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A rolling bearing is an important part of rotating machinery, and it is widely used in the petrochemical industry,
aerospace industry and other industries. Hence, it is of great significance to carry out condition monitoring and
fault alarms for rolling bearings. Aiming at the problem of the rolling bearing fault, a method of an improved deep
convolutional denoising auto encoder abnormal feature extraction and the Kullback-Leibler divergence threshold
alarm is proposed. The experiment verification is carried out on the rotor bearing experiment platform. The exper-
iment results show that the proposed method has good denoising performance and micro fault feature extraction
ability under the condition of no fault data training and no frequency domain transformation. High accuracy,
good efficiency and strong robustness of the proposed method for an early fault alarm are demonstrated by the
experiment as well.

1. INTRODUCTION

As one of the most important parts of rotating machinery, a
rolling bearing plays an important role in the safe operation of
rotating machinery.1 Once there is a failure in the equipment
operation process, it may cause huge economic losses and even
catastrophic accidents.2, 3 In order to ensure the safe and stable
operation of rolling bearings, the research of abnormal feature
extractions and an early fault alarm method is of highest im-
portance. Although the traditional artificial fault alarm method
has resulted in many achievements and wide applications, there
are still some limitations, such as inaccurate feature selection,
strong dependence on the training set, strong noise interfer-
ence, alarm time lag, poor intelligence, weak generalization
ability, etc. Therefore, it is still of great significance to carry
out condition monitoring and early intelligent fault alarm re-
search on rolling bearings.4, 5

Artificial neural network is a mathematical model that im-
itates biological brain neurons. In 1998, LeCun proposed the
LeNet neural network, which is the earliest convolutional neu-
ral network model.6 It is verified by the MNIST data set, and
the accuracy rate reaches 98%. In 2012, AlexNet proposed by
Krizhevsky on ILSVRC was the first large-scale deep convolu-
tional neural network model in human history, and Krizhevsky
won the championship of the challenge by overwhelming ad-
vantage.7 In 2014, Simonyan proposed the method of con-
structing deep convolutional neural network with a small con-
volutional kernel, and this method has been widely expanded
and applied by future generation scholars.8 In 2016, He pro-
posed ResNet neural network, which greatly improved the ef-

ficiency and the overall stability of the model.9 In 2017, Xie
combined the advantages of GoogleNet and ResNet and pro-
posed the ResNeX model, which solved the problem of exces-
sive super parameters and improved the accuracy of recogni-
tion.10 In 2020, Selvaraju proposed a technique for producing
visual explanations for decisions from a large class of Convo-
lutional Neural Network (CNN)-based models, making them
more transparent and explainable.11 In 2021, Gao proposed
Res2Net block, which can be plugged into the state-of-the-art
backbone CNN models, e.g., ResNet.12

As a branch of artificial intelligence, intelligent fault diag-
nosis has made great progress with the development of com-
puter peripheral functions. Neural network algorithm and fea-
ture extraction have been applied in the field of rolling bearing
fault diagnosis. Shen et al. proposed many dimensionless fea-
tures as feature parameters and applied them to fault diagnosis
of rolling bearings under various conditions, and the model
achieved good recognition results.13 Jiang and Purushotham
used a series of signal processing methods, such as EMD,
EEMD and wavelet transform.14, 15 Wu et al. proposed an en-
veloped analysis method based on wavelet scale and applied it
to the fault diagnosis of rolling bearings.16 Zhang et al. pro-
posed a deep convolutional neural network (WDCNN), which
was verified by the marked rolling bearing data set provided by
Case Western Reserve University (CWRU).17 Lee et al. estab-
lished a convolutional neural network model and applied it to
the fault classification and detection of a power system semi-
conductor manufacturing process, and the network achieved
good recognition results.18 Gou et al. used the deep auto en-
coder to study the fault diagnosis of rolling bearings, taking the
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original signal features as the input, and using the deep auto en-
coder network for pattern recognition.19 Guo et al. used con-
volutional neural network for fault diagnosis and multi-linear
principal component analysis of multi-channel data.20

For a long time, among the methods of fault diagnosis and
early warning based on vibration signal processing technology,
the selection and extraction of fault features and the determina-
tion of fault threshold play a decisive role.21 After reading and
sorting out the literature, the authors found the following prob-
lems. First, in the early stage of new fault detection, there are
often not enough labeled samples, which leads to the lack of
training data and greatly limits the use of the supervised learn-
ing neural network. Second, the previous intelligent fault diag-
nosis methods of rolling bearings mostly rely on frequency do-
main transformation, such as FFT, WT and EEMD, but lack of
mining the depth characteristics of the time-domain signal it-
self. Third, the application scene of rotating machinery is com-
plex and changeable, which is often accompanied by strong
environmental interference and noise, so it is imperative to im-
prove the robustness of the model.22 Finally, the early fault
symptoms are small and difficult to detect, and the traditional
threshold alarm method is not sensitive to weak symptoms.

In order to solve the above problems, this paper proposes
a new intelligent fault alarm method combining deep Convo-
lutional Denoising Auto Encoder(CDAE), PCA, T-SNE and
Kullback-Leibler Divergence (KLD). The unsupervised fea-
ture of CDAE is used to effectively solve the problem of sam-
ple missing in the early stage of fault occurrence. The feature is
extracted directly from the time domain signal of rolling bear-
ings without frequency domain transformation. The convolu-
tional kernel has excellent denoising performance and it can
be used to reduce the influence of the environment and noise
on the feature extraction results. PCA algorithm and T-SNE
algorithm are used to reduce and visualize the abnormal fea-
tures. Due to KLD’s wonderful data set distance measurement
ability and as it is used for the micro feature recognition, the
automatic threshold alarm of an early weak fault is realized.

2. DESIGN OF FEATURE EXTRACTION AND
EARLY FAULT WARNING MODEL

The overall design of the abnormal feature extraction and
early fault alarm method of rolling bearings based on CDAE
and KLD is shown in Fig. 1. The method mainly includes six
processes: pretreatment process, training process, feature ex-
traction process, calculating alarm value process, test process,
and the alarm process.

Firstly, the rolling bearing historical health data set X is
obtained by the experiment platform. In order to verify the
superiority of the subsequent method more strictly, the origi-
nal signal is not transformed in the frequency domain such as
FFT. The original time domain signal is directly normalized,
x = {xi|1 ≤ i ≤ n}, where xi is the i-th group of the sample
data, n is the total number of samples, and n is 1024 in this pa-
per. Then, the normalized sample set x is processed by adding
0.3 times of Gaussian white noise to get the fault sample set
x′. This is the pretreatment process.

The CDAE network is highly effective at automatically ex-
tracting features and is an excellent feature extraction tool.
Each convolutional kernel can be regarded as a filter. After
filtering layer by layer, the input data are finally restored to the

original healthy signal. Because of its unsupervised training
characteristics, CDAE can be built and trained without the ex-
isting fault labels and the types of fault samples in the training
set. The sample set x′ from the pretreatment process is used
as the input of the neural network, and the normalized healthy
sample set x is used as the output of the neural network. Af-
ter the training of the CDAE, the iterative model is obtained,
and its coding part is saved. Principal Component Analysis
(PCA) and T-distributed Stochastic Neighbor Embedding (T-
SNE) are used for feature reduction and extraction to get the
feature set P . After calculating the expectation p0 of P and
the variance σ0 of P , the alarm threshold can be calculated by
K = p0 + 3σ0.23, 24

The data of nine kinds of working conditions and one kind
of healthy working condition after implanting the fault are nor-
malized. These data are imported into the trained model as the
test set. Additionally, through feature extraction, feature di-
mensionality reduction and KLD calculation, finally, the fault
sample alarm is realized by comparing it with the alarm thresh-
old.

3. RESEARCH ON ABNORMAL FEATURE
EXTRACTION OF DENOISE BASED ON
CDAE

3.1. Basic Principles of CDAE
CDAE is made up of two convolutional neural networks.

It has the advantage of weight sharing of convolutional neu-
ral networks and can map low-dimensional shallow features
to high-dimensional high-level features. So, all the data satis-
fying local correlation can be processed by the convolutional
auto encoder in theory.25 The model structure is shown in
Fig. 2.

The convolutional operation can share parameters, and the
encoder can extract features after several convolutional oper-
ations and pooling operations.26 The output of convolutional
operation is shown in Eq. (1):

hl(i,j) =

W∑
j=0

Kl
i(j

′)xl(j+j′); (1)

where K is the convolutional kernel, l is the l-th layer and i
is the i-th. j is the j-th local region and j′ is the j′-th weight
in the convolutional kernel. In general, a rectified linear unit
(ReLU) is selected as the activation function, and its output
value is shown in Eq. (2):

al(i,j) = fReLUh
l(i,j) = max{0, hl(i,j)}. (2)

Pooling operation can reduce data dimensions to simplify
training. Usually, maximum pooling operation is used to re-
duce the total amount of data while retaining features.27 Pool-
ing operation is shown in Eq. (3):

pl(i,j) = max
(j−1)W+1≤s≤jW

{al(i,s)}. (3)

The decoder performs several deconvolutions and depooling
operations to reconstruct the input signal and restore the origi-
nal data. The process is shown in Eq. (4):

yt = f−1(Pt); (4)

where f−1 is the decoder operation, that is the reconstruction
process.

174 International Journal of Acoustics and Vibration, Vol. 28, No. 2, 2023



Z. Qin, et al.: RESEARCH ON ABNORMAL FEATURE EXTRACTION AND EARLY FAULT ALARM METHOD OF ROLLING BEARINGS. . .

Figure 1. Algorithm flow chart.
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Figure 2. Structure diagram of convolutional auto encoder.

3.2. Construction of Anomaly Feature
Extraction Model

In this paper, each convolutional kernel of CDAE is equiva-
lent to a filter. The method of denoising is that in the process
of training, artificial noise interference is added to the health
data to mimic the damaged data set, and then the CDAE takes
the data containing noise as the input and the health data as the
output. And the loss function value is minimized through itera-
tions, which makes the features extracted from the model more
robust. The denoising process of CDAE is shown in Fig. 3.

The Adam algorithm can intuitively explain the super pa-
rameters and only needs few parameters, so the random gradi-
ent descent method can be replaced by Adam algorithm in the
deep CDAE model. Adam algorithm has faster convergence
speed and more effective learning effect compared with the
other adaptive learning rate algorithms. And it can avoid the
problems such as the disappearance of the learning rate, slow
convergence, and the large fluctuation of loss function caused
by the parameter update of the high square error.

The mean square logarithmic error (MSLE) is used as the
loss function here. Compared to the MSE loss function, which
would be guided by some large values and lead to deviation of
the final result even if the small value is accurate, MSLE can
effectively alleviate the deviation of the final result by taking
logarithm of all the values in advance.

Each group of input data is 1024 sampling points. The in-
put layer is added with 0.3 times Gaussian white noise. The
sample batch size is 128. The number of iterations is 30. The
model parameter settings are shown in Table 1.

T-SNE is a machine learning algorithm for data dimension-
ality reduction. In the data correlation analysis and visualiza-
tion processing, T-SNE can fully retain the effective informa-
tion in the process of data dimensionality reduction, making
the extraction results more representative and fully reflecting
the differences between samples.

The distribution function of the high dimensional space in a
low dimensional space is shown in Eq. (5):

qij =
(1 + ||yi − yj ||2)−1∑
k ̸=l(1 + ||yk − yl||2)−1

. (5)

The iterative gradient is shown in Eq. (6):

δC

δyi
= 4

∑
j

(pji − qji)(yi − yj)(1 + ||yi − yj ||2)−1 (6)

However, it runs very slowly, so it is not suitable for large-scale
calculation of big data. The PCA dimensionality reduction

Table 1. Model parameter settings.

Kernel Kernel Activation Nonzero
size number function padding

Convolution layer 64 4 ReLU Same
Convolution layer 16 8 ReLU Same

Pooling layer 2 – – –
Convolution layer 8 16 ReLU Same

Pooling layer 2 – – –
Convolution layer 4 32 ReLU Same
Convolution layer 1 64 ReLU Same

Pooling layer 2 – – –
Unpooling layer 2 – – –

Deconvolution layer 1 64 ReLU Same
Deconvolution layer 4 32 ReLU Same

Unpooling layer 2 – – –
Deconvolution layer 8 16 ReLU Same

Unpooling layer 2 – – –
Deconvolution layer 16 8 ReLU Same
Deconvolution layer 64 4 ReLU Same
Deconvolution layer 1 4 Sigmoid Same

method is used to find the covariance matrix C, its eigenvalues
and eigenvectors of the data set. It arranges the eigenvectors
from top to bottom to form the eigenmatrix, and it takes the
first k rows to form the matrix P . The calculation of C matrix
and P matrix is shown in Eq. (7):

E = (e1, e2, . . . , en);

ETCE = Λ;

P = ET ; (7)

where e1, e2, . . . , en are eigenvectors, Λ is a diagonal matrix
whose diagonal elements are the corresponding eigenvalues of
each eigenvector.

In this paper, the application of PCA reduced the data to
16 dimensions, and then the using of T-SNE reduced it to 2
dimensions. The abscissa of the characteristic scatter diagram
is retained to participate in the calculation of the subsequent
alarm method research.

4. RESEARCH ON FAULT ALARM METHOD
BASED ON KLD

4.1. Basic Principles of KLD
In the mathematical statistics and information theory, KLD

is also known as relative entropy or information gain. It is a
function to measure the information loss of replacing one dis-
tribution with another distribution, in other words, it describes
the difference between two probability distributions.28 If KLD
is 0, it means that the two vectors are completely coincident.
The larger the KLD is, the greater the difference is.29

For P and Q, which are two given probability distributions
of discrete random variables, the definition of KLD is shown
in Eq. (8):30

DKL(P ||Q) =
∑
i

P (xi) log

(
P (xi)

Q(xi)

)
. (8)

This KLD represents the expectation of the difference between
the logarithms of P and Q. For ordinary distribution, the equa-
tion derived from the variant of KLD can also be used to cal-
culate the difference between the two distributions. The diver-
gence is shown in Eq. (9):30

DKL(P ||Q) = −E (ln q(x)) + E (ln p(x)) . (9)
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Figure 3. Denoising process of convolutional denoising auto encoder.

The definition and value range of KLD are nonnegative, as
shown in Eq. (10):30

P ≥ 0;

Q ≥ 0;

DKL(P ||Q) ≥ 0. (10)

4.2. Fault Alarm Method
Because the definition domain of KLD is nonnegative,31

the feature is normalized to the range of [0, 1]. The feature
range can be adjusted by scaling without changing the clus-
tering state. It can effectively avoid infinite results from the
calculation results and improve the robustness of the model.
The maximum and minimum normalization method is shown
in Eq. (11):30

yi =

x− i− min
1≤j≤n

{xj}

max
1≤j≤n

{xj} − min
1≤j≤n

{xj}
. (11)

Among them, the old sequence is the x-axis feature of charac-
teristic scatter graph after dimension reduction, and the new se-
quence y1, y2, . . . , yn ∈ [0, 1] is dimensionless. General data
can be standardized when needed.

After calculating the expectation p0 and variance σ0 of the
normalized feature set P and using 3σ principle, the alarm
threshold K0 is calculated:

K0 = p0 + 3σ. (12)

KLD does not satisfy the symmetry of distance and the re-
lationship of three inequalities, that is, it does not satisfy the
basic attributes of distance.32, 33 In this paper, the distance is
constructed by KLD, as shown in Eqs. (13) and (14),30 and
the problems of nonnegativity and symmetry are solved at the
same time:

DKL(P,Q) =
1

2
(DKL(P ||Q) +DKL(Q||P )) ; (13)

DKL(P ||Q) =
∑
i

P (xi) log

(
P (xi)

Q(xi)

)
. (14)

Normalizing the real-time data set Z to get the set z and
the feature set Q by the process of feature extraction of neural

network. When using Eq. (13) to calculate the KLD of set P
and Q, then if it is larger than the alarm threshold, an alarm
will be given. If it is less than the alarm threshold, the real-
time data will continue to be read into the algorithm. KLD
fault alarm method flow chart is shown in Fig. 4.

The real-time data are segmented by the number of sampling
points, that is, 1024 data points are input into the program at
a time, and KLD is made with the health reference data in the
training set, as shown in Fig. 5. The calculated value between
the real-time sample and the reference sample is the monitor-
ing value of condition monitoring curve.

5. EXPERIMENT VERIFICATION

5.1. Acquisition of Experiment Data
In order to verify the feasibility and accuracy of the model,

a HZXT-008 small rotor test-platform is used, which can flexi-
bly configure mechanical parameters such as vibration, speed,
noise, displacement, and sensors for measurement. It can also
simulate the transient process of speed up and down of rotat-
ing machinery and the vibration state of steady-state operating
conditions, as well as a variety of common rotating machin-
ery faults to analyze the fault characteristics. The test platform
mainly includes an 800 mm * 150 mm test-platform, a 400 W
motor, a motor mounting frame, a 1000 mm straight steel shaft,
two deep groove ball rolling bearings, two adjustable eccentric
bearing seats and three couplings. The experiment platform is
shown in Fig. 6.34

The experiment includes ten common states of rolling bear-
ings in operation, which are health state, severe, moderate, and
mild state of outer ring fault, inner ring fault and rolling ele-
ment fault. Four bearings are deep groove ball rolling bear-
ings. The traditional methods of a rolling bearing fault prefab-
rication are usually to disassemble the fault parts of the equip-
ment that has been in fault, or to aging the bearing. However,
the bearing faults obtained by these two methods are unpre-
dictable, the fault degree is not easy to measure, and the fault
period cannot be accurately determined. Therefore, this paper
uses a method to simulate the pitting fault of a bearing by a
laser spot burning which achieves good data effect. A laser
was used to cauterize the outer ring raceway, inner ring race-
way and rolling element respectively. Among them, there were
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Figure 4. KLD fault alarm method flow chart.

Figure 5. Data change process chart.
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Figure 6. Rolling bearing fault simulation test platform.34

Table 2. Sample set partition.

Sample Sample Sample Training Test Labelset type length number set set
Health 1024 500 400 100 0
9out 1024 100 0 100 1
6out 1024 100 0 100 2
3out 1024 100 0 100 3
9in 1024 100 0 100 4
6in 1024 100 0 100 5
3in 1024 100 0 100 6
9ro 1024 100 0 100 7
6ro 1024 100 0 100 8
3ro 1024 100 0 100 9

nine times of severe failure, six times of moderate failure and
three times of mild failure. The pitting size of the simulation
results could be detected by a high-power microscope.35 The
faulty parts are shown in Fig. 7.

The sampling frequency of all experiment data is 10k Hz
(1k = 1024), while the rotor speed is 2000 r/min, the number
of sampling points is 1024, the motor power is 400 W, and the
acceleration sensing sensitivity is 10 mV/(m/s2). Each fault
state uses 100 groups of samples, and the health state uses 500
groups of samples. Randomly selecting 80% of the samples in
the health state as the training set, and 20% of the samples as
the test set. The specific information is shown in Table 2. The
original vibration time domain signals of ten states are shown
in Fig. 8 (n = 4k).

5.2. Feature Extraction Results and
Analysis

After obtaining the data set X of the healthy operation state
of the experiment platform with the tag of 0, it is normalized to
get the data set x. Gaussian white noise is added to the sample
set x to make it become damaged sample set x′. With x′ as
input and x as output, using training sets to start iteration. If
the reconstruction error of the loss function meets the accuracy
requirements of the model, the model network is trained and
saved, which can be used as a feature auto extraction model.
Ten samples of the test set are input into the feature auto ex-
traction model, and the hidden layer feature vector is output.
The iterative process curve of model training set and test set is
shown in Fig. 9.

The feature scatter diagram of T-SNE after the feature ex-
traction of the test set data and the feature scatter diagram of
the comparison method are shown in Fig. 10. It can be seen
that the feature of the Fig. 10(b) raw data and Fig. 10(c) CAE
method are scattered and mixed. The bearing state cannot be
distinguished and there is no effective clustering. The effective
alarm standard cannot be formed. In Fig. 10(a), the health fea-
tures are clustered on the left side by the CDAE method, which
is quite different from the fault features. It can provide effec-
tive data support for the follow-up research of alarm methods.

Adding 0.3 times Gaussian white noise to the data of ten test
sets collected by the experimental platform verified the denois-
ing performance of the algorithm. The feature extraction re-
sults are shown in Fig. 10(d) It can be seen from the figure that
Fig. 10(d) is greatly different from Figs 10(b) and 10(c). And
the Fig. 10(d) is similar to the scatter distribution of Fig. 10(a).
The scatter points under healthy working conditions are con-
centrated on the left side of the figure, which is greatly different
from the scatter points of fault data. The subsequent methods
can be used for the fault alarm.

5.3. Alarm and Analysis of Rolling Bearing
According to the flow chart in Fig. 4, the maximum and

minimum normalization of the x-axis of the feature scatter di-
agram is performed to obtain the reference standard feature
set P . The expectation p0 = 0.126 is calculated and the
variance σ0 = 0.029 is calculated. The alarm threshold is
K0 = p0 + 3σ0 = 0.213. The degradation process of rolling
bearings was simulated by laser cauterization times, and the
rolling element fault data, inner ring fault data and outer ring
fault data were collected in real time. Each fault type collects
health state and three fault depth states. Each state includes
100 groups of experiment data, and each group of experiment
data has 1024 sampling points. KLD values of each group of
data and reference data were calculated to form condition mon-
itoring curve. The red dotted line represents the bearing alarm
threshold.

The experiment results of three fault types are shown in
Fig. 11. It can be seen from the figure that for the three dif-
ferent types of faults, this method can find abnormal features
in time and make an accurate alarm. The comprehensive fault
identification rate can reach more than 95%. The method in
this paper can be seen from Fig. 11 that the alarm time is ad-
vanced to achieve the early warning effect. It has high sen-
sitivity to early minor faults, and the research on denoising
strengthens the robustness and reliability of the system.

At present, the main effective methods of an early weak
fault early warning of rolling bearing affected by noise are as
follows. The feature extraction method of an early fault of
rolling bearing based on: 1) optimal wavelet scale cyclic spec-
trum;36 2) singular point identification and feature extraction of
early fault of rolling bearing based on instantaneous envelope
scale spectral entropy;37 3) the early fault diagnosis method of
rolling bearings based on parameter optimization variational
modal decomposition method;38 4) sparse feature extraction
of a bearing’s early fault using coherent cumulant piecewise
orthogonal matching tracking method;39 5) determination of
optimal reconstruction scale of continuous wavelet and early
fault identification;40 and, 6) a bearing early fault diagnosis
method based on wavelet correlation permutation entropy.41

These methods can realize the denoising and micro fault early
warning of rolling bearings, but on one hand, their condition
monitoring depends on the frequency domain transformation
or time-frequency analysis. It is rare to explore the alarm tech-
nology combining time-domain signal directly with intelligent
algorithms. On the other hand, the above methods are to study
the mechanism of faulty parts and explore the special charac-
teristics of parts. Relying too much on the expert experience
of external mechanical disciplines leads to insufficient intelli-
gence. This highlights the advantages of this method.
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(a) Outer ring fault

(c) Rolling element fault

(b) Inner ring fault

(d) Normal working condition

Figure 7. Rolling bearing faulty parts.

5.4. Verification of Rolling Bearing Data of
Case Western Reserve University

In order to further verify the effectiveness of the algorithm,
the rolling bearing database of CWRU is used for experimental
verification. The database is an international public standard in
the field of fault diagnosis. Ten common states in the operation
of rolling bearings are selected; namely, health state, outer ring
fault, inner ring fault and rolling element fault. The sampling
frequency is 48K, and the specific working conditions of the
bearing are shown in Table 3. In order to maintain the consis-
tency of the experiment, the data set division method is shown
in Table 2. The training set and test set are obtained after nor-
malization and noise processing on the basis of the original
data.

The feature extraction results are shown in Fig. 12. Accord-
ing to the figure, the healthy scattered points are gathered on
the left side of the figure. Similar to the extraction results in the
previous section, under the interference of noise, the healthy
state and fault state can also be specifically distinguished to
form an effective alarm standard.

After the fault characteristics are processed by the alarm
method in Section 3.2, the condition monitoring curve is
shown in Fig. 13. The expectation p0 = 0.052 is calculated
and the variance σ0 = 0.019 is calculated. The alarm threshold
is K0 = p0+3σ0 = 0.109. Due to the large fault implantation
degree of CWRU data set, the fault characteristics of the degra-
dation process are more obvious, the algorithm discrimination
is higher, and the effect is better. At the boundary between the
health state and the fault state, the monitoring value rises ob-

viously, has high sensitivity to faults, and the alarm effect is
better.

6. CONCLUSION AND PROSPECT

In this paper, by using the unsupervised learning character-
istics of deep CDAE and healthy samples as a training set, the
problem of insufficient training samples in the early stage of
equipment commissioning was solved. By using a convolu-
tional kernel which has excellent filtering characteristics to de-
noise the original signal with Gaussian white noise, the robust-
ness of the model was enhanced. By using CDAE, PCA algo-
rithm and the T-SNE algorithm, feature extraction and feature
dimension reduction were carried out. The optimal feature set
and feature standard were selected. The KLD measured the
distance between two random distributions, and an early mi-
cro fault alarm of rolling bearings was carried out by using test
platforms and the CWRU database to verify the algorithm. The
experimental results show that the method had high accuracy in
the feature extraction and alarm. It effectively resisted the in-
terference of environmental noise and detected weak features
of early faults in time. Moreover, it can be generalized and
applied to feature extraction and early fault alarms of various
rotor bearing systems.

Although the research work of this paper made some
achievements, due to the limited research conditions and the
author’s ability, there are still limitations that need to be fur-
ther studied. On one hand, for the intelligent identification of
weak faults, the research for this paper was limited to distin-
guishing a healthy state and fault state, and was not able to
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(a) Health

(c) Moderate failure of rolling element

(e) Early failure of inner ring

(g) Serious failure of inner ring

(i) Moderate failure of outer ring

(b) Early failure of rolling element

(d) Serious failure of rolling element

(f) Moderate failure of inner ring

(h) Early failure of outer ring

(j) Serious failure of outer ring

Figure 8. Alarm diagram.

Table 3. CWRU database.

Fault diameter Motor load Motor speed Outer ring fault Inner ring fault Rolling fault
0.5334 mm 1 HP 1772 r/min OR021@6 1 239 IR021 1 214 B021 1 227
0.3556 mm 1 HP 1772 r/min OR014@6 1 202 IR014 1 175 B014 1 190
0.1778 mm 1 HP 1772 r/min OR007@6 1 136 IR007 1 110 B007 1 123
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(a) Training set (b) Test set

Figure 9. Model iteration process curve.

(a) Feature extraction by CDAE

(c) Feature extraction by CAE

(b) Feature extraction from original input data

(d) Feature extraction by CDAE with noise

Figure 10. Scatter diagram of feature extraction.
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(a) Rolling element fault alarm diagram

(b) Inner ring fault alarm diagram

(c) Outer ring fault alarm diagram

Figure 11. Alarm diagram.

Figure 12. Feature extraction by CDAE.

accurately pattern identify each fault type and fault degree. On
the other hand, the data used in this paper were from the lab-
oratory data collection and an international general database
download. Although the effectiveness of the method can be
confirmed, it needs to be debugged by practical application in
the factory.
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