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Near-field acoustical holography is a powerful tool for reconstructing the three-dimensional acoustic field radiated
from a vibrating structure located in free space, but it is not applicable when the source is in a half space bounded
by a reflecting boundary. This paper develops a method based on half-space spherical wave function expansion
for reconstructing the acoustic field radiated directly from a source located near a pressure-release boundary. First,
the series of half-space spherical wave basis functions satisfying the pressure-release boundary condition is for-
mulated. Then the acoustic field in a half space is modeled using an expansion in this basis. The expansion
coefficients are determined by solving an overdetermined linear system of equations, obtained by matching this
expansion to the measured half-space acoustic pressures. The pressures radiated directly from the source can
finally be reconstructed using the free-space spherical wave function expansion with the obtained expansion coef-
ficients. Numerical simulation examples of a vibrating plate located in water near a pressure-release boundary are
demonstrated to validate the proposed method. The effects of various parameters, such as the acoustic frequency,
the distance between the source and boundary, and the orientation of the source surface, on the reconstruction
accuracy are examined.

1. INTRODUCTION

The level of acoustic pressure radiated from underwater ve-
hicles, such as submarines, is an important criterion for eval-
uating their performance. To three-dimensionally visualize
the acoustic quantities generated by a vehicle using near-field
acoustical holography (NAH),1 the first step is to accurately
measure the acoustic quantities with an array of sensors. The
ideal environment for the measurements is free space, which is
not always available. In many cases, the measurements must
be implemented in an enclosed space or a semi-closed space
bounded by reflecting surfaces. Consequently, the measured
quantities include contributions from both the direct radiation
from the source and the boundary reflection. These data do
not immediately provide correct information about the source
radiation. Nor can they be used directly as inputs to the NAH
algorithms,2–4 because all the methods for NAH implementa-
tion are proposed based on the assumption that the sensor array
is placed in a source-free region.1

To realize the visualization of direct radiation from a source
in the presence of a reflecting boundary, methods for half-
space acoustic field reconstruction based on different NAH
implementations are proposed. By replacing the free-space
Green’s function with a half-space Green’s function in the for-

mulation of the equivalent source method (ESM), the recon-
struction of the acoustic quantities on the source surface in a
half space bounded by an impedance plane is realized.5–7 Us-
ing a similar replacement of the Green’s function, the acoustic
quantities generated by a structure located near a rigid plane
are reconstructed using the inverse boundary element method.8

The acoustic field radiated directly from a planar source fac-
ing a parallel impedance plane is reconstructed using Fourier
acoustics,9 and the half-space acoustic pressure is modeled as
the superposition of a series of plane waves and the reflection
due to each plane-wave component. In addition to the above
reconstruction of the stationary acoustic field, the reconstruc-
tion of the transient field above an impedance plane is also
studied.10 A transient half-space Green’s function is utilized in
the ESM to model the acoustic field above the plane.

Recently, a series of half-space spherical wave basis func-
tions is formulated and utilized to replace the free-space spher-
ical wave basis functions in the Helmholtz equation least-
squares (HELS) method.11–13 The direct radiation from a
source located near an impedance boundary is then recon-
structed. In this paper, we consider the problem of reconstruct-
ing the direct radiation from a vibrating structure located near
a pressure-release boundary.5, 14 The method proposed here is
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Figure 1. Geometry of a multipole source and a field point.

also based on the expansion in half-space spherical wave func-
tions.

The pressure-release boundary, also known as the Dirich-
let boundary, is commonly encountered in underwater acous-
tics.5 For example, in a semi-enclosed space for measure-
ment of acoustic radiation from underwater vehicles, the up-
per water-air interface can be viewed as a natural pressure-
release boundary.14 If the vibrating surface of the vehicle is
close to this interface, the measured quantities will inevitably
be polluted by the interface reflection. Hence, it is neces-
sary to develop a method applicable to the half-space prob-
lem with a pressure-release boundary, though little literature
focuses on this problem so far. Moreover, the acoustic field
near a pressure-release boundary shows totally different physi-
cal behaviors from that near an impedance boundary or a rigid
boundary. Consequently, different half-space spherical wave
functions need to be formulated.

2. MATHEMATICAL MODELING

2.1. Formulation of Half-Space Spherical
Wave Functions

HELS-based NAH employs the superposition of free-space
spherical wave basis functions to model the acoustic field gen-
erated by a vibrating structure located in free space.11 Accord-
ingly, to implement an acoustic field reconstruction in a half
space with a pressure-release boundary, the half-space spher-
ical wave basis functions needed to be formulated.12 We first
considered the solution to the acoustic field generated by a
monopole source located in this half space.

As shown in Fig. 1, the monopole source and its mir-
ror image about the boundary were at O1 and O2, respec-
tively. A global coordinate system with the origin O placed
on the boundary was established, such that the global coordi-
nates of O1 and O2 were given by xO1 = (0, 0, −hs) and
xO2

= (0, 0, hs), respectively. The half-space acoustic pres-
sure p(0)half (x;ω) at a field point x satisfied the inhomogeneous
Helmholtz equation:12

∇2p
(0)
half (x;ω) + k2p

(0)
half (x;ω) = −S0δ (x− xO1

) ; (1)

where ∇2 was the Laplace operator; k was the acoustic
wavenumber; ω = 2πf was the angular frequency in rad/s; f
was the frequency in Hz; a time-harmonic function of the form
e−iωt was assumed with i =

√
−1; δ (x− xO1

) was the Dirac

delta function. On the boundary z = 0, the acoustic pressure
p
(0)
half (x;ω) satisfies the pressure-release boundary condition,14

p
(0)
half (x, y, 0;ω) = 0. (2)

The governing equation (1) along with the boundary condi-
tion Eq. (2) can be solved using the method of images,5 as

p
(0)
half (x;ω) =

S0

4π

(
eikr1

r1
− eikr2

r2

)
; (3)

where r1 and r2 were the distances from the field point x to the
monopole location xO1 and its mirror image xO2 . The minus
sign between the two terms was used to satisfy the pressure-
release boundary condition.

From Eq. (3), it was found that the incident spherical wave
due to a monopole was reflected by the pressure-release bound-
ary with a constant reflection coefficient −1. Since each
term of the free-space spherical wave functions represented the
acoustic radiation from a multipole or a set of multipoles,1, 5, 12

which was constructed from distributions of monopoles, one
can formulate the half-space spherical wave functions as

ψj half (x;ω) = ψj (x,xO1 ;ω) + (−1) · ψj (x,xO2 ;ω) ; (4)

where ψj (x,xO1
;ω) and ψj (x,xO2

;ω) were the jth term of
the free-space spherical wave functions,11, 12 representing the
acoustic radiation from a multipole or a set of multipoles lo-
cated at xO1 , and the corresponding image sources located at
xO2

, respectively. The free-space spherical wave functions ψj

were solutions to the Helmholtz equation, expressible in spher-
ical coordinates as11

ψj (x;ω) ≡ ψnl (r, θ, ϕ;ω) = h(1)n (kr)Y l
n (θ, ϕ) ; (5)

where h(1)n (kr) were the spherical Hankel functions of the first
kind, and Y l

n (θ, ϕ) were the spherical harmonics. The indices
n, l and j in Eq. (5) were related by j = n2 + n + l + 1,
with n ranging from 0 to N and l from −n to n. As shown in
Fig. 1, two local coordinate systems, with the origins O1 and
O2, are established by translations of the global coordinate sys-
tem. For a field point in the half space, the local coordinates
x1 ≡ (r1, θ1, ϕ1) with origin O1 and x2 ≡ (r2, θ2, ϕ2) with
origin O2 were related to global coordinates x through the fol-
lowing relationships:

x1= x+hsez, x2= x−hsez; (6)

where ez was the unit vector in the z direction. The half-space
spherical wave functions (Eq. (4)) satisfy the Helmholtz equa-
tion, along with the pressure-release boundary condition. On
the right side of Eq. (4), for a constant index j, the first and sec-
ond terms represented a component contributing to the direct
radiation from the source and the boundary reflection, respec-
tively.

2.2. Expansion in Half-Space Spherical
Wave Functions

As shown in Fig. 2, when the vibrating structure is located
near an infinite plane with a pressure-release boundary, the
half-space acoustic pressure phalf (x;ω) at a field point x can
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Figure 2. Schematic of the half-space acoustic field generated by a vibrating
structure located near a pressure-release boundary.

be expressed using the superposition of half-space spherical
wave functions as

phalf (x;ω) ≈
J∑

j=1

cj (ω)ψj half (x;ω); (7)

where ψj half (x;ω) were the half-space spherical wave func-
tions (see Eq. (4)); cj (ω) were the coefficients of the expan-
sion; j was the index of the expansion term, ranging from 1 to
J ; and J was the number of terms retained in the expansion.

If an array of M measurement points was utilized as the
hologram surface, then we have

{pmeas
half (xm;ω)}M×1 = [ψhalf (xm;ω)]M×J {c (ω)}J×1 ; (8)

where {pmeas
half (xm;ω)}M×1 was a column vector of the mea-

sured half-space acoustic pressures; the vectors xm, m =
1 to M , denoted the locations of measurement points;
[ψhalf (xm;ω)]M×J was a matrix of the half-space spherical
wave functions, calculated at xm; and {c (ω)}J×1 was a col-
umn vector of the coefficients of the expansion functions. The
number of measurement points was in general larger than the
number of expansion terms, so the expansion coefficients can
be determined by taking the pseudo-inverse of the expansion
matrix,

{c (ω)}J×1 = [ψhalf (xm;ω)]
†
J×M

{pmeas
half (xm;ω)}M×1 ; (9)

where the superscript † denoted the pseudo-inverse of a matrix,
given by

[ψhalf (xm;ω)]†J×M =(
[ψhalf (xm;ω)]

H
J×M [ψhalf (xm;ω)]M×J

)−1

× [ψhalf (xm;ω)]
H
J×M ; (10)

where the superscript H denoted the conjugate transpose of
a matrix. Once the coefficients {c (ω)}J×1 in Eq. (8) were
determined, the half-space acoustic pressures and the acoustic
pressures radiated directly from the source at any points xs,
including those on the source surface, can be reconstructed,
respectively, by

{prec
half (xs;ω)}S×1 = [ψhalf (xs;ω)]S×J {c (ω)}J×1 ; (11)

and

{prec (xs;ω)}S×1 = [ψ (xs, xO1 ;ω)]S×J {c (ω)}J×1 ; (12)

where {prec
half (xs;ω)}S×1 was a column vector of the re-

constructed half-space acoustic pressures; the vectors xs,
s = 1 to S, denote the locations of reconstruction points;
[ψhalf (xs;ω)]S×J was a matrix of the half-space spherical
wave functions, calculated at xs; {prec (xs;ω)}S×1 was a col-
umn vector of the reconstructed acoustic pressures, radiated
directly from the source; and [ψ (xs, xO1

;ω)]S×J was a ma-
trix of the free-space spherical wave functions, calculated at
xs. Equation (12) was the main result of this paper.

The procedures for the determination of the number of ex-
pansion terms were as follows. The half-space acoustic pres-
sures at a subset of measurement points were used to determine
the expansion coefficients. Then the acoustic pressures at the
other subset of measurement points were reconstructed using
Eq. (11). The reconstruction was repeated for different values
of J . The minimum least-squares error between the recon-
structed pressures and the measured pressures was utilized as
a criterion to obtain the optimal value Jopt. Mathematically,
this process was expressed as∥∥∥{prec

half (xm′ ;ω)}⌊M
2 ⌋×1 − {pmeas

half (xm′ ;ω)}⌊M
2 ⌋×1

∥∥∥
2∥∥∥{pmeas

half (xm′ ;ω)}⌊M
2 ⌋×1

∥∥∥
2

; (13)

where ∥·∥2 denoted the 2-norm; the vectors xm′ , m
′

=
1, 2, . . . ,

⌊
M
2

⌋
, denoted the locations of the subset of measure-

ment points, at which the acoustic pressures are reconstructed;
and ⌊·⌋denotes that the fraction is rounded down.

In addition, a modified Tikhonov regularization, imple-
mented through singular value decomposition (SVD), was
used in this study.2, 8 The regularization parameter is deter-
mined by the generalized cross-validation (GCV).2, 8

3. NUMERICAL SIMULATIONS

Numerical simulation examples were demonstrated to val-
idate the proposed method and examine the effects of vari-
ous parameters on the reconstruction accuracy. A baffled plate
was chosen as the source structure. In the simulations, a sur-
face velocity distribution of the vibrating plate was prescribed.
The acoustic pressures radiated from the source located in free
space were used as benchmark values, which were calculated
using Rayleigh’s integral.1 The acoustic pressures (simulated
measurements) found on the hologram surface in the half space
were used as input data to the proposed reconstruction algo-
rithm. This half-space acoustic pressure was also calculated by
using Rayleigh’s integral, once the surface velocity distribution
of the vibrating plate is given. The premise was that the free-
space Green’s function in Rayleigh’s integral was replaced by
the half-space Green’s function satisfying the pressure-release
boundary condition.1, 5, 15 The reconstructed acoustic pressures
radiated directly from the source, obtained from Eq. (12), were
compared with the benchmark values to validate the proposed
method. The assumed fluid density and speed of sound were
ρ0 = 1000 kg/m3 and c = 1500 m/s, respectively.

To quantify the reconstruction accuracy, normalized relative
reconstruction percentage error on the reconstruction surface

356 International Journal of Acoustics and Vibration, Vol. 27, No. 4, 2022



Z. Chen, et al.: RECONSTRUCTION OF THE ACOUSTIC FIELD RADIATED DIRECTLY FROM A VIBRATING STRUCTURE LOCATED NEAR. . .

Figure 3. Schematic of acoustic pressure measurements for a baffled plate
located near a pressure-release boundary: (a) the geometry of the source and
hydrophone array; (b) the indices of the hydrophones mounted on the array.

was defined as

ε =

∥∥∥{prec (xs;ω)}S×1 −
{
pben (xs;ω)

}
S×1

∥∥∥
2∥∥{pben (xs;ω)}S×1

∥∥
2

× 100%;

(14)

where
{
pben (xs;ω)

}
S×1

is a column vector of the benchmark
acoustic pressures. The sound power ratio of the direct radi-
ation relative to the boundary reflection at the measurement
points is defined as12

η = 20

∥∥∥{pben (xm;ω)
}
M×1

∥∥∥
2∥∥{prefl (xm;ω)}M×1

∥∥
2

(dB) ; (15)

where
{
prefl (xm;ω)

}
M×1

was a column vector of the
boundary-reflected acoustic pressures. The ratio η was defined
to measure the relative proportion of the direct radiation and
boundary reflection in the half-space acoustic pressures mea-
sured by the array. It was a critical parameter and will be dis-
cussed in the analyses of reconstruction accuracy.

3.1. Validation of the Proposed Method
Figure 3(a) illustrates the setup of the baffled plate, the hy-

drophone array, and the pressure-release boundary. Various pa-
rameters involved in the numerical simulations were chosen as
follows. The square plate, with a length of one side L = 0.4 m,
was located on the y-z plane. The distance from the geometri-
cal center of the plate surface to the pressure-release boundary
was hs = 0.4 m. The plate was dilating like a piston, with
an amplitude of surface velocity V0 = 1.0 × 10−3 m/s. Fol-
lowing the guidelines for implementing the HELS-based NAH
method,16 the origin O1 was set by moving the geometrical

center of the plate surface a distance d0 = 0.9

√(
L
2

)2
+
(
L
2

)2
in the negative x direction.

The half-space acoustic pressures were measured in simula-
tion by a planar hydrophone array parallel to the plate surface,
at a standoff distance ds = 0.05 m from the surface. The dis-
tance from the geometrical center of the array to the boundary
was also hs. The aperture of the array is 0.52 m × 0.52 m, on
which 81 measurement points were regularly distributed with
spacing of 0.065 m. As shown in Fig. 3(b), to assist our dis-
cussion of the results, an index was assigned to each of the 81
measurement points, where the point located at (0.05 m, 0.26
m, -0.14 m) was marked as Sensor 1, and the point located at
(0.05 m, -0.26 m, -0.66 m) was Sensor 81. White noise with a
signal-to-noise ratio of 30 dB is added to the measured acoustic
pressures.

Figure 4. Comparison of the half-space acoustic pressure distribution, the
reconstructed acoustic pressure distribution using the proposed method, and
the benchmark distribution, for f = 1500 Hz: (a) amplitude; (b) phase.

Figure 4 shows the acoustic pressure distributions at the
measurement points, including the half-space acoustic pres-
sure distribution, the reconstructed value distribution obtained
using the proposed method, and the benchmark distribution ra-
diated directly from the plate, for a frequency f = 1500 Hz.
From the amplitude distributions shown in Fig. 4(a), it was
found that the half-space acoustic pressure distribution was
much different from the benchmark distribution. The half-
space amplitudes were even smaller than the benchmark am-
plitudes at some points. As shown in Fig. 4(b), the phase
distribution of half-space acoustic pressures also differs from
that of the benchmark values. The differences indicated that
the boundary reflection has a great influence on the measured
acoustic pressures on the hologram surface. Thus, the mea-
sured values cannot reflect the real acoustic radiation from the
source.

After using the proposed method, the reconstructed ampli-
tude and phase distributions agreed well with the correspond-
ing benchmark distributions, as shown in Figs. 4(a) and 4(b).
In this simulation example, the reconstruction error ε was
3.81%. The results demonstrate that the proposed method suc-
cessfully eliminates the effect of the pressure-release boundary
reflection, and reconstructs the acoustic pressures radiated di-
rectly from the plate with high accuracy.

3.2. Effect of the Vertical Distance Between
the Source and Boundary

The accuracy in reconstruction when the plate was vibrating
at different frequencies and located at different vertical dis-
tances from the boundary is investigated. The frequencies of
interest were f = 100 Hz ∼ 2100 Hz. Three different vertical
distances, hs = L, 1.2L, and 1.4L, were considered. At these
distances, the curves of reconstruction error versus frequency
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show different trends, so that the influence of vertical distance
on reconstruction accuracy can be revealed. Note that the geo-
metrical centers of the array and the plate surface were always
kept at the same vertical height hs in the simulation examples.
Other parameters remained unchanged, as presented in Section
3.1.

The reconstruction errors ε versus frequency f , calculated
at different vertical distances hs, are shown in Fig. 5(a). When
the vertical distance hs = L, the reconstruction error ε first de-
clined and then grew with the increase of frequency f . When
hs increased to 1.2L, ε also showed a decline first, and then
grows. However, the rate of decline was smaller than that ob-
tained when hs = L. When hs = 1.4L, the reconstruction er-
ror ε no longer obviously declined in the low-frequency range.
Instead, the curve of ε first showed a small rate of variation and
then grew monotonically with the increase of frequency f . In
addition, for most frequencies, the reconstruction errors εwere
reduced with the increase of vertical distance hs.

Two dominant factors affecting the reconstruction accuracy
were consistent with the phenomena shown in Fig. 5. The
first factor was the increasing frequency when the spacing be-
tween measurement points was kept fixed. As the frequency
increased, the acoustic field contained more high-wavenumber
components. The highest wavenumber component, which
could be captured by the array, was limited by the spacing
between measurement points. As a result, the reconstruction
accuracy tends to decline with the increasing frequency.

The second factor was the sound power ratio of the direct ra-
diation relative to the boundary reflection at the measurement
points, which is calculated and shown in Fig. 5(b). As the
shape of the array was made conformal to the source surface
in this simulation case, the accuracy in describing the directly
radiated field was higher than that of the boundary-reflected
field, using the half-space spherical wave function expansion
with the acquired data. Hence, a higher sound power ratio gen-
erally lead to a better reconstruction result.

For a fixed vertical distance, the increasing frequency and
the improved sound power ratio, as shown in Fig. 5(b), exerted
opposite influences on the reconstruction accuracy. When the
vertical distance hs = L, for the frequencies f = 100 Hz ∼
1300 Hz, the second factor dominated the reconstruction ac-
curacy. As a result, the reconstruction error ε shows a decline
with the increase of frequency f . When the frequency f ex-
ceeds 1300 Hz, the reconstruction accuracy is dominantly af-
fected by the first factor, resulting in the growth of error ε.

As the vertical distance hs increased, the plate moved away
from the boundary, so that the interference from the bound-
ary reflection gradually weakened. The sound power ratio η
is improved greatly . Consequently, the reconstruction errors
ε calculated at hs = 1.2L, for different frequencies f , were
smaller than those calculated at hs = L. Similarly, the er-
rors ε calculated at hs = 1.4L were smaller than those of the
former two cases, especially in the low-frequency range. In
addition, since the interference from the boundary reflection
weakened, the change of η with the increasing f has less in-
fluence on ε. Hence, the curves obtained when hs = 1.2L and
1.4L didn’t show as obvious a trend of decline as that obtained
when hs = L.

Figure 5. (a) Reconstruction errors ε and (b) sound power ratios η versus
frequency f , calculated at different vertical distances hs.

3.3. Effect of the Orientation of the Source
Surface

In the simulation examples shown above, the reconstruction
of the acoustic field radiated directly from a vibrating plate
with the vibrating surface placed normal to the boundary was
implemented. In practical applications, the angle between the
plate surface and the boundary can be arbitrary. Hence, it
was necessary to investigate how the reconstruction accuracy
changes with the orientation of the plate surface.

A two-dimensional schematic of acoustic pressure measure-
ments for a baffled plate with an arbitrary orientation of the
vibrating surface is shown in Fig. 6. The plate and the hy-
drophone array were depicted by two solid lines, respectively.
The angle between the plate surface and the boundary was
α. Various parameters involved in the numerical simulations
were chosen as follows. The length of one side of the square
plate was L = 0.4 m, with an amplitude of surface velocity
V0 = 1.0× 10−3 m/s. The plate surface was normal to the x-z
plane. The distance between the geometrical center of the plate
surface and the boundary was hs = 0.4 m. The hologram sur-
face was parallel to the plate surface with a standoff distance
ds = 0.05 m. The line defined by the geometrical centers of the
two surfaces was normal to the surfaces. The aperture of the
array was 0.52 m× 0.52 m, with 81 measurement points regu-
larly distributed. The spacing between the points was 0.065 m.
The reconstruction process was repeated when α = 0◦, 22.5◦,
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Figure 6. Two-dimensional schematic of acoustic pressure measurement for a
baffled plate with an arbitrary orientation of the vibrating surface.

45◦, 67.5◦ and 90◦. When α = 90◦, the plate was vertical.
The frequencies of interest were f = 100 Hz ∼ 2100 Hz.

Figure 7 summarizes the reconstruction errors ε and sound
power ratios η versus frequency f , calculated at different ori-
entations α of the source surface. Figure 7(a) indicates that
for the frequencies f = 100 Hz ∼ 1300 Hz, the five curves
of reconstruction error ε do not show any obvious variations
as the frequency changes. However, when the frequency f
exceeds 1300 Hz, the five curves show completely different
variation trends. For the orientations α = 0◦, 22.5◦ and 45◦,
the reconstruction error ε grows drastically with the increase
of frequency f. For α = 67.5◦, the growth of ε is much slower
than for α = 0◦, 22.5◦ and 45◦. And for α = 90◦, ε re-
mains around a low value like that obtained for the frequencies
f = 100 Hz ∼ 1300 Hz . The reasons behind these phenom-
ena are described below.

In Section 3.2, it is revealed that the reconstruction accu-
racy is affected by two dominant factors, the frequency and
the sound power ratio. For the frequencies f = 100 Hz ∼
1300 Hz, since the frequency f is low, various wavenumber
components of the acoustic field can be fully captured by the
array. Moreover, the sound power ratios η calculated at dif-
ferent orientations α show a small rate of variation with the
increasing frequency f , as shown in Fig. 7(b). Hence, the
method yields high and stable reconstruction accuracy, for the
frequencies f = 100 Hz ∼ 1300 Hz.

As the frequency f increases further, the high-wavenumber
components of the acoustic field will not be well captured by
the array with a fixed spacing of measurement points. In ad-
dition, the half-space acoustic pressure distributions become
sensitive to the change of orientation α at high frequencies.
Hence, the five curves of reconstruction error ε exhibit com-
pletely different trends for the frequencies f = 1300 Hz ∼
2100 Hz, as shown in Fig. 7(a). At these high frequencies,
the accuracy depends heavily on the sound power ratio η, as
depicted in Fig. 7(b). Specifically, the curve of reconstruction
error ε shows the smallest growth rate when α = 90◦. This
is because the sound power ratio η is the largest then among
those calculated at the five different values of α, for each fre-
quency f , as shown in Fig. 7(b). The largest growth rate of
ε occurs when α = 22.5◦, because the corresponding sound
power ratio η is very small.

The exception is the case where the orientation α = 0◦. It
is found that when the frequency f = 2100 Hz, the sound
power ratio η is the smallest among the five cases. However,
the resultant reconstruction error ε is smaller than those ob-

Figure 7. (a) Reconstruction errors ε and (b) sound power ratios η versus
frequency f , calculated at different orientations α.

tained when α = 22.5◦ and 45◦. This is because when α = 0◦,
both the hologram surface and the source surface are parallel
to the boundary. Under this condition, the hologram surface is
conformal to the source surface as well as the image source sur-
face. The field radiated directly from the source and the field
reflected from the boundary can simultaneously be described
with acceptable accuracy using the half-space spherical wave
function expansion with the acquired data. Thus, the effect of
the lowest sound power ratio is offset by the optimum config-
uration of the hologram surface.

4. CONCLUSIONS

A method based on half-space spherical wave function ex-
pansion is proposed to reconstruct the acoustic field radiated
directly from a vibrating structure located near a pressure-
release boundary. The half-space spherical wave basis func-
tions satisfying the pressure-release boundary condition are
formulated. Then, the half-space acoustic field, contributed
from both the source radiation and the boundary reflection, are
expressed using superposition of the half-space spherical wave
functions. The coefficients associated with the expansion func-
tions are determined by solving an overdetermined system of
linear equations, obtained by matching this expansion to the
half-space acoustic pressures measured on a hologram surface.
The acoustic field radiated directly from the source can finally
be reconstructed using the free-space spherical wave functions
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with the obtained expansion coefficients.
Acoustic fields generated in a water medium by a vibrat-

ing plate, located near the pressure-release boundary and in
free space, are numerically simulated to validate the proposed
method. The results show that the half-space acoustic pres-
sure distribution is completely different from the benchmark
distribution, implying that the measured acoustic pressures are
strongly polluted due to the boundary reflection. After apply-
ing the proposed method, the reconstructed acoustic pressure
distribution radiated directly from the source agrees well with
the benchmark distribution. The directly radiated acoustic field
at the measurement points is successfully reconstructed with
high accuracy.

The effects of the vertical distance between the source and
the boundary, and the orientation of the source surface, on the
accuracy in reconstruction implemented at different frequen-
cies are investigated. From the reconstruction error analyses,
two dominant factors affecting the reconstruction accuracy are
revealed. They are the acoustic frequency and the sound power
ratio of the direct radiation relative to the boundary reflection at
the measurement points. The effect of the acoustic frequency
is that the reconstruction accuracy will be limited once the fre-
quency exceeds a certain value. The effect of the sound power
ratio is that the larger the ratio, the higher the accuracy tends
to be. The change of vertical distance or the source orienta-
tion will lead to a varied sound power ratio. Parameters corre-
sponding to a larger sound power ratio tend to result in higher
reconstruction accuracy.
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