a multilayered rectangular plate constrained by the
coordinate planes x1 = 0, a, x2 = 0, b, and x3 = −h/2, h/2.
The plate is composed of a finite number L of homogeneous
layers and laid on a two-parameter Pasternak’s elastic foun-
dation. The above cartesian coordinates xα (α = 1, 2),
x3 are chosen such as x3 is placed on the mid-plane of the
plate. The plate is symmetrically/anti-symmetrically disposed
of concerning the middle plane (see Fig. 1). The layers are be-
lieved completely confined. The material of each element layer
is linearly elastic and orthotropic and the layers are described
by the same geometrical and physicomechanical properties.

2.1. A Quasi 3D Theory
Let vα(xα, x3; t) and v3(xα, x3; t) indicate the dynamic dis-

placements of a material point located at (xα, x3) and time t
in the x1, x2, and x3 directions, respectively. It is clear that
the Greek lower case subscripts are supposed to range over the
integers 1, 2.

The in-plane displacements and transverse displacement are
assumed according to the following refined quasi-3D plate the-
ory:

vα = uα − x3u3,α + ϕ(x3)ψα;

v3 = u3 + ϕ′(x3)ψ3; (1)

where the above displacements contain six unknowns uj and
ψj as functions on (xα; t). The effects due to transverse shear
strain and normal deformations are both included. The func-
tion ϕ(x3) should be an odd function of x3 while its deriva-
tive with respect to x3 should be an even function of x3. In
fact, there are many forms of the function ϕ(x3) that satisfy
the above conditions, these are:

Reddy:21 z
(
1− 4x2

3

3h2

)
;

Touratier,22 Zenkour:23, 24 h
π sin

(
πx3

h

)
;

Soldatos:25 h sinh
(
x3

h

)
− x3 cosh

(
1
2

)
;

Karama et al.:26 x3e
−2( x3

h )
2

.
In addition to the above forms, there are many others in the

literature. Most of them are sufficient to obtain accurate out-
comes. In the present model, we restrict our attention to the
following effective and sufficient form. That is:

ϕ(x3) =
h

π
sin
(πx3
h

)
; ( )′ =

d( )

dx3
. (2)

No transversal shear correction factors are needed for the
present model because a correct representation of the transver-
sal shearing strain is given. The displacement field in Eq. (1)
gives the strains as:{

εα
γ12

}
=

{
ε0α
γ012

}
+ x3

{
ε1α
γ112

}
+ ϕ(x3)

{
ε2α
γ212

}
;

γα3 = ϕ′(x3)γ
0
α3;

ε3 = ϕ′′(x3)ε
0
3; (3)

where:

ε0α =
∂uα
∂xα

; ε1α = −∂
2u3
∂x2α

; ε2α =
∂ψα

∂xα
;

γ0α3 =
∂ψ3

∂xα
+ ψα; ε03 = ψ3; γ012 =

∂u2
∂x1

+
∂u1
∂x2

;

γ112 = −2
∂2u3
∂x1∂x2

; γ212 =
∂ψ2

∂x1
+
∂ψ1

∂x2
. (4)

Also, the load-displacement relation between the plate and
the supporting foundations is given according to the two-
parameter Pasternak’s model by:

R = (kw − ks∇2)u3; (5)

where R is the foundation reaction per unit area, kw and ks are
Winkler’s and Pasternak’s foundation stiffnesses, respectively,
and ∇2 represents Laplace operator. Winkler’s model is simply
obtained when ks = 0.

2.2. Constitutive Equations

By treating each layer as an individual homogeneous plate,
the stress-strain relationships in the plate coordinates for the
kth layer are written in the form:

σ1
σ2
σ3
τ23
τ13
τ12



(k)

=


c11 c12 c13 0 0 0

c22 c23 0 0 0
c33 0 0 0

c44 0 0
symm. c55 0

c66



(k)

ε1
ε2
ε3
γ23
γ13
γ12


;

(6)

where c(k)ij are the transformed elastic coefficients. If the plate
composition is cross-ply, the orthotropic material regarding
the old coordinate system under rotation through an angle θk
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(= 0◦ or 90◦) about the x3-axis so that the transformation ex-
pressions for the stiffnesses cij become:

c
(k)
11 = c11 cos

4 θk + 2(c12 + 2c66) sin
2 θk cos

2 θk +

c22 sin
4 θk;

c
(k)
12 = (c11 + c22 − 4c66) sin

2 θk cos
2 θk +

c12(sin
4 θk + cos4 θk);

c
(k)
13 = c13 cos

2 θk + c23 sin
2 θk;

c
(k)
22 = c11 sin

4 θk + 2(c12 + 2c66) sin
2 θk cos

2 θk +

c22 cos
4 θk;

c
(k)
23 = c13 sin

2 θk + c23 cos
2 θk;

c
(k)
33 = c33;

c
(k)
44 = c44 cos

2 θk + c55 sin
2 θk;

c
(k)
55 = c44 sin

2 θk + c55 cos
2 θk;

c
(k)
66 = (c11 − 2c12 + c22) sin

2 θk cos
2 θk +

c66(cos
2 θk − sin2 θk)

2; (7)

where cij are the stiffness matrix components of the lamina,

c11 =
E1(1− ν23ν32)

∆
;

c12 =
E1(ν21 + ν23ν31)

∆
=
E2(ν12 + ν32ν13)

∆
;

c13 =
E1(ν31 + ν21ν32)

∆
=
E3(ν13 + ν12ν23)

∆
;

c22 =
E2(1− ν13ν31)

∆
;

c23 =
E2(ν32 + ν12ν31)

∆
=
E3(ν23 + ν21ν13)

∆
;

c33 =
E3(1− ν12ν21)

∆
;

c44 = G23;

c55 = G13;

c66 = G12;

∆ = 1− ν12ν21 − ν31ν13 − ν23ν32 − 2ν21ν32ν13; (8)

in which E1, E2, and E3 are Young’s moduli in x1, x2, and
x3 directions, respectively; νij are Poisson’s ratios, and Gij

represent shear moduli. Poisson’s ratios and Young’s moduli
are associated by the communal formulae as νijEj = νjiEi,
i, j = 1, 2, 3.

2.3. Stress Resultants
The stress resultants can be obtained by integrating Eq. (6)

over the thickness as follows:{
(Nα,Mα, Sα), (N12,M12, S12)

}
=

L∑
k=1

∫ x
(k+1)
3

x
(k)
3

(1, x3, ϕ)
{
σ(k)
α , τ

(k)
12

}
dx3;

S3 =

L∑
k=1

∫ x
(k+1)
3

x
(k)
3

ϕ′′σ
(k)
3 dx3;

{Q1, Q2} =

L∑
k=1

∫ x
(k+1)
3

x
(k)
3

ϕ′
{
τ
(k)
13 , τ

(k)
23

}
dx3. (9)

Using Eqs. (3)–(7) in Eq. (8), the stress resultants
(N1, N2, N12), moments (M1,M2,M12), additional moments
(S1, S2, S3, S12), and shear forces (Q1, Q2) can be obtained.
These expressions are given by:

N
M
S
S3

 =


B B B H

D D H
D H

symm. A33



E0

E1

E2

ε03

 ;

{
Q2

Q1

}
=

[
A44 0
0 A55

]{
γ023
γ013

}
; (10)

where:

N =

N1

N2

N12

 ; M =

M1

M2

M12

 ; S =

 S1

S2

S12

 ;

E0 =

 ε01
ε02
γ012

 ; E1 =

 ε11
ε12
γ112

 ; E2 =

 ε21
ε22
γ212

 ;

B =

B11 B12 0
B12 B22 0
0 0 B66

 ; B =

B11 B12 0
B12 B22 0
0 0 B66

 ;

B =

B11 B12 0

B12 B22 0

0 0 B66

 ; D =

D11 D12 0
D12 D22 0
0 0 D66

 ;

D =

D11 D12 0
D12 D22 0
0 0 D66

 ; D =

D11 D12 0

D12 D22 0

0 0 D66

 ;

H =

H13

H23

0

 ; H =

H13

H23

0

 ; H =

H13

H23

0

 ; (11)

in which Bij , Bij , . . . etc. are the plate stiffness, defined by:

{
Bij , Bij , Bij

}
=

L∑
k=1

∫ x
(k+1)
3

x
(k)
3

c
(k)
ij {1, x3, ϕ} dx3;

i, j = 1, 2, 6;{
Dij , Dij , Dij

}
=

L∑
k=1

∫ x
(k+1)
3

x
(k)
3

c
(k)
ij

{
x23, x3ϕ, ϕ

2
}
dx3;

i, j = 1, 2, 6;{
Hα3, Hα3, Hα3

}
=

L∑
k=1

∫ x
(k+1)
3

x
(k)
3

c
(k)
α3 ϕ

′′ {1, x3, ϕ} dx3;

α = 1, 2;

{A33, App} =

L∑
k=1

∫ x
(k+1)
3

x
(k)
3

{
c
(k)
33 (ϕ′′)2, c(k)pp (ϕ

′)2
}
dx3;

p = 4, 5. (12)

Hamilton’s principle can be written as:

δ

∫ t2

t1

(T − U)dt = 0; (13)
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where the first variation of the kinetic energy T is represented
as:

δT = −
∫∫

Ω

L∑
k=1

∫ x
(k+1)
3

x
(k)
3

ρ(k)v̈iδvi dx3 dΩ; (14)

and U is the total potential energy represented as:

δU =∫∫
Ω

[
L∑

k=1

∫ x
(k+1)
3

x
(k)
3

(
σ
(k)
i δεi + τ

(k)
ij δγij

)
dx3 +Rδv3

]
dΩ.

(15)

Using Eqs. (1), (3), (6), (14), and (15), in Eq. (13) and tak-
ing the first variation to obtain the next governing equations
combined with the current quasi-3D theory:

δu1 :
∂N1

∂x1
+
∂N12

∂x2
= I0ü1 − I1

∂ü3
∂x1

+ I3ψ̈1;

δu2 :
∂N12

∂x1
+
∂N2

∂x2
= I0ü2 − I1

∂ü3
∂x2

+ I3ψ̈2;

δu3 :
∂2M1

∂x21
+ 2

∂2M12

∂x1∂x2
+
∂2M2

∂x22
−R =

I0ü3 + I1

(
∂ü1
∂x1

+
∂ü2
∂x2

)
− I2∇2ü3 +

I4

(
∂ψ̈1

∂x1
+
∂ψ̈2

∂x2

)
+ I6ψ̈3;

δψ1 :
∂S1

∂x1
+
∂S12

∂x2
−Q1 = I3ü1 − I4

∂ü3
∂x1

+ I5ψ̈1;

δψ2 :
∂S12

∂x1
+
∂S2

∂x2
−Q2 = I3ü2 − I4

∂ü3
∂x2

+ I5ψ̈2;

δψ3 :
∂Q1

∂x1
+
∂Q2

∂x2
− S3 = I6ü3 + I7ψ̈3; (16)

where:

{I0, I1, I2, I3, I4, I5, I6, I7} =

L∑
k=1

∫ x
(k+1)
3

x
(k)
3

ρ(k)
{
1, x3, x

2
3, ϕ, x3ϕ, ϕ

2, ϕ′, (ϕ′)2
}
dx3. (17)

3. SOLUTION PROCEDURE

The current problem connected with the equations of motion
of plates lying on elastic foundations, is the exact closed-form
solution to Eq. (16), can be composed with the next boundary
conditions. The plate is supposed to be simply supported on all
four edges. The boundary conditions are required at the side
edges for the current quasi-3D plate theory as:

u2 = u3 = ϕ2 = ϕ3 = N1 =M1 = S1 = 0, at x1 = 0, a;

u1 = u3 = ϕ1 = ϕ3 = N2 =M2 = S2 = 0, at x2 = 0, b.
(18)

The following closed-form solution is seen to satisfy all gov-
erning equations:(u1, ψ1)

(u2, ψ2)
(u3, ψ3)

 =

∞∑
m=1

∞∑
n=1

(Umn, Xmn) cos(λx1) sin(µx2)
(Vmn, Ymn) sin(λx1) cos(µx2)
(Wmn, Zmn) sin(λx1) sin(µx2)

 e−iωmnt;

(19)

where λ = mπ/a and µ = nπ/b. Also, m and n represent
the mode shapes of vibration and indicate the number of half-
waves in x1- and x2-directions, respectively.

The governing Eqs. (16) after using Eqs. (19) are reduced
to:

([K]− Ωmn[P ]) {∆} = {0}; (20)

where {∆} = {u1, u2, u3, ψ1, ψ2, ψ3}T and the non-zero el-
ements Kij of the symmetric matrix [K] and Pij of the sym-
metric matrix [P] are defined for antisymmetric cross-ply lam-
inates by:

K11 = B11λ
2 +B66µ

2; K12 = (B12 +B66)λµ;

K13 = −λ[B11λ
2 + (B12 + 2B66)µ

2];

K14 = B11λ
2 +B66µ

2; K15 = K24 = (B12 +B66)λµ;

K16 = −H13λ; K22 = B66λ
2 +B22µ

2;

K23 = −µ[(B12 + 2B66)λ
2 +B22µ

2];

K25 = B66λ
2 +B22µ

2; K26 = −H23µ;

K33 = D11λ
4 + 2(D12 + 2D66)λ

2µ2 +D22µ
4 +

ks(λ
2 + µ2) + kw;

K34 = −λ[D11λ
2 + (D12 + 2D66)µ

2];

K35 = −µ[(D12 + 2D66)λ
2 +D22µ

2];

K36 = H13λ
2 +H23µ

2; K44 = B11λ
2 +B66µ

2 +A55;

K45 = (B12 +B66)λµ; K46 = (A55 −H13)λ;

K55 = B66λ
2 +B22µ

2 +A44; K56 = (A44 −H23)λ;

K66 = A55λ
2 +A44µ

2 +A33;

P11 = P22 = I0; P13 = −I1λ; P14 = P25 = I3;

P23 = −I1µ; P33 = I0 + I2(λ
2 + µ2); P34 = −I4λ;

P35 = −I4µ; P36 = I6; P44 = P55 = I5; P66 = I7.
(21)

4. NUMERICAL RESULTS AND
DISCUSSIONS

The following presents many numerical examples for the
vibrational analysis of an isotropic single-layer and cross-ply
multi-layer plates. The accuracy and efficiency of the present
developed quasi-3D plate theory in calculating various fre-
quencies of simply-supported laminated plates are reviewed.
The outcomes included here are compared with those cited in
the literature utilizing various theories. Most of the presented
examples shown here are for cross-ply multi-layered rectangu-
lar plates composed of orthotropic layers. In a particular case,
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Table 1. Comparisons of fundamental frequencies ω11 = ω11h
√

ρ/E2 of cross-ply square plates (a/h = 5, Material I).

No. of Source E1/E2

layers 10 20 30 40
Present 0.326896 0.370288 0.394891 0.411650
3D Elasticity (Noor27) 0.32841 0.38241 0.41089 0.43006
HSDPT (Putcha and Reddy28) 0.33095 0.38112 0.41094 0.43155

3 HSDPT (Khdeir29) 0.32604 0.36939 0.39390 0.41053
HSDT (Khdeir and Librescu30) 0.32711 0.37009 0.39387 0.40962
FSDT (Khdeir and Librescu30) 0.32739 0.37110 0.39540 0.41158
CPT (Khdeir and Librescu30) 0.42599 0.55793 0.66419 0.75565
Present 0.338397 0.394927 0.428708 0.451720
3D Elasticity (Noor27) 0.34089 0.39792 0.43140 0.45374
HSDPT (Putcha and Reddy28) 0.33997 0.39943 0.43509 0.45924

5 HSDPT (Khdeir29) 0.33723 0.39365 0.42143 0.45047
HSDT (Khdeir and Librescu30) 0.33741 0.39340 0.42694 0.44986
FSDT (Khdeir and Librescu30) 0.33680 0.39306 0.42714 0.45068
CPT (Khdeir and Librescu30) 0.42599 0.55793 0.66419 0.75565
Present 0.342323 0.403567 0.440728 0.466165
3D Elasticity (Noor27) 0.34432 0.40547 0.44210 0.46679
HSDPT (Putcha and Reddy28) 0.34220 0.40433 0.44201 0.46769

9 HSDPT (Khdeir29) 0.34125 0.40240 0.43947 0.46480
HSDT (Khdeir and Librescu30) 0.34146 0.40202 0.43847 0.46315
FSDT (Khdeir and Librescu30) 0.34079 0.40147 0.43818 0.46315
CPT (Khdeir and Librescu30) 0.42599 0.55793 0.66419 0.75565

Table 2. Comparisons of the fundamental frequency ω̂11 = (ω11b2/h)
√

ρ/E2 vs. E1/E2 of a symmetric [0◦/90◦/90◦/0◦] square plate (a/h = 5,
Material I).

Source E1/E2

10 20 30 40
Present 8.29594 9.55074 10.29565 10.81011
3D Elasticity (Noor27) 8.2103 9.5603 10.272 10.752
HSDPT (Phan and Reddy31) 8.2718 9.5263 10.272 10.787
HSDPT (Khdeir29) 8.2718 9.5263 10.272 10.787
HSDT (Khdeir and Librescu30) 8.2940 9.5439 10.284 10.794
FSDT (Khdeir and Librescu30) 8.2982 9.5671 10.326 10.854
CPT (Khdeir and Librescu30) 10.650 13.948 16.605 18.891

Table 3. Comparisons of the fundamental frequency ω̂11 = (ω11b2/h)
√

ρ/E2 vs. a/h of a symmetric [0◦/90◦/90◦/0◦] square plate (Material I, E1/E2 =
40).

Source a/h
2 4 5 10 12.5 20 25 50 100

Present 5.5369 9.3461 10.8101 15.1244 16.1740 17.6542 18.0675 18.6741 18.8370
HSDPT (Wu and Chen32) 5.317 9.193 10.682 15.069 16.134 17.636 18.055 18.670 18.835
HSDPT (Senthilnarthan et al.33) 6.002 10.230 11.770 15.940 16.828 17.993 18.301 18.738 18.852
HSDPT (Reddy and Phan34) 5.576 9.497 10.988 15.270 16.276 17.668 18.050 18.606 18.755
FSDPT (Wu and Chen32) 5.492 9.369 10.820 15.083 16.120 17.583 18.991 18.590 18.751
CPT (Wu and Chen32) 15.830 17.907 18.215 18.625 18.707 18.767 18.780 18.799 18.804

however, for comparison with the results obtained in the liter-
ature, an isotropic material property has been employed. To
check the accuracy and efficiency of the improved solution,
and to examine the impacts of transverse shear and normal
strains, the next material property sets were applied in achiev-
ing the numerical outcomes.

Isotropic plate:

E1/E2 = 1; ν = 0.3. (22)

Laminated plate:

Material I:

E1/E2 = open; G12 = G13 = 0.6E2; G23 = 0.5E2;

ν12 = ν13 = ν23 = 0.25. (23)

Material II:

E1/E2 = open; G12 = G13 = 0.5E2; G23 = 0.35E2;

ν12 = ν13 = 0.3; ν23 = 0.49. (24)

The fundamental and natural frequencies for laminated com-
posite plates are discussed in Tables 1–9 and Figs. 2–18.

Table 1 is devoted to the fundamental frequencies ω11 =
ω11h

√
ρ/E2 of cross-ply square plates (a/h = 5, Material I).

The outcomes were achieved by employing the present method
and are compared with their equivalents found for such the-
ory by applying a finite difference method to the equations
of 3D elasticity theory (Noor27), frequencies obtained by ap-
plying a finite element method (Putcha and Reddy28), results
using higher-order theory due to Navier solutions (Khdeir29),
as well as other HSDT, FSDT and CPT reported in (Khdeir
and Librescu30). An excellent agreement is provided between
the presently achieved frequencies and their equivalents avail-
able in the literature for different layers of symmetric cross-ply
square plates.
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Table 4. Comparisons of the fundamental frequency ω̂11 = (ω11b2/h)
√

ρ/E2 of skew-symmetric [0◦/90◦/ . . .] square plates (a/h = 5, Material I).

No. of Source E1/E2

layers 3 10 20 30 40
Present 6.240408 7.013876 7.852311 8.543846 9.134206
3D Elasticity (Noor27) 6.25775 6.98450 7.67450 8.17625 8.56250
HSDPT (Wu and Chen32) 6.23199 6.95573 7.64300 8.14264 8.52737

2 HSDPT (Putcha and Reddy28) 6.21689 6.98869 7.82105 8.50504 9.08711
HSDT (Reddy and Khdeir35) 6.21689 6.98869 7.82105 8.50504 9.08711
FSDPT (Wu and Chen32) 6.20855 6.93924 7.70599 8.32112 8.83331
CPT (Wu and Chen32) 6.77050 7.74200 8.85550 9.83375 10.72100
Present 6.524282 8.21610 9.641974 10.545819 11.179431
3D Elasticity (Noor27) 6.54550 8.14450 9.40550 10.16500 10.67975
HSDPT (Wu and Chen32) 6.50437 8.09280 9.34539 10.09988 10.61133

4 HSDPT (Putcha and Reddy28) 6.50081 8.19541 9.62646 10.53478 11.17156
HSDT (Reddy and Khdeir35) 6.50081 8.19541 9.62646 10.53478 11.17156
FSDPT (Wu and Chen32) 6.50425 8.22460 9.68846 10.61976 11.27077
CPT (Wu and Chen32) 7.16900 9.71925 12.47675 14.72500 16.67250

Table 5. Comparisons of fundamental frequencies ω11 = ω11h
√

ρ/E2 of cross-ply square plates (a/h = 5, Material II).

Lamination No. of Source E1/E2

layers 3 10 20 30 40

2

Present 0.23925 0.26877 0.28574 0.32688 0.34879
Noor and Burton36 0.2392 0.2671 0.2815 0.3117 0.3256
Kant and Kommineni37 0.2388 0.2675 0.2809 0.3117 0.3236
Matsunaga38 0.2389 0.2669 0.2812 0.3116 0.3255

4

Present 0.25036 0.31282 0.34139 0.39326 0.41403
Noor and Burton36 0.2493 0.3063 0.3307 0.3726 0.3887
Kant and Kommineni37 0.2495 0.3002 0.3306 0.3725 0.3899

Skew-symmetric Matsunaga38 0.2491 0.3063 0.33093 0.3731 0.3893

6

Present 0.25260 0.32078 0.35113 0.40493 0.42608
Noor and Burton36 0.2517 0.3164 0.3441 0.3914 0.4092
Kant and Kommineni37 0.2517 0.3171 0.3442 0.3918 0.4100
Matsunaga38 0.2519 0.3169 0.3449 0.3926 0.4106

10

Present 0.23999 0.26427 0.27334 0.26008 0.21173
Noor and Burton36 0.2530 0.3220 0.3518 0.4027 0.4220
Kant and Kommineni37 0.2531 0.3224 0.3519 0.4028 0.4220
Matsunaga38 0.2536 0.3237 0.3542 0.4066 0.4265

3
Present 0.25172 0.30730 0.32821 0.36261 0.37626
Noor and Burton36 0.2516 0.3109 0.3344 0.3739 0.3892
Matsunaga38 0.2513 0.3070 0.3278 0.3616 0.3745

5

Present 0.25365 0.32081 0.34893 0.39713 0.41573
Noor and Burton36 0.2529 0.3195 0.3470 0.3931 0.4102
Kant and Kommineni37 0.2528 0.3201 0.3470 0.3935 0.4121
Matsunaga38 0.2527 0.3173 0.3437 0.3876 0.4040

Symmetric

7

Present 0.25405 0.32404 0.35401 0.40590 0.42600
Noor and Burton36 0.2533 0.3222 0.3514 0.4005 0.4190
Kant and Kommineni37 0.2534 0.3224 0.3520 0.4004 0.4204
Matsunaga38 0.2535 0.3218 0.3505 0.3990 0.4173

9

Present 0.25420 0.32530 0.35599 0.40933 0.43003
Noor and Burton36 0.2535 0.3234 0.3533 0.4040 0.4231
Kant and Kommineni37 0.2536 0.3248 0.3535 0.4047 0.4237
Matsunaga38 0.2540 0.3244 0.3544 0.4058 0.4252

Table 6. Comparisons of fundamental frequencies ω̌11 = ω11a2
√

ρh/D of isotropic square plates ( a
h
= 20, kw = a4

D
kw , ks = a2

D
ks).

kw Source ks
0 102 103

Lam et al.39 19.74 48.62 141.92
0 Hasani Baferani and Saidi40 19.7374 48.6149 141.8730

Present 19.60197 48.40897 141.29239
Lam et al.39 22.13 49.63 142.20

102 Hasani Baferani and Saidi40 22.1261 49.6327 142.2250
Present 21.98859 49.42342 141.64272
Lam et al.39 37.28 58.00 145.43

103 Hasani Baferani and Saidi40 37.2763 57.9945 145.3545
Present 37.10539 57.75690 144.75737
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Table 7. Comparisons of fundamental frequencies ω̌11 = ω11a2
√

ρh/D of isotropic square plates (kw = a4

D
kw , ks = a2

D
ks).

(kw, ks) Source a/h

5 10 103

Akhavan et al.41 17.5055 19.4260 19.7391
(0,0) Thai et al.42 17.4523 19.0653 19.7391

Present 17.56773 19.12477 19.77124
Akhavan et al.41 24.3074 25.6368 26.2112

(100,10) Thai et al.42 24.2722 25.6232 26.2112
Present 24.07426 25.59158 26.23534
Akhavan et al.41 56.0359 57.3969 57.9961

(1000,100) Thai et al.42 56.0309 57.3921 57.9961
Present 55.52600 57.03135 58.00701

Table 8. Comparisons of the first three non-dimensional natural frequencies ω̃mn = ωmnb2

π2

√
ρh/D of isotropic square plates (kw = a4

D
kw , ks = a2

D
ks).

a/h kw ks Method Frequencies
ω11 ω12 ω22

3D-DQM (Dehghan and Baradaran43) 2.3903 4.8098 7.2186
3D-Ritz (Zhou et al.44) 2.3951 4.8262 7.2338

200 0 FSDPT (Xiang et al.45) 2.3989 4.8194 7.2093
HSDPT (Thai et al.42) 2.3989 4.8198 7.2108
Present 2.39821 4.83571 7.25056
3D-DQM (Dehghan and Baradaran43) 3.6978 5.5521 7.7193
3D-Ritz (Zhou et al.44) 3.7008 5.5661 7.7335

1000 0 FSDPT (Xiang et al.45) 3.7212 5.5844 7.7353
HSDPT (Thai et al.42) 3.7213 5.5847 7.7366

10 Present 3.70576 5.57643 7.75071
3D-DQM (Dehghan and Baradaran43) 2.7721 5.2800 7.7132
3D-Ritz (Zhou et al.44) 2.7756 5.2954 7.7279

200 10 FSDPT (Xiang et al.45) 2.7842 5.3043 7.7287
HSDPT (Thai et al.42) 2.7842 5.3047 7.7300
Present 2.77875 5.30496 7.74440
3D-DQM (Dehghan and Baradaran43) 3.9542 5.9623 8.1816
3D-Ritz (Zhou et al.44) 3.9566 5.9757 8.1954

1000 10 FSDPT (Xiang et al.45) 3.9805 6.0078 8.2214
HSDPT (Thai et al.42) 3.9805 6.0082 8.2227
Present 3.96241 5.98746 8.21399
3D-DQM (Dehghan and Baradaran43) 2.2450 5.1643 8.1338
3D-Ritz (Zhou et al.44) 2.2413 5.0973 8.0527

100 0 FSDPT (Xiang et al.45) 2.2413 5.0971 8.0523
HSDPT (Thai et al.42) 2.2413 5.0973 8.0523
Present 2.24422 5.10525 8.06569
3D-DQM (Dehghan and Baradaran43) 3.0242 5.5474 8.3821
3D-Ritz (Zhou et al.44) 3.0214 5.4850 8.3035

500 0 FSDPT (Xiang et al.45) 3.0215 5.4850 8.3032
HSDPT (Thai et al.42) 3.0215 5.4850 8.3032

100 Present 3.02352 5.49244 8.31606
3D-DQM (Dehghan and Baradaran43) 2.6578 5.6265 8.6152
3D-Ritz (Zhou et al.44) 2.6551 5.5717 8.5406

100 10 FSDPT (Xiang et al.45) 2.6551 5.5718 8.5405
HSDPT (Thai et al.42) 2.6551 5.5718 8.5405
Present 2.65750 5.57905 8.55285
3D-DQM (Dehghan and Baradaran43) 3.3420 5.9800 8.8500
3D-Ritz (Zhou et al.44) 3.3398 5.9285 8.7775

500 10 FSDPT (Xiang et al.45) 3.3400 5.9287 8.7775
HSDPT (Thai et al.42) 3.3400 5.9287 8.7775
Present 3.34178 5.93541 8.78935

Table 2 is devoted to the fundamental frequencies ω11 =
ω11h

√
ρ/E2 versus E1/E2 of a symmetric [0◦/90◦/90◦/0◦]

square plate (a/h = 5). The outcomes achieved by utilizing
the present quasi-3D theory are compared with their counter-
parts in the literature (Noor,27 Putcha and Reddy,28 Khdeir,29

Khdeir and Librescu,30 Phan and Reddy31). Once again, an ex-
cellent agreement is retained between the presently achieved
frequencies and their counterparts presented in the literature
for a four-layer symmetric cross-ply square plate.

The non-dimensional fundamental frequencies ω̂11 =
(ω11b

2/h)
√
ρ/E2 of a [0◦/90◦/90◦/0◦] square plates (Mate-

rial I, E1 = 40E2) are considered in Table 3. The dependence
of ω̂11 upon the side-to-thickness ratio a/h is discussed. The

present results are compared with those obtained in (Wu and
Chen32) due to local higher-order theory and in (Senthilnarthan
et al.;33 Reddy and Phan34) due to global first/higher-order the-
ories. The classical plate theory (CPT) overemphasizes the
frequencies while the first-order shear deformation plate the-
ory (FSDPT) underemphasizes them when compared to other
higher-order theories. The present global quasi-3D frequencies
are favorably compared with those occurring in the literature
for different side-to-thickness ratios.

The non-dimensional fundamental frequencies ω̂11 =
(ω11b

2/h)
√
ρ/E2 of skew-symmetric [0◦/90◦/ . . .] square

plates (a/h = 5, Material I) are considered in Table 4. The
dependence of the fundamental frequency upon the ratio of
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Table 9. Comparisons of the first three non-dimensional natural frequencies ω̃mn = ωmnb2

π2

√
ρh/D of thick square plates (ks = 10).

h/b kw Source Frequencies
ω11 ω12 ω13

Dehghan and Baradaran43 2.2275 4.4042 7.2649
0 Matsunaga47 2.2334 4.4056 7.2436

Present 2.23983 4.42643 7.29584
Dehghan and Baradaran43 2.2481 4.3967 7.2649

10 Matsunaga47 2.2539 4.4150 7.2488
Present 2.26058 4.43616 7.30134
Dehghan and Baradaran43 2.4247 4.4973 7.3161

102 Matsunaga47 2.4300 4.4986 7.2948

0.2 Present 2.43923 4.52264 7.35059
Dehghan and Baradaran43 3.7080 5.2276 7.7544

103 Matsunaga47 3.7112 5.2285 7.7191
Present 3.77409 5.30046 7.81933
Dehghan and Baradaran43 4.6065 7.2759 10.0146

104 Matsunaga47 4.6127 7.2934 10.033
Present 4.61275 7.29339 10.31442
Dehghan and Baradaran43 4.6065 7.2760 10.3053

105 Matsunaga47 4.6127 7.2934 10.314
Present 4.61275 7.29339 10.31442
Dehghan and Baradaran43 1.5913 2.6565 3.8241

0 Matsunaga47 1.6462 2.6851 3.8268
Present 1.74351 2.91736 4.12577
Dehghan and Baradaran43 1.6055 2.6602 3.8249

10 Matsunaga47 1.6577 2.6879 3.8274
Present 1.76180 2.91736 4.12577
Dehghan and Baradaran43 1.7086 2.6888 3.8316

102 Matsunaga47 1.7437 2.7096 3.8321

0.5 Present 1.84510 2.91736 4.12577
Dehghan and Baradaran43 1.8426 2.8000 3.8638

103 Matsunaga47 1.8451 2.8033 3.8578
Present 1.84510 2.91736 4.12577
Dehghan and Baradaran43 1.8426 2.8724 3.8874

104 Matsunaga47 1.8451 2.8739 3.8866
Present 1.84510 2.91736 4.12577
Dehghan and Baradaran43 1.8426 2.8846 3.8902

105 Matsunaga47 1.8451 2.8857 3.8927
Present 1.84510 2.91736 4.12577

the elastic modulus to the shear modulus E1/E2 is presented.
The present outcomes are compared with those obtained in
(Noor27) due to 3D elasticity and others due to local and global
first/higher-order theories (Wu and Chen32 1994, Putcha and
Reddy,28 Reddy and Khdeir35). It is clear that the frequencies
due to the local higher-order theory (Wu and Chen32 1994)
differ from those of 3D elasticity (Noor27) by 0.4% for the
range of E1/E2 = 3 − 40. However, the frequencies due to
the global higher-order theories (Putcha and Reddy;28 Reddy
and Khdeir35) differ from those of 3D elasticity (Noor27) by
0.6% for E1/E2 = 3 and by 6% for E1/E2 = 40. It means
that the accuracy of the global higher-order theories (Putcha
and Reddy;28 Reddy and Khdeir35) becomes poor for highly
anisotropic laminates. However, the present global quasi-3D
frequencies are favorably compared with those due to 3D elas-
ticity (Noor27) and also are more accurate than those due to
other global higher-order theories (Putcha and Reddy;28 Reddy
and Khdeir35).

Table 5 introduces the comparison of the impact of the num-
ber of layers and the degree of orthotropy of individual layers
on the fundamental frequency ω11 = ω11h

√
ρ/E2 of sym-

metric and skew-symmetric cross-ply laminated plates made of
Material II. The degree of orthotropy varied between 3 and 40,
and the number of layers varied between 2 and 10. A compari-
son is created with the 3D solutions reported in Noor and Bur-
ton,36 FEM solutions by Kant and Kommineni,37 and Navier
solutions by Matsunaga.38 The agreement is generally good.

Interestingly, the current frequencies are the most, proposing
better accuracy.

Now, to validate the vibration of an isotropic square plate
lying on elastic foundations (a/h = 20, kw = a4kw/D,
ks = a2ks/D) we present a comparative study of the funda-
mental frequencies ω̌11 = ω11a

2
√
ρh/D with the correspond-

ing ones of Lam et al.39 and Hasani Baferani and Saidi40 in
Table 6. Different values of the elastic foundation parameters
are discussed. It is shown that a good agreement between the
frequencies is noted. So, the present formulations are reliable
for predicting the vibration frequencies of the plate lying on an
elastic foundation.

To validate for the thick isotropic plates on an elastic foun-
dation, the nondimensional fundamental frequencies ω̌11 =
ω11a

2
√
ρh/D are compared in Table 7 for thick (a/h = 5),

moderately-thick (a/h = 10), and thin (a/h = 103) square
plates with various values of foundation parameters (kw, ks).
The calculated nondimensional fundamental frequencies ω11

are compared with those reported by Akhavan et al.41 based
on Mindlin’s FSDPT and those reported by Thai et al.42 based
on a simple HSDPT. From this table, it is observed that the
frequencies of the current theory are in close agreement with
those in the literature.

To verify the higher (m,n) modes, the first three non-
dimensional frequencies ω̃mn = ωmnb

2

π2

√
ρh/D are com-

pared in Table 8 for moderately thick (a/h = 10) and thin
(a/h = 100) square plates with various values of foundation
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Figure 2. The 3D fundamental frequencies ω11 of (0◦/90◦/ . . .) symmetric square plates vs. Winkler’s κw , and Pasternak’s κs parameters (a/h = 5).

Figure 3. The 3D fundamental frequencies ω11 of (0◦/90◦/0◦/ . . .) symmetric rectangular plates vs. Winkler’s κw , and Pasternak’s κs parameters (a/h = 5,
a/b = 2).

parameters kw and ks. The present frequencies are compared
with the 3D elasticity solutions of Dehghan and Baradaran43

based on the differential quadrature method and Zhou et al.44

employing the Ritz method, solutions of Xiang et al.45 using
FSDT as well as a simple HSDPT solution of Thai et al.42 The
results of CPT are also presented by Leissa.46 The frequencies
due to CPT may be suitable for thin plates. It is noticed that
the present outcomes are agreeable with other solutions. The
frequencies increase with the increase in the mode numbers
and the foundation parameters. However, the frequencies de-
crease as the side-to-thickness ratio increases. The numerical
results of the first three non-dimensional natural frequencies
ω̃mn = ωmnb

2

π2

√
ρh/D for thick isotropic square plates lay-

ing on Pasternak foundations (ks = 10) are listed in Table 9.
The frequencies have been compared with those of Dehghan
and Baradaran43 based on the differential quadrature method
and Matsunaga47 based on the Ritz method. Two values of the
thickness ratio h/b and different values of the Winkler foun-
dation parameter kw are considered. The results in this table
illustrate the notable accuracy of the proposed method. Once
again, the frequencies increase with the increase in the mode
numbers, the thickness ratio h/b, and the Winkler foundation
parameter. However, the frequencies decrease as the thickness
ratio increases.

In the following, we will present some illustrative figures
to demonstrate the effect of different parameters of the nat-
ural frequencies ω11 = ω11h

√
ρ/E2. The laminated plates

in all figures are made of Material I. Figures 2 and 3 display
the 3D fundamental frequencies ω11 of (0◦/90◦/ . . .) symmet-
ric square and rectangular (a/b = 2) plates vs Winkler’s κw,

and Pasternak’s κs parameters (a/h = 5). The frequencies
increase as the number of layers increases. Also, the frequen-
cies rapidly increase with the increase in Winkler’s κw founda-
tion parameter. The frequencies for the rectangular plates are
greater than the corresponding ones for the square plates.

Figures 4 and 5 display the 3D natural frequencies ω22 of
(0◦/90◦/ . . .) symmetric square and rectangular (a/b = 2)
plates vs Winkler’s κw, and Pasternak’s κs parameters (a/h =
5). The frequencies increase as the number of layers increases.
Also, the frequencies for square plates rapidly increase with
the increase in the foundation parameters (Fig. 4). While Fig. 5
shows that the frequencies for rectangular plates rapidly in-
crease with the increase in Pasternak’s κs parameter. Once
again, the frequencies for the rectangular plates are greater
than the corresponding ones for the square plates.

Figures 6 and 7 display the 3D fundamental ω11 and nat-
ural ω12, ω22 frequencies of a four-layer (0◦/90◦/90◦/0◦)
square and rectangular (a/b = 2) sandwich plates vs. Win-
kler’s κw, and Pasternak’s κs parameters (a/h = 5). The fre-
quencies increase as the mode number increases. For square
sandwich plates (Fig. 6), the frequencies ω11 and ω12 rapidly
increase with the increase in Winkler’s κw foundation parame-
ter. While frequencies ω22 rapidly increase with the increase in
both foundation parameters. For rectangular sandwich plates
(Fig. 7), the fundamental frequencies ω11 rapidly increase with
the increase in Winkler’s κw foundation parameter. While the
natural frequencies and ω12 and ω22 rapidly increase with the
increase in Pasternak’s κs foundation parameter.

Figure 8 shows the fundamental frequencies of
(0◦/90◦/ . . .) symmetric rectangular plates resting on an
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Figure 4. The 3D natural frequencies ω22 of (0◦/90◦/0◦/ . . .) symmetric square plates vs. Winkler’s κw , and Pasternak’s κs parameters (a/h = 5).

Figure 5. The 3D natural frequencies ω22 of (0◦/90◦/0◦/ . . .) symmetric rectangular plates vs. Winkler’s κw , and Pasternak’s κs parameters (a/h = 5,
a/b = 2).

Figure 6. The 3D natural frequencies of a (0◦/90◦/90◦/0◦) symmetric square plate vs. Winkler’s κw , and Pasternak’s κs parameters (a/h = 5).

Figure 7. The 3D natural frequencies of a (0◦/90◦/90◦/0◦) symmetric rectangular plate vs. Winkler’s κw , and Pasternak’s κs parameters (a/h = 5,
a/b = 2).
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Figure 8. The fundamental frequencies of (0◦/90◦/ . . .) symmetric rectangular plates vs. side-to-thickness ratio (κs = 10, κw = 103).

Figure 9. The natural frequencies of (0◦/90◦/ . . .) symmetric rectangular plates vs. aspect ratio (κs = 10, κw = 103, a/h = 5).

Figure 10. The natural frequencies of (0◦/90◦/ . . .) symmetric rectangular plates vs. aspect ratio (κs = 10, κw = 103, a/h = 10).

Figure 11. The natural frequencies of (0◦/90◦/ . . .) symmetric rectangular plates vs. aspect ratio (κs = 10, κw = 103, a/h = 20).
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Figure 12. The 3D natural frequencies of a (0◦/90◦/90◦/0◦) symmetric rectangular plate vs. Winkler’s parameter κw and side-to-thickness ratio a/h
(κs = 10, a/b = 0.5).

Figure 13. The 3D natural frequencies of a (0◦/90◦/90◦/0◦) symmetric rectangular plate vs. Pasternak’s parameter κs and side-to-thickness ratio a/h
(κw = 10, a/b = 0.5).

elastic foundation versus the side-to-thickness ratio a/h
(κs = 10, κw = 103). The fundamental frequencies decrease
as a/h increases. Also, the frequencies increase as the number
of layers decreases when b = 2a. However, the frequencies
increase as the number of layers increases when b = a and
a = 2b.

Figures 9–11 show the fundamental and natural frequencies
of (0◦/90◦/ . . .) symmetric rectangular plates resting on an
elastic foundation versus the aspect ratio a/b for a/h = 5 in
Fig. 9, for a/h = 10 in Fig. 10, and a/h = 20 in Fig. 11.
The frequencies increase as the aspect ratio a/b, the number of
layers, and the mode number increase. The frequencies for
a/h = 5 in Fig. 9 are twice or more than the correspond-
ing ones for a/h = 10 in Fig. 10 while the frequencies for
a/h = 10 in Fig. 10 are twice or more than the corresponding
ones for a/h = 20 in Fig. 11.

Figure 12 shows the 3D fundamental and natural frequen-
cies of a four-layer (0◦/90◦/90◦/0◦) symmetric rectangular
sandwich plates versus Winkler’s parameter κw and side-to-
thickness ratio a/h (κs = 10, a/b = 0.5). For a high value
of a/h = 20, the frequencies are insensitive to the varia-
tion of Winkler’s parameter κw. However, for a small value
of a/h = 2, the frequencies are slowly increasing as κw in-
creases. Also, the frequencies increase as a/h decreases and
this is irrespective of the value of Winkler’s parameter κw.

Figure 13 shows the 3D fundamental and natural frequen-
cies of a four-layer (0◦/90◦/90◦/0◦) symmetric rectangular
sandwich plates versus Pasternak’s parameter κs and side-to-
thickness ratio a/h (κw = 10, a/b = 0.5). For a high value

a/h = 20, the frequencies are insensitive to the variation of
Pasternak’s parameter κs. However, for a small value a/h = 2,
the frequencies are slowly increasing as κs increases. Also, the
frequencies increase as a/h decreases and this is irrespective
of the value of Pasternak’s parameter κs.

Figure 14 shows the 3D fundamental and natural frequen-
cies of a four-layer (0◦/90◦/90◦/0◦) symmetric rectangular
sandwich plates versus Winkler’s parameter κw and aspect ra-
tio a/b (κs = 10, a/h = 5). For each value of the aspect
ratio a/b, the frequencies are slightly increasing as Winkler’s
parameter κw increases. For higher values of the aspect ra-
tio, especially when a/b = 5, the natural frequencies ω12 and
ω22 are insensitive to the variation of Winkler’s parameter κw.
However, all frequencies increase as a/b increases and this is
irrespective of the value of Winkler’s parameter κw.

Figure 15 shows the 3D fundamental and natural frequencies
of a four-layer (0◦/90◦/90◦/0◦) symmetric rectangular sand-
wich plates versus Pasternak’s parameter κs and aspect ratio
a/b (κw = 10, a/h = 5). It is interesting to note that all fre-
quencies seen may be independent of the value of the aspect
ratio a/b. However, for each value of the aspect ratio a/b, the
frequencies are rapidly increasing as Pasternak’s parameter κs
increases. The values of the natural frequencies ω22 maybe
twice or more the values of the fundamental frequencies ω11.

Finally, Figs. 16–18 show the 3D fundamental and natural
frequencies of (0◦/90◦/ . . .) anti-symmetric rectangular plates
versus Winkler’s κw, and Pasternak’s κs parameters (a/h = 5,
a/b = 0.5). All frequencies increase with the increase in
the number of layers. The frequencies are slightly increas-
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Figure 14. The 3D natural frequencies of a (0◦/90◦/90◦/0◦) symmetric rectangular plate vs. Winkler’s parameter κw and aspect ratio a/b (κs = 10,
a/h = 5).

Figure 15. The 3D natural frequencies of a (0◦/90◦/90◦/0◦) symmetric rectangular plate vs. Pasternak’s parameter κs and aspect ratio a/b (κw = 10,
a/h = 5).

ing as Pasternak’s κs parameter increases and rapidly increase
as Winkler’s κw parameter increases. The maximum frequen-
cies occur at higher values of Winkler’s κw, and Pasternak’s κs
parameters. Also, the frequencies increase as the mode num-
ber increases. Irrespective of the number of layers, the natural
frequencies ω12 are greater than the corresponding fundamen-
tal frequencies ω11. Also, the natural frequencies ω22 maybe
twice the values of the fundamental frequencies ω11.

5. CONCLUSIONS

This paper proposed a quasi-3D refined plate theory for the
vibrational frequencies of cross-ply laminated thick plates ly-
ing on elastic foundations. The accuracy and the reliability of
the proposed analytical solution were evaluated and qualita-
tively verified. The findings reported in this study are summa-
rized as follows:

• The theory accounts for the sinusoidal variation of trans-
verse shear stresses and satisfies the free stress conditions
on the upper and lower faces of the plate without utilizing
any shear correction parameter;

• The accuracy of this theory is discussed across many ex-
amples for the vibration analyses of the studied plates
with different values of thickness and aspect ratios as well
as the foundation parameters;

• Different fundamental and natural frequencies predicted
due to this theory are favorably compared with those that
appeared in the literature;

• Most outcomes are tabulated and some new results are
illustrated graphically for a wide range of foundation pa-
rameters, thickness, and aspect ratios; and,

• The illustrated frequencies may be used for future com-
parisons with other plate models.
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