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Variable-thickness thin plate structures have been widely employed in many engineering applications, such as the
automotive industry, aviation industry and civil structures. In this paper, natural frequency and optimization design
of nonlinear variable-thickness rectangular thin plates are performed. For this purpose, theoretical solutions of di-
mensionless natural frequency of the bidirectional linear variable-thickness thin plates are conducted on the three
classical boundaries to verify the correctness of a conducted numerical model. Then the natural frequencies of
variable thickness plates with different forms including bidirectional and unidirectional nonlinear were compared.
Additionally, the difference in vibration characteristics between the thin plate of variable thickness and the corre-
sponding thin plate of equal mass are compared and analyzed, and the results show that when the middle part of
the thin plate is thick, the natural frequency increases by a greater percentage. Finally, a new bidirectional stepped
variable-thickness plate is proposed to improve the natural frequency of variable-thickness thin plates. Inspired by
the stepped idea, the square and circle division methods are employed to improve the natural frequency of variable
thickness thin plates, as the optimal design is carried out. The results show that the nonlinear variable thickness
after performing an optimal design could significantly improve the natural frequency of thin plates. The finding
provides useful insight into the structural design of variable thickness plates for free vibration.

1. INTRODUCTION

A variable-thickness thin plate structure, as one typical type
of structure, has been widely employed in many engineering
applications, such as the automotive industry, aviation indus-
try and civil structures, due to their desirable mechanical prop-
erties such as outstanding lightweight and high strength.1–4

Therefore, examining the vibrational behaviors of plates with
a wide variety gains importance. Hence, many studies have
been presented to examine the mechanical behaviors of vari-
ous kinds of plates using different analytical and numerical ap-
proaches.5–9 However, the vibration control equation of a rect-
angular plate with variable thicknesses is a fourth-order partial
differential equation (PDE) with variable coefficients, there-
fore the analytical solution of the natural frequency can only
be obtained in rare cases.10, 11

In order to understand the vibration characteristics of thin
plates with variable thickness, various numerical methods have
been conducted, such as the finite difference method, finite
element method, finite slat method, differential Quadrature
method, mesh-less method, Green function method etc.12–22

For instance, Malekzadeh and Singh verified the natural fre-
quency of the variable thickness thin plate by using the differ-
ential quadrature scheme to solve the variable-thickness thin

plates under the classical boundary.23, 24 Li et al. proposed
an analytical method that can directly obtain all the series ex-
pansions for up to the fourth-order derivatives through term-
by-term differentiation of the displacement series.25–27 Ye et
al. developed a modified Fourier solution based on the first-
order shear deformation theory for the free vibration problems
of moderately thick composite laminated plates with general
boundary restraints and internal line supports.28 Yuan and
Chen proposed a novel analytical method to reduce such gov-
erning equations for circular plates to a pair of uncoupled and
easily solvable differential equations of the Sturm-Liouville
type.29 According to these previous studies, it can be found
that the theoretical research on the problem of plate vibration
has been sufficiently studied.

Moreover, mechanical properties of the variable thickness
plate have been widely studied for its advantage of reducing
the weight of the structure as much as possible while ensuring
the strength of the structure. Xu and Zhou studied the stress
and displacement distributions of rectangular plates with con-
tinuously and functionally graded varying thicknesses that are
simply supported at four edges.30, 31 Vivio and Vullo presented
a new analytical method for the evaluation of elastic stresses
and deformations in axisymmetric plates having variable thick-
ness.32 Dozio presented a new variable kinematic Ritz method
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applied to free vibration analysis of arbitrary quadrilateral thin
and thick isotropic plates.33 Semnani et al. extended the appli-
cation of the two-dimensional differential transform method to
study the free vibration of thin plates with an arbitrarily vary-
ing thickness.34 Thai et al. presented a new inverse tangent
shear deformation theory (ITSDT) for the static, free vibration
and buckling analysis of laminated composite and sandwich
plates.35 Mashat analyzed hygrothermal bending response of
the sector-shaped annular plate with variable radial thickness
based on Kirchhoff plate theory.36 Zenkour developed the ex-
act analytical solutions for the bending behavior of thin rect-
angular plates subjected to a transverse uniformly distributed
load.37 From the above literature, it can be seen that many re-
searchers of the vibration characteristics of Variable-thickness
Rolled Blanks (VRB) have mostly concentrated on calculat-
ing the vibration characteristics of VRB under different elas-
tic boundary conditions and distribution forms using various
solution methods. However, they have not paid attention to
the differences in vibration characteristics between the VRB
of the same mass and Equal-thickness Rolled Blanks (ERB),
and there is less research on the optimization techniques for
thickness distribution of VRB.

With the rapid development of computer-aided design the-
ory and the wide application in the field of engineering design
and manufacturing, multi-objective optimization techniques
have been applied in the design of various thin plates and
have achieved many achievements. For instance, according to
a given number of linear segments and plate volume, Chou
et al. obtained the optimal thickness parameters and segment
lengths through iterative optimization procedures and the Ritz
method, and finally optimized the vibration problem of the
circular Mindlin thin plate, maximizing the fundamental fre-
quency of its free vibration.38 Belblidia studied fully integrated
design optimization (FIDO) of plate structures.39 Dong-Kwon
Kim optimized the thermal performance of a vertical plate-
fin heat sink under natural convection for the case in which
the fin thickness varied in the direction normal to the fluid
flow.40 Lee presented optimizing structural topology patterns
using regularization of Heaviside function.41 Banh proposed
a compliance multi-material topology optimization design of
continuum structures with the dependence of crack patterns.42

Banh also presented a multi-material topology optimization
approach for thin plates with variable thickness based on the
Kirchhoff plate theory.43 The above mentioned research stud-
ies have proved that the multi-objective optimization technique
is one of the effective ways to rapidly improve the vibration
characteristics of thin plates.

In this paper, taking the rectangular thin plate as a point,
the difference in natural frequency and vibration characteris-
tics between the thin plates with variable thickness and with
equal thickness was studied and compared. Then, the change
law and characteristics of the vibration thickness of thin plates
in different forms were summarized. Additionally, according
to the previous step’s law, the thickness distribution form was
optimized to obtain an optimally distributed variable thickness
thin plate structure. In the end, under the premise of a certain
mass, the first-order natural frequency of the thin plate is max-
imized, the structure is optimized, and the weight is lightened.

(a) bidirectional linear

(b) unidirectional nonlinear

(c) bidirectional nonlinear

(d) unidirectional nonlinear

Figure 1. Schematic diagram of linear and nonlinear variable thickness thin
plate.

2. THEORETICAL MODEL AND
VERIFICATION

Variable-thickness thin plates can be divided into two types
according to the changing trend of the variable-thickness
plate: bidirectional linear variable-thickness thin plates and
bidirectional nonlinear variable-thickness thin plates. Espe-
cially, when the change rate of a bidirectional linear/non-linear
variable-thickness plate in one direction is 0, it becomes a uni-
directional linear/non-linear variable-thickness plate, as shown
in Fig. 1. Therefore, in this paper, only bidirectional linear
variable thickness thin plates and bidirectional nonlinear vari-
able thickness thin plates are modeled and verified.

To validate the accuracy of the numerical models of
variable-thickness thin plates, in this section, theoretical solu-
tions and numerical solutions that were obtained by the com-
mercial software package ABAQUS were obtained on the three
classical boundaries which are free (FNo restrictions), sim-
ply supported (S U1=U2=U3=0) and fixed (C U1=U2=U3=
UR1=UR2=UR3=0).

2.1. Comparisons and Numerical Results

The comparison between theoretical predictions and FE
simulations of the dimensionless natural frequency Ω1 of the
bidirectional linear variable-thickness thin plate is shown in
Table 1. The theoretical predictions of the dimensionless natu-
ral frequency were obtained from the reference.8 The compari-
son between theoretical predictions and FE simulations for the
dimensionless natural frequency Ω2 of the bidirectional non-
linear variable-thickness thin plate is shown in Table 2.

From Table 1 and Table 2, it can be observed that the dif-
ference between theoretical predictions and FE simulations is
within 1%, which shows that the FE modeling is accurate and
feasible.
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Table 1. Comparison of dimensionless natural frequency Ω1 and theoretical
solution (Ω1 = ωa

√
ρh/D).

α -0.5 -0.5 0.5
BC β -0.5 0.5 0.5

order FEM Ref8 FEM Ref8 FEM Ref8

1 19.211 19.209 32.562 32.565 55.176 55.208
CCCF 2 38.343 38.327 65.446 65.439 111.640 111.720

3 39.249 39.238 66.483 66.480 112.570 112.660
1 10.801 10.812 18.139 18.173 30.448 30.553

SSSS 2 25.918 25.970 44.169 44.245 75.100 75.300
3 26.823 26.832 45.135 45.183 76.029 76.211
1 11.214 11.225 23.587 23.624 39.969 40.061

CCCF 2 21.635 21.651 36.595 36.652 61.876 62.042
3 28.110 28.142 61.662 61.739 104.520 104.710
1 6.117 6.124 11.137 11.148 18.856 18.887

SSSF 2 15.323 15.353 25.531 25.593 42.811 42.996
3 19.300 19.336 40.073 40.120 67.686 67.801

Table 2. Comparison of dimensionless natural frequency Ω2 and theoretical
solution (Ω2 = ωa2

√
ρh/D).

Classic boundary conditions
Order FFFF SSSS CCCC

FEM Ref9 FEM Ref9 FEM Ref9

1 21.875 21.949 34.388 34.649 61.433 61.476
2 32.730 32.763 79.582 79.916 119.270 119.390
3 38.997 39.026 82.671 82.967 122.290 122.420
4 57.686 57.913 133.510 134.230 182.610 182.960
5 58.506 58.667 155.510 155.850 208.450 208.720
6 91.458 91.635 156.130 156.470 209.810 210.080

Table 3. Thickness distribution of variable-thickness thin plates.

Types of plates Thickness change equation parameters
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3. VIBRATION CHARACTERISTICS OF
VARIABLE-THICKNESS THIN PLATES

3.1. Changing Forms of Variable Thickness
The thickness distribution has a great influence on the vi-

bration characteristics of variable-thickness thin plates; hence
it is necessary to study the vibration characteristics of variable-
thickness thin plates under classical boundary conditions. Four
different thickness distribution forms are shown in Table 3. In
order to ensure the comparability of the data, the size and ma-
terial properties of the thin plate are identical (a = b = 0.5 m,
h0 = 0.001 m, E = 210 GPa, ρ = 7800 kg/m3, µ = 0.3).

In order to conform to the thin plate vibration theory, above-
mentioned change parameters are respectively taken as: uni-
directional linearity α = 1/2/3/4/5; bidirectional linear-
ity α = β = 0.5/1/1.5/2/2.5; unidirectional nonlinearity
α = 1/2/3/4/5, m = 2/4/6/8/10; and bidirectional non-

(a) Unidirectional linear

(b) Bidirectional linear

Figure 2. Linear variable thickness plate.

(a) Unidirectional nonlinear concave

(b) Unidirectional nonlinear convex

Figure 3. Unidirectional nonlinear variable thickness thin plate.

linearity α = β = 0.5/1/1.5/2/2.5, m = n = 2/4/6/8/10.
Different variable-thickness thin plate diagrams are shown in
Fig. 2, 3, and 4. The left side is schematic diagrams of the thin
plate, and the right side is the cloud map.

The center point of unidirectional non-linear variable-
thickness thin plates that include unidirectional non-linear con-
cave variable-thickness thin plates and unidirectional nonlinear
convex variable-thickness thin plates are selected as the origin
of the coordinate system due to its symmetry, which is shown
in Fig. 3.

The mass m is controlled unchanged, and ERB of the same
size are established, meanwhile, other parameters are ensured
consistent, namely:

MV RB = MERB ; (1)

hD =
MERB

ab
; (2)
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(a) Bidirectional nonlinear concave

(b) Bidirectional nonlinear convex

Figure 4. Bidirectional nonlinear variable thickness thin plate.

where MV RB is the mass of the variable-thickness plate,
MERB is the mass of the equal-thickness plate and hD is the
equivalent thickness.

3.2. Comparison of Natural Frequencies of
Different Forms

In order to express the increase or decrease of the natural fre-
quency of the variable-thickness sheet, defining the parameter
A, which takes the difference between the natural frequency of
the variable-thickness thin plate and the equal-thickness plate
as the numerator, and takes the natural frequency of the equal-
thickness plate as the denominator:

A =
fV RB − fERB

fERB
× 100%. (3)

Figure 5 is a graph of percentage A when variable-thickness
thin plate type is unidirectional linear (α = 1/2/3/4/5). Five
kinds of unidirectional linear variable-thickness thin plates are
established separately, and their free vibration characteristics
can be obtained under simply supported and fixed supported
boundary conditions. Obtaining the corresponding equiva-
lent thickness according to Eq. (2), analyzing the vibration
characteristics of the thin plate with the same thickness un-
der the same conditions, and finally finding the change curve
between the percentage A and the changing parameter will be
employed. Similarly, other variable-thickness sheets’ chang-
ing graphs of the percentage A can be obtained, as shown in
Fig. 6, 7, 8, 9 and 10. Regarding graphs (a), (b) and (c), each
figure corresponds to the natural frequency percentage change
of the changing parameters under three classical boundary con-
ditions of free boundary conditions respectively. Graph (d) is a
changing graph of the first-order natural frequency percentage
of each type of thin plate as the change parameter increases
under three classical boundary conditions.

Based on the above analysis for the first-order natural fre-
quency, it is found that the growth rate of natural frequency
on the free boundary conditions is not obvious (only 1–2 Hz)
when the thickness of the thin plate changes linearly in one
or two directions. On the contrary, the natural frequency will

decline on a simple support and a fixed support. The percent-
age of natural frequency will decline when the thin plate thick-
ness changes its form to concave on the free boundary, and the
natural frequency will rise on the simple and fixed-supported
boundary. However, when the thin plate thickness changes its
form to convex, all things are the opposite.

From the previous research results, it can be seen that the
unidirectional and bidirectional linear variable-thickness thin
plates are basically not conducive to increasing the natural
frequency Therefore, the other four variable thickness thin
plates are considered comprehensively (unidirectional con-
cave, unidirectional convex, bidirectional concave and bidirec-
tional convex).

As shown in Fig. 11, the first three natural frequency in-
crease percentage A under the classical boundary conditions.
Bidirectional and unidirectional convex VRB can significantly
increase the natural frequency on the FFFF boundary condi-
tions, but the change is not obvious on the SSSS and CCCC
boundary conditions. Meanwhile, the percentage change of
bidirectional convex VRB is higher than unidirectional con-
vex VRB. Obviously, when the thickness is concentrated in
the middle of the thin plate, the natural frequency will in-
crease effectively on the boundary condition of FFFF. The nat-
ural frequencies of the unidirectional and bidirectional con-
cave VRB on the FFFF boundary condition will decline sig-
nificantly, however first-order natural frequency will slightly
increase on the SSSS and CCCC boundary conditions. It can
be seen that when the thickness is scattered around the thin
plate, the natural frequency on the FFFF boundary conditions
will decline.

4. OPTIMIZATION DESIGN OF VARIABLE
THICKNESS THIN PLATE

One of the effective approaches to improving the natural fre-
quency of thin plates is by optimization. However, most re-
search currently is to optimize the thickness of the whole thin
plate, and there are few studies on continuous variable thick-
ness optimization for individual thin plates, which makes it
difficult to maximize the natural frequency of thin plates. In
order to elevate the natural frequencies of thin plates, a new
bidirectional stepped variable-thickness thin plate is proposed
that possesses a new thickness distribution form: thick in the
middle and edges. As shown in Fig. 14, Fig. 14 (a) is a bidi-
rectional schematic diagram of the stepped VRB, and Fig. 14
(b) is the cloud map.

4.1. A New Bidirectional Stepped VRB
In order to elevate the natural frequencies of thin plates, a

new bidirectional stepped variable-thickness thin plate is pro-
posed that possesses a new thickness distribution form: thick in
the middle and edges. As shown in Fig. 12, Fig. 12 (a) is bidi-
rectional schematic diagram of the stepped VRB, and Fig. 14
(b) is the cloud map.

The bidirectional stepped VRB is affected by middle step
width L and the step thickness t. L = 0.15 m and t =
1.2/1.4/1.6/1.8/2.0 mm are selected as an example. The
thickness of other parts of the thin plate is set as 1 mm, and
the length and width are set as 0.5 m. Meanwhile, the material
properties are consistent with the above-mentioned figures. As
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Figure 5. Percent change graph of natural frequency of unidirectional linear variable thickness plate.
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Figure 6. Percent change graph of natural frequency of bidirectional linear variable thickness plate.
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Figure 7. Percent change graph of natural frequency of unidirectional nonlinear concave thickness plate.
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Figure 8. Percentage change of natural frequency of unidirectional nonlinear variable thickness plate.

A
(%
)

2 4 6 8 10
-40

-30

-20

-10

0

A
(%
)

2 4 6 8 10
-40

-20

0

20

40

A
(%
)

2 4 6 8 10

-20

-15

-10

-5

0

5

10

A
(%
)

2 4 6 8 10
-40

-20

0

20

40

(a) m (FFFF) (b) m (SSSS) (c) m (CCCC) (d) m

Figure 9. Percentage change of natural frequency of bidirectional nonlinear concave variable thickness plate.
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Figure 10. Percentage change of natural frequency of bidirectional nonlinear convex variable thickness plate.
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Figure 11. Percentage graph of natural frequency thin plates with different thickness.

shown in Fig. 15, the percentage change chart of the bidirec-
tional stepped VRB natural frequency can be finally obtained.

The following conclusions can be drawn from the fig-
ures. The bidirectional stepped VRB can effectively increase
the first three-order natural frequency on the free and fixed-
supported boundary conditions compared to corresponding
equal-thickness thin plates. However, the natural frequency
does not change significantly on the simply-supported bound-
ary. The general trend of the natural frequency percentage A
is a gradually increasing trend with the increase of the middle
thickness L. Besides, the first-order natural frequency under
the simply supported boundary condition will decline slightly.

As shown in Fig. 14, a percentage graph of the natural
frequency improvement of the bidirectional stepped variable-
thickness thin plate in which the middle thickness is 2 mm. For
the first-order natural frequency of the bidirectional variable-
thickness thin plate, the natural frequency promoted 32.45%
on the free boundary condition and 11.66% on fixed-supported
boundary condition, but the natural frequency declines only
3% on the simply supported boundary condition. Based on the
above figures, it can be seen that this type of thickness distribu-
tion is beneficial to the improvement of the thin plate’s natural
frequency.

By comparing and analyzing Fig. 12 and Fig. 14, it can be
seen that the bidirectional stepped VRB’s first-order natural
frequency will slightly decline under three classical boundary
conditions, however, the bidirectional stepped VRB’s second-
order and third-order natural frequency will rise substan-
tially. Therefore, the new thickness distribution of bidirec-
tional stepped VRB is better than the previous four conven-
tional variable-thickness thin plates.

4.2. Optimization Design of VRB
According to the above-mentioned research, it can be seen

that when bidirectional stepped VRB’s other values remain un-

changed, its vibration characteristics are affected by the inter-
mediate thickness t and the step width L. When the design
variables parameters t and L are selected for optimization, the
final result of the optimization will obviously be another bi-
directional stepped variable thickness thin plate which is not
universal. Therefore, in order to make the optimization results
more general, considering the structural characteristics of the
new thickness distribution form is symmetry, the optimization
scheme shown in Fig. 15 is adopted. The specific steps are as
follows:

Firstly, the general symmetrical thickness thin plate is di-
vided into two optimization schemes. The first scheme is the
block division method, in which the thin plate is divided from
the inside to the outside, and the second scheme is the ring di-
vision method, in which the thin plate is divided according to
the circle.

Secondly, all the thicknesses are sorted in a ring shape from
inside to outside. The thickness variables of scheme 1 from
inside to outside are t1, t2, · · · , t10 and the thickness variables
of scheme 2 from inside to outside are t1, t2, · · · , t12.

Since the thickness has been divided in advance, it is equiv-
alent to what L has been determined, so only thickness needs
to be determined as a design variable.

The natural frequency of the thin plate has a significant rela-
tionship with the quality, however different variable-thickness
thin plates’ natural frequency is only relied upon the relevant
software to calculate, but cannot directly derive the relation-
ship between the natural frequency of the variable-thickness
thin plate and the quality. Therefore, we can refer to the exist-
ing calculation formula of the thin plate’s natural frequency on
the simple support condition. The formula is as follows:

ωi,j = π2

(
i2

a2
+

j2

b2

)√
D

ρh
; (4)

where i and j are sorted according to the magnitude of the
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(a)

(b)

Figure 12. New thickness distribution form: unidirectional stepped VRB.

Table 4. Natural frequency of variable thickness thin plate under different
qualities.

f (CYCLES/TIME)

ρ (kg/m3) BC 1 2 3 4 5 6

FFFF 26.909 32.640 42.617 52.054 52.054 78.501

7800 SSSS 28.800 79.198 79.198 121.44 159.60 164.35

CCCC 60.657 122.21 122.21 163.70 212.56 233.89

FFFF 19.027 23.080 30.135 36.808 36.808 55.509

15600 SSSS 20.365 56.002 56.002 85.873 112.85 116.21

CCCC 42.891 86.415 86.415 115.76 150.30 165.39

calculated value and correspond to the value of the first natural
frequency to the nth natural frequency.

According to Eq. (4), and combined with the formulas of
ω = 2πf andm = ρV , Eq. (5) is obtained:

f ∝
√

1

m
; (5)

where f is the natural frequency, and m is the quality of the
thin plate.

As shown in Table 4, in order to verify the correctness of the
above-mentioned theoretical inference, bidirectional stepped
variable-thickness thin plate’s simulation results are used as
references.

The natural frequency obtained when the density is 7800
kg/m3 is 1.4 times that when the density is 15600 kg/m3 on
three boundary conditions according to Table 4. This proves

the relationship between the natural frequency of the VRB and
the mass is correct.

Based on previous analysis, the final optimization goals are
determined as follows:

q =
f2

m
. (6)

In this article, the multi-island genetic algorithm is selected
for optimal design and setting of the corresponding number of
iterations. At the same time, the parameters need to be set from
the following two aspects:

(1) Setting upper and lower limits of the variable ti. Con-
sidering the accuracy of the simulation solution and the appli-
cability of the thin plate theory that is obtained, the variation
range of the thickness is set as 1 ≤ ti ≤ 2 mm; and,

(2) Restricting the value range of the optimization target.
Meanwhile, the maximum value of q should be selected as the
optimization goal, so the direction chosen is to maximize.

Following the corresponding steps to build an optimization
model, the thin plate of scheme 1 has 10 design variables of
thickness ti from inside to outside, meanwhile, the side length
of the square is 0.05, 0.10, · · · , 0.5 m in order. The thin plate
of scheme 2 has 12 design variables of thickness ti from inside
to outside, and the radius of the circle is 0.03, 0.06, · · · , 0.36
m in turn. The parameters are as follow: a = b = 0.5 m,
ρ = 7800 kg/m3, E = 210 GPa, µ = 0.3, and the bound-
ary condition is fixed support. Since the number of iterations
will have an important impact on the optimization results, dif-
ferent numbers of iterations are set to solve the corresponding
optimization results.

As shown in Fig. 16 and 17, two optimization schemes have
iteration times of 20, 30, 40, and 50, respectively, and the opti-
mization times correspond to the optimization results q graphs
of 2000, 3000, 4000, and 5000, respectively. The black line
is the total q, and the number is equal to the corresponding
optimization times, meanwhile, the red line is the increasing q.

In the optimization results, the thicknesses corresponding to
the best optimization results in the four iterations are extracted
in Fig. 16 and 17, and the optimized values are shown in Ta-
ble. 5 and 6, respectively.

Now, ti/2 is taken as the thickness from the above table,
and then the thickness variation curve of the variable-thickness
thin plate can be obtained as shown in Fig. 18, which is a
schematic cross-section diagram of thin plate with variable
thickness. Fig. 18 is the cross-sectional thickness variation
curve of schemes 1 and 2 respectively, and the ordinate is the
thickness value that corresponds to ti/2. The abscissa repre-
sents the order i of the thickness. It can be seen with refer-
ence to Fig. 18 that scheme 1 corresponds to the change in
thickness of the gray cross-section. Because scheme 2 is a
circle division, when the abscissa changes in [−10, 10], it is
the change in cross-sectional thickness. When the abscissa
changes in [−12, 12], it is the change in the thickness of the
oblique section, corresponding to the blue section in Fig. 18.

As is shown in Fig. 19, whether scheme 1 or scheme 2 is
adopted, the optimization results have certain rules that the
central thickness and both sides’ thickness are large. It can
be seen that when scheme 1 is used for thickness optimization
design, the thickness of the thin plates’ four sides approaches
2 mm, corresponding to i takes [−10,−7] and [7, 10]. When
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Table 5. q and ti optimization of scheme 1.

N 20 30 40 50
q (Hz2/kg) 1420.41 1432.13 1452.79 1464.45
t1 (mm) 1.7991 1.7630 1.7366 1.2629
t2 (mm) 1.3300 1.3419 1.3434 1.2818
t3 (mm) 1.2833 1.2166 1.1933 1.1602
t4 (mm) 1.0340 1.0323 1.0322 1.0303
t5 (mm) 1.0707 1.0707 1.0543 1.0397
t6 (mm) 1.3315 1.6685 1.6683 1.6682
t7 (mm) 1.6897 1.7161 1.9658 1.9736
t8 (mm) 1.9915 1.9915 1.9997 1.9997
t9 (mm) 1.9854 1.9988 1.9971 1.9980
t10 (mm) 1.9972 1.9991 1.9970 1.9999

the middle thickness of the thin plate approaches 1.3 mm, the
i take [−3, 3]. Meanwhile, [−7,−4] and [4, 7] are the thick-
ness transition zone. When scheme 2 is used for thickness
optimization design, the thickness of the thin plate’s four cor-
ners approaches 1mm, and the i take [−12,−10] and [10, 12].
When the thickness values of the thin plate’s four sides ap-
proach 2 mm, the i values [−10,−6] and [6, 10]. When the
middle thickness of the thin plate approaches 1.5 mm, the i
value [−3, 3]. The [−6,−4] and [4, 6] are the thickness transi-
tion areas.

Combined with the comparison analysis of scheme 1 and
scheme 2, it is noted that when the i value is in the [−10, 10],
the change rule of the corresponding cross-sectional thickness

(a) Scheme 1 (block division)

(b) Scheme 2 (circle division)

Figure 15. Schematic diagram of thickness optimization scheme.

change curve is basically the same.

As shown in Fig. 20, in order to make the thickness distri-
bution optimization results more obvious and visual, the opti-
mized thickness ti in Tables 5 and 6 are substituted into the thin
plate model for simulation, and the corresponding thin plate
distribution cloud can be solved. According to the thickness
distribution optimization result cloud diagrams, as the color
changes from lighter to darker, the thickness becomes thicker
and the minimum value is approximately 1mm, and the maxi-
mum value is approximately 2 mm. It can be also clearly seen
from Fig. 20 that both Scheme 1 and Scheme 2 gradually be-
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Figure 16. The optimization result of scheme 1.
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Figure 17. The optimization result of scheme 2.

Table 6. q and ti optimization of scheme 2.

N 20 30 40 50
q (Hz2/kg) 1440.76 1462.00 1475.51 1480.23
t1 (mm) 1.7759 1.7749 1.7564 1.6066
t2 (mm) 1.7013 1.6994 1.6994 1.5586
t3 (mm) 1.7382 1.6288 1.3750 1.4413
t4 (mm) 1.3724 1.0651 1.0651 1.0644
t5 (mm) 1.0236 1.0243 1.0167 1.0391
t6 (mm) 1.7068 1.6911 1.7476 1.9188
t7 (mm) 1.9964 1.9997 1.9997 1.9440
t8 (mm) 1.9901 1.9901 1.9943 1.9901
t9 (mm) 1.9563 1.9807 1.9812 1.9823
t10 (mm) 1.9351 1.9351 1.9398 1.9742
t11 (mm) 1.3698 1.3387 1.3153 1.0039
t12 (mm) 1.6665 1.6660 1.3320 1.0447

Figure 18. Schematic diagram of variable thickness thin plate.

come lighter in color near the center as the number of iterations
increases. At the same time, the color of the four corners of the
thin plate of scheme 2 gradually becomes lighter, which means
that the thickness value gradually decreases.

Comparing the natural frequencies of thin plates with equal
mass and thickness on the classical boundary conditions with
the two optimized schemes when the number of iterations N is

Table 7. Optimization results of natural frequencies of the two schemes.

Scheme Before and after f (Hz) q mass
optimization CCCC FFFF (Hz2/kg) (kg)

Before 62.395 34.193 23.332 1151.066 3.3822
Scheme 1 After 70.378 34.067 21.741 1464.450

Boost value 7.983 -0.126 -1.591 313.384
Lift percentage 12.79% — — 27.23%

Before 61.297 33.593 22.922 1130.806 3.323
Scheme 2 After 70.131 33.218 23.543 1480.232

Boost value 8.834 -0.375 0.621 349.426
Lift percentage 14.4% — — 30.9%

50, Table 7 can be obtained. The first-order natural frequency
of the optimized variable-thickness thin-plate in Scheme 1 in-
creases by 7.983 Hz, and the increasing ratio is 12.79%. Mean-
while, increments of q are 313.384 Hz2/kg, and the increas-
ing ratio is 27.23%. In contrast, the first-order natural fre-
quency of the variable-thickness thin-plate after optimization
in Scheme 2 can increase by 8.834 Hz, and the percentage in-
crement reaches 14.4%. The increment of q is 349.426 Hz2/kg,
and the percentage increment reaches 30.9%. At the same
time, 14.4% is also higher than the lifting effect of all other
variable-thickness thin plates mentioned above, which proves
the effectiveness of the optimization results. Finally, it is
seen that the optimization result of Scheme 2 is better than
Scheme 1 by comparing the increased percentage values.

4.3. Finite Element Segmentation Method
Scheme

As shown in Fig. 21, although both optimization schemes
can improve the natural frequency based on equal thickness
thin plates, there is still room to improve the final optimization
results of schemes 1 and 2. Compared scheme 1 with 2, it is
found that the thickness of the four corners of the sheet should
be close to 1 mm. However, due to the division of the squares,
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Figure 19. Curve of section thickness variation.

N = 20 N = 30 N = 40 N = 50
(a) Scheme 1

N = 20 N = 30 N = 40 N = 50
(b) Scheme 2

Figure 20. Cloud chart of optimization results of variable thickness thin plate.

the thickness of the four corners in Scheme 1 is equal to 2 mm.

The finite element segmentation method (FESM) is used to
optimize the area of the thin plate. Therefore, the thin plate is
divided into small unit shapes. In order to make the simulation
results close to the ideal situation, the thin plate is refined as
much as possible. As shown in Fig. 21, the thin plate is divided
into 10×10 small units classified according to symmetry, and

they are sorted from inside to outside in order. For example,
there are 4 thickness units with the number 1 with equal thick-
ness, and number 2 has 8 thickness units with equal thickness.
By analogy, the improvement scheme in Fig. 21 has a total of
15 thicknesses.

As shown in Fig. 22, different iteration times are set to solve
the corresponding optimization results. With the increase of
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Optimization result 1

Optimization result 2

10×10 unit division

Figure 21. Improved optimization program.

Table 8. q and ti optimization of improved scheme.

N 20 30 40 50
q (Hz2/kg) 1456.84 1481.59 1498.03 1514.30
t1 (mm) 1.1023 1.2273 1.4002 1.2411
t2 (mm) 1.2784 1.2784 1.0343 1.0948
t3 (mm) 1.0951 1.0963 1.0137 1.0963
t4 (mm) 1.0106 1.0106 1.0235 1.0184
t5 (mm) 1.4067 1.1567 1.5198 1.0787
t6 (mm) 1.9037 1.9935 1.8614 1.9989
t7 (mm) 1.9698 1.9755 1.8046 1.9746
t8 (mm) 1.8654 1.8846 1.8777 1.8971
t9 (mm) 1.926 1.926 1.9301 1.9334
t10 (mm) 1.9773 1.9772 1.9675 1.9839
t11 (mm) 1.9914 1.9914 1.9934 1.9913
t12 (mm) 1.0363 1.0887 1.0435 1.0575
t13 (mm) 1.839 1.839 1.9287 1.9647
t14 (mm) 1.2048 1.0459 1.0371 1.0479
t15 (mm) 1.1101 1.0774 1.053 1.0698

the number of iterations, the change of q value gradually de-
creases, and compared to the Scheme 1 and 2, the optimization
target q under each iteration number is larger. It can be seen
that the improved optimization program is better than Scheme
1 and 2 which proves the effectiveness and correctness of this
improvement scheme.

The corresponding thickness after the optimization under
the four iteration times is extracted and shown in Table. 8,
which corresponds to the optimization results of the thickness
and q under the number of iterations N = 20, 30, 40 and 50,
respectively.

Figure 23 is drawn by the above thickness values according
to the number of iterations. It can be seen that the thickness
change curves under the four iterations are basically the same.
Since the FESM is completely different from the previous two
schemes, Fig. 23 is not a cross-section in a practical sense.

The corresponding cloud map of the thickness distribution
is solved as shown in Fig. 24. It can be clearly seen that as

the number of iterations increases, the color near the center
of the thin plate gradually becomes lighter, which means that
thickness value decreases. At the same time, the color at the
four corners of the thin plate also gradually changes shallow,
which means that the thickness gradually decreases.

Compared with the previous two schemes, the FESM
scheme’s optimization target q has been greatly improved,
which can further study the feasibility of the FESM scheme.
As shown in Fig. 25, the unit is divided more finely and the
thin plate is divided into 20×20 small units. At this time, there
are 55 kinds of thickness.

Since the thickness parameter is increased from 15 to 55,
the number of iterations is set to 150 times with considering
the optimization calculation time. As shown in Fig. 26, it is
an optimization result graph with 150 iterations after 15,000
optimizations. It can be seen from the figure that the division
is more detailed, but it also leads to a case where there are
too many thickness parameters. Even if the number of itera-
tions is expanded to 3 times the original, the final q value is
1501.62 Hz2/kg, which cannot reach the optimization result q
for 50 iterations of 10×10 unit division.

As shown in Fig. 27, the corresponding thickness distribu-
tion cloud is solved. The color spectrum on the left uses rain-
bow colors, and the color spectrum on the right uses black and
white. It can be seen that its distribution form is basically con-
sistent with the previous 10×10 unit division. When taking the
calculation time and optimization results into account, it is not
difficult to find that it is better to use 10×10 unit division.

Similarly, the natural frequency of the thin plates of equal
mass and equal thickness by the method of FESM is ob-
tained by simulation, and the specific values are shown in Ta-
ble. 9. It can be found that when the boundary condition is
fixed support, the optimized first-order natural frequency of
the variable-thickness thin plate can be effectively increased by
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Figure 22. Optimization result diagram of the improved scheme.

i of improved scheme

t
(m
m
)

-15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.4

0.6

0.8

1

Figure 23. Thickness variation curve of unit division method.

Table 9. The optimized result of natural frequency after improving the
schemes 1and 2.

f (Hz) CCCC SSSS FFFF q (Hz2/kg) mass (kg)

Before 67.376 28.634 22.276 1514.30 2.998

After 55.305 30.312 20.683 1020.30

Boost value 12.071 -1.678 1.593 493.99

Lift percentage 21.8% — — 48.4%

12.071 Hz, and the percentage increase reaches 21.8%. What’s
more, the value of q increases by 493.99 Hz2/kg, and the per-
centage increase reaches 48.4%. However, the difference be-
tween the first-order natural frequency of the other two bound-
ary conditions is small, the percentage of 21.8% is also higher
than the lifting effect of the other two optimization schemes
in Section 4.2 which proves the effectiveness of the improved
scheme.

As shown in Fig. 28 which plots the optimized values of the
above-mentioned scheme 1 and scheme 2, and the improved
scheme into a curve. It can be seen from the above figure that
the value of the first-order natural frequency and the optimiza-
tion target q increases.

5. CONCLUSION REMARKS

In this paper, the vibration characteristics of four kinds of
thin plates with variable thickness were analyzed and com-
pared with those of uniform thin plates of equal mass. Then,
based on the variation law of the vibration characteristics of
the four kinds of variable thickness thin plates, a new type of
stepped variable thickness thin plate was proposed. Finally,
inspired by the step-by-step idea, the square and circular divi-
sion methods were used to improve the natural frequency of
the variable-thickness thin plate, and the optimal design is car-

ried out. Some remarkable conclusions could be obtained as
follows:

(1) The vibration characteristics of four kinds of thin plates
with different variable thickness forms were analyzed to study
the variation of vibration characteristics with thickness under
different boundary conditions and compared with the corre-
sponding equal mass thin plates of uniform thickness. The re-
sult showed that unidirectional linear, bidirectional linear, uni-
directional nonlinear convex and Bidirectional nonlinear con-
vex were not beneficial to the enhancement of natural fre-
quency, while unidirectional nonlinear concave and Bidirec-
tional nonlinear concave was beneficial to the enhancement of
the natural frequency.

(2) A novel bidirectional step-variable-thickness thin plate
was proposed, which satisfies the thickness distribution re-
quirements on both the central and four edges. The results
show that the bi-directional stepped variable thickness thin
plate can effectively improve its first 3 orders of natural fre-
quency under free and solid support boundary conditions rel-
ative to its corresponding equal mass and equal thickness thin
plate. With the increase of the middle thickness of the step L,
the overall trend of the percentage of the natural frequency A
showed a gradually increasing trend.

(3) Inspired by the results, a new bidirectional stepped VRB
was proposed to improve the natural frequency of variable-
thickness thin plate. The square division method and circle
division method were employed to further improve the natural
frequency of variable-thickness thin plate. The results showed
that all indicators have been improved, among which the first-
order natural frequency has increased by 12.071 Hz, account-
ing for 21.8%, and the optimization target q has increased by
493.99 Hz2/kg, accounting for 48.4%.
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Figure 24. Optimal results of thickness distribution after improved scheme.

Figure 25. 20×20 unit division.
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Figure 26. 20×20 unit division optimization results.
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