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Transformer fault diagnosis based on acoustic characteristics is a new non-contact and non-destructive monitoring
method. It has the advantages that the acoustic signal detection is not disturbed by electric and magnetic fields,
and the monitoring process does not affect the normal operation of the transformer. Aiming at the difficulty of
extracting transformer voiceprint features in complex noise environment, a transformer voiceprint feature extrac-
tion method based on Variable Mode Extraction (VME) is proposed. In this method, the center frequency of the
Intrinsic Mode Function(IMF) is set according to the generation mechanism of transformer radiated noise, thus the
uncertainty of decomposition results caused by random distribution and other frequency search methods is elimi-
nated; Then, taking the frequency-domain energy aggregation of IMF and the minimum center frequency energy
of residual signal as the optimization objectives, the cyclic iterative decomposition is used to identify and extract
the transformer voiceprint features, so as to reduce the impact of environmental noise and other equipment noise.
The analysis results of simulation signals and field signals show that this method can effectively reduce the impact
of environmental noise and extract more clear and accurate transformer voiceprint features.

1. INTRODUCTION

As important equipment of the power system, the health of
the power transformer will directly affect the stable operation
of the whole power system. The acoustic signal of the trans-
former during operation contains rich information about the
vibration and deformation of the equipment structure. At the
same time, the fault diagnosis technology based on non-contact
measurement has the least impact on the equipment. There-
fore, it is of great significance to study the transformer con-
dition monitoring and fault diagnosis based on the voiceprint
characteristics.1–4

Large power transformers usually work in complex indus-
trial environments. The acoustic signals are vulnerable to the
interference and pollution of ambient noise and other equip-
ment acoustic signals. The reflection and scattering of acoustic
signals in the transmission process will also affect the accurate
extraction of voiceprint features. The above phenomena lead
to the slow development of fault diagnosis technology based
on voiceprint features.5–7

Using advanced signal processing technology to obtain ef-
fective features representing the operating state is the premise
of transformer fault diagnosis. Scholars have carried out a
lot of theoretical and engineering application research. Based
on the vibration and noise test platform of the transformer
core model, Zhang9 built the Mel time spectrum convolutional
neural network transformer core voiceprint pattern recognition
model by taking the Mel time spectrum preprocessing dimen-
sion reduction of the sound signal as the input of the depth
learning model, and the accuracy of this model for acous-

tic signal recognition under three different working conditions
reached 99.71%. Zhu10 proposed a feature extraction method
of transformer sound frequency spectrum coefficient based on
wavelet packet energy spectrum, and then used the feature se-
lection method of Laplacian score and Fisher score to solve
the problem of feature redundancy. The analysis results show
that wavelet packet energy frequency spectrum coefficient fea-
ture can effectively improve the accuracy of fault diagnosis;
Wang11 improved the traditional feature vector extraction al-
gorithm of Mel frequency spectrum coefficient by compre-
hensively using the weighted processing method and princi-
pal component analysis method, and proposed a method for
identifying transformer core looseness fault based on the Mel
frequency spectrum coefficient and vector quantization algo-
rithm. The proposed method can accurately extract the noise
characteristics reflecting the looseness degree of transformer
core, and the fault identification result based on vector quan-
tization has a high consistency with the preset working condi-
tion. A multi criterion based mathematical approach to iden-
tify the health indices of power transformers is proposed by
Soni and Mehta,12–14 compared to the conventional methods,
the proposed approach gives more precise result. Abbasi et
al.15–17 put forward a series of fault diagnosis methods for
transformer windings, the proposed methods have the neces-
sary capability in providing fault information for a transformer
and needs no expertise to detect and classify faults.

The extraction of transformer voiceprint features in the
above research is based on the research results of auditory
models in the field of speech processing and uses the Mel fre-
quency spectrum coefficient or the improved Mel frequency
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spectrum coefficient as the transformer voiceprint features.
However, the above research does not make full use of prior
information such as the generation mechanism of transformer
acoustic signals. On the other hand, compared with the low-
frequency part of the acoustic signal, the non-linear Mel scale
frequency used by the Mel frequency spectrum coefficient has
reduced the weight of the high-frequency part. However, the
high-frequency part of the transformer’s acoustic signal under
actual working conditions is an important representation of the
transformer’s early fault.18, 19

Aiming at the difficulty of the transformer voiceprint feature
extraction in complex noise environment, this paper proposes a
method of the transformer voiceprint feature extraction based
on variational mode extraction. Variational mode extraction
can overcome the uncertainty of decomposition results caused
using center frequency search methods such as random distri-
bution in the variational mode decomposition algorithm. The
Wiener filtering, IMF cycle iterative extraction and other pro-
cesses of the variational mode extraction algorithm can elim-
inate interference components and highlight fault voiceprint
features. The effectiveness and practicability of the trans-
former voiceprint feature extraction method based on varia-
tional mode extraction are verified by simulation experiments
and engineering applications.

2. VARIATIONAL MODE EXTRACTION
THEORY

2.1. Variational Mode Extraction
The center frequency of IMF is set according to the operat-

ing mechanism of the equipment for VME, and the extraction
of each IMF is completed by a cyclic iteration process.20 The
following signal model is used for VME:

f (t) = µd (t) + fr(t); (1)

where f(t) is the original signal, ud(t) represents the target
IMF and fr(t) is the residual signal, t is the time index. The
ud(t) is a narrowband signal distributed near the center fre-
quency, satisfying the following conditions.

J1 =

∥∥∥∥∂t [(δ (t) + j

πt

)
∗ µd (t)

]
e−jωdt

∥∥∥∥2
2

; (2)

where ωd is the center frequency of ud(t); δ is the Dirac dis-
tribution; denotes convolution; J1 can be regarded as an index
of the frequency band width of the target IMF. After the ex-
traction of an intrinsic mode function is completed, the energy
of the residual signal near the central frequency of the intrinsic
mode function should be close to zero. Therefore, a filter sim-
ilar to Wiener filter is used and the following penalty function
is introduced.

J2 = ∥β(t) ∗ fr (t)∥22; (3)

where β(t) is the impulse response of the used filter. To ensure
the accuracy of IMF extraction and reduce modal mixing, the
filter shall have the following frequency response functions:

β̂ = 1/η(ω − ωd)
2
; (4)

where β̂ is the filter frequency response function, η is the at-
tenuation coefficient of the amplitude frequency response of

the filter. The frequency response function has an infinite gain
near the central frequency of the target IMF to ensure the accu-
rate extraction of the IMF, while the frequency response func-
tion has a small gain at the frequency band far from the central
frequency, reducing the frequency aliasing of the target natural
mode function and residual signal near the central frequency.
The extraction of target IMF can be converted into the follow-
ing constraint model:{

minµd,ωd,fr {αJ1 + J2}
µd (t) + fr (t) = f(t)

. (5)

Where α is the penalty coefficient for controlling the band-
width of IMF. To address the constraint model constructed
by Equation (5), the constrained variational problem is trans-
formed into the unconstrained variational problem by intro-
ducing quadratic penalty term and Lagrangian multipliers, the
augmented Lagrangian function is considered as follows:21–24

L (µd, ωd, λ) = α

∥∥∥∥∂t [(δ (t) + j

πt

)
∗ µd (t)

]
e−jωdt

∥∥∥∥2
2

+

∥β(t) ∗ fr (t)∥22 + ∥f (t)− (µd (t) + fr (t))∥22+
⟨λ (t) , f (t)− (µd (t) + fr (t))⟩ ; (6)

where λ refers to Lagrangian multiplier. According to Parse-
val’s equality, Equation (6) can be rewritten as follows:

L (µd, ωd, λ) = α∥j (ω − ωd) [(1 + sgn (ω)) µ̂d (ω)]∥22+∥∥∥β̂ (ω) f̂r (ω)
∥∥∥2
2
+

∥∥∥f̂ (ω)−
(
µ̂d (ω) + f̂r (ω)

)∥∥∥2
2
+〈

λ̂ (ω) , f̂ (ω)−
(
µ̂d (ω) + f̂r (ω)

)〉
; (7)

The unconstrained problem of Equation (7) can be solved by
the Alternative Direction Method of Multipliers (ADMM).25

The main idea of ADMM is to update the other variable by
fixing two variables. The specific update process is as follows:

µ̂n+1
d (ω) =

f̂r (ω) + α2
(
ω − ωn+1

d

)4
µ̂n+1
d (ω) + λ̂(ω)

2[
1 + α2

(
ω − ωn+1

d

)4] [
1 + 2α(ω − ωn

d )
2
] ;

(8)

ωn+1
d =

∫∞
0

ω
∣∣µ̂n+1

d (ω)
∣∣2dω∫∞

0

∣∣µ̂n+1
d (ω)

∣∣2dω ; (9)

λ̂n+1 = λ̂n + τ

[
f̂ (ω)− µ̂n+1

d (ω)

1 + α2
(
ω − ωn+1

d

)4
]
. (10)

2.2. Transformer Voiceprint Feature
Extraction Based on VME

Based on the above VME algorithm principle and practi-
cal application requirements, Figure 1 shows the flow chart
of transformer voiceprint feature extraction method based on
VME. The specific steps are as follows:

Step 1: Obtain the acoustic signal of transformer, set the
center frequency of target IMF according to the mechanism
analysis of transformer.

Step 2: Analyze possible common faults by using equip-
ment related prior information, to support the setting of pa-
rameters such as the number of IMF.
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Figure 1. Flow chart of Transformer voiceprint feature extrac-
tion.

Step 3: The VME algorithm is used to extract the IMFs of
the acoustic signal.

Step 4: Cyclic iteration, extracting several IMFs one by one.
Step 5: Hilbert Huang Transform (HHT) is used to extract

instantaneous amplitude and frequency information.
Step 6: Combined with the instantaneous amplitude and fre-

quency of the acoustic signal as voiceprint features, which pro-
vides support for transformer condition monitoring, fault diag-
nosis and other applications.

3. SIMULATION

This section verifies the effectiveness of VME in feature ex-
traction through simulation. The simulation signal contained
four sinusoidal signals with different frequencies, representing
different frequency components of the acoustic signal during
the operation of the transformer. Considering the importance
of the time when the acoustic event occurs to the transformer
status monitoring, components 2, 3 and 4 were set with differ-
ent time scales respectively. The waveform of the simulation
signal is shown in Figure 2.

VME was used to analyze the simulation signal. The de-
composition result is shown in Figure 3. It can be seen from
Figure 3 that the first four extracted components clearly corre-
sponded to each frequency component of the simulation signal,
and there is no end effect at the two ends of different compo-
nents. For components 2, 3 and 4 with time scale truncation,
their corresponding decomposition results became smoother at
the truncation point, and the corresponding time energy distri-
bution has a corresponding relationship with the energy distri-
bution in the residual signal. The above decomposition results
show that VME can accurately extract the target frequency
components hidden in the signal.

Add noise with different signal-to-noise ratios to the sim-
ulation signal, and then calculate the root mean square error
of each component extracted with different signal-to-noise ra-
tios. The results are shown in Figure 4. It can be seen from the
figure that with the increase of signal to noise ratio, the decom-
position error of each frequency component decreased rapidly.

Figure 2. Simulation signal.

Figure 3. The VME decomposition result of simulation signal.

At the signal to noise ratio of 0 dB, the decomposition error
has reached an ideal level; When the signal-to-noise ratio is
10 dB, the reconstruction error of each frequency component
was close to 0. Therefore, the signal feature extraction based
on VME has good anti-interference performance.

4. FIELD APPLICATION

4.1. Field Signal Voiceprint Feature
Extraction

Two 110 KV transformers were installed in a substation.
Microphone sensors were used to collect the acoustic signal
of transformer. The sampling frequency was 2048 Hz, and the
sampling length was 2048. The data acquisition was conducted
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Figure 4. Decomposition error of different signal-to-noise ra-
tio.

Figure 5. Installation Microphone sensors.

on April 14, July 5, July 23, July 26, and July 28, 2021, respec-
tively. The installation diagram of microphone sensor is shown
in Figure 5, and the waveform and spectrum of acoustic signal
are shown in Figure 6.

Harmonics in the power grid system will seriously satu-
rate the transformer core and further endanger the transformer.
When harmonic current flows into the transformer, it will in-
crease the copper loss and iron loss of the transformer, and the
skin effect will become more serious with the increase of har-
monic frequency. Therefore, higher harmonics are more likely
to cause transformer heating than lower harmonics, and har-

Figure 6. The Waveform and FFT of field acoustic signal of
transformer.

monic current will also cause transformer shell, silicon steel
sheet and some fasteners to heat, Local overheating of the
transformer will be caused, and the corresponding radiation
noise will also become larger. Based on the above phenom-
ena and considering that the transformer works in an open
and complex industrial environment, the collected acoustic sig-
nals included field environmental noise, transformer operation
acoustic signals, and various reflected and scattered acoustic
signals. To reduce the complexity of VME decomposition
and improve the decomposition efficiency, according to the
working mechanism of the transformer, the transformer body
acoustic signal consisting of core noise and winding noise was
mainly 100 HZ and its harmonics. Therefore, the center fre-
quency of VME decomposition was set as the power funda-
mental frequency and its harmonic frequency. The first nine
components of the decomposition result are shown in Figure 7.
It can be seen from the figure that the odd components 1, 3, 5
and 7 corresponded to 100 HZ and its harmonics in the acous-
tic signal of the transformer, and the even components 2, 4, 6
and 8 corresponded to 150 HZ, 250 HZ, 350 HZ and other fre-
quency components in the acoustic signal of the transformer,
also these components exhibited certain frequency modulation
and amplitude modulation phenomena.

The Hilbert transform was performed on VME decomposi-
tion results of transformer acoustic signal to obtain HHT time-
frequency spectrogram as shown in Figure 8. It can be seen
from the figure that the time-frequency characteristics such as
the instantaneous amplitude and frequency of the main com-
ponents of the transformer acoustic signal were clearly visi-
ble. The 100 HZ and its harmonics amplitude and frequency
in the transformer acoustic signal were relatively stable, while
the amplitude and frequency of the 150 HZ, 250 HZ, 350 HZ
and other frequency components fluctuated regularly. As an ef-
fective voiceprint feature, It can provide effective information
support for the monitoring of transformer operation status.

Figure 9 shows the HHT time- frequency spectrogram of
the transformer acoustic signal based on traditional empirical
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Figure 7. The VME decomposition result of filed acoustic
signal.

mode decomposition. It can be seen from the diagram that
due to the complexity of the acoustic signal, it was difficult for
traditional empirical mode decomposition to accurately extract
the IMFs in the signal due to mode mixing and other reasons,
which leads to the HHT time-frequency spectrogram showing
energy divergence and spectrum ambiguity, indicating the ef-
fectiveness of VME based on prior information in processing
field acoustic signal of transformer.

4.2. Analysis of Field Signal Interference
Components

There are two factors that affect the extration accuracy of
the transformer’s early weak voiceprint features: the first part
is the background noise in the harmonic environment of the
power grid and other interference signals from outside the
equipment, and the second part is the noise generated by the
non fault components inside the transformer. For the noise
from the non fault components inside the transformer, because
the acoustic signal generated by the internal components of
the transformer is usually linear superposition, based on high-
order statistics and information theory, the blind source separa-
tion algorithm26, 27 can be used to effectively extract the target
signal. This paper focuses on the influence of external back-
ground noise and other interference signals on the accuracy of
voiceprint feature extraction. The Wiener filtering of the VME
algorithm and the iterative process of IMF extration can elim-
inate interference components and highlight fault voiceprint
features, improving the accuracy of equipment status monitor-
ing and fault diagnosis.

The VME was used to extract the main voiceprint features
of the transformer acoustic signal, and the residual signal was
taken as the interference part of the acoustic signal. Through
the component analysis of the interference signal, it can lay
a foundation for further accurate extraction and application of
the voiceprint features. The short-time Fourier transform time-
frequency spectrogram of the interference signal is shown in
Figure 10. It can be seen from the figure that the interference

(a) HHT spectrogram

(b) HHT spectrogram (50∼250 Hz)

Figure 8. HHT time-frequency spectrogram based on VME
decomposition.

noise was mainly distributed in the low frequency band below
100 Hz, and the intensity of the interference signal gradually
decreases with the increase of the frequency. The above phe-
nomenon was consistent with the empirical rule that the envi-
ronmental noise was mainly distributed in the low frequency
band, which further illustrates the effectiveness of the trans-
former voiceprint feature extraction algorithm based on VME.

4.3. Transformer Condition Monitoring
Based on One-shot Learning and
Voiceprint Feature

In this section, the one-shot learning method based on
siamese network was applied to the monitoring of transformer
operation condition. Various factors, such as the changeable
operating conditions and the complex working environment,
made it difficult to apply the traditional deep learning method
to the monitoring of transformer condition.
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(a) HHT spectrogram

(b) HHT spectrogram (50∼250 Hz)

Figure 9. HHT time-frequency spectrogram based on EMD
decomposition.

The siamese network based one-shot learning method is a
commonly used metric based machine learning method, so this
paper only describes the network parameters, which were com-
posed of four one dimension convolution layer, four max pool-
ing layers and one full connection layer, and each convolution
layer is followed by a max pooling layer. The last max pool
layer is followed by a flatten layer and a dropout layer, then
followed by a full connection layer. The details of the model
are as follows: the first layer of convolution layer uses the wide
core convolution with the kernel Size of 64× 1 to extract fea-
tures, and the number of convolution cores was 16. The sec-
ond, third and fourth layers of convolution layers used the nar-
row core convolution with the kernel size of 3 × 1 to obtain
more detailed fault features, and the number of corresponding
convolution cores are 32, 64 and 64. The activation function
of the convolution layer used the Relu function. The four max
pool layer adopts a pool window of 2 × 1 size, and the corre-

Figure 10. Analysis of field signal interference components.

sponding number of convolution cores were 16, 32, 64, and 64
respectively. The Dropout layer probability was set to 0.2 to
alleviate the over fitting problem. The number of neurons in
the full connection layer was 100, and the activation function
was sigmoid function.

The dataset included 105 samples collected from April 14
to July 28, 2021. The VME based voiceprint feature extrac-
tion method is used to process the original acoustic signal to
eliminate the impact of external noise and interference, and
then the processed signal was input into the one-shot learn-
ing network. The training set, verification set, and test set ac-
counted for 60%, 20%, and 20% of the total dataset respec-
tively. Since the transformer has been in a stable and normal
working state in the above data acquisition stage, the purpose
of the experiment was to verify whether the trained model can
give accurate monitoring results when the background noise of
each data was different. The test results show that the success
rate of the model classification reaches 100%, which further
illustrates the effectiveness of transformer voiceprint feature
extraction based on VME.

5. CONCLUSIONS

VME based on prior information is proposed to decompose
the acoustic signal of transformer, and then HHT transform
is used to extract voice print features such as instantaneous
frequency and instantaneous amplitude. The frequency struc-
ture and composition of the acoustic signal radiated by the
transformer are complex, and the voice print feature extrac-
tion method based on VME has good noise resistance. Using
prior information such as transformer acoustic signal genera-
tion mechanism to determine the parameters such as the center
frequency of VME decomposition can reduce the complexity
of decomposition on the one hand, and extract voice print fea-
tures more efficiently and accurately on the other hand. The in-
stantaneous amplitude and frequency of transformer voiceprint
features extracted based on VME algorithm show obvious reg-
ularity, which can provide effective information support for ap-
plications such as transformer state discrimination.
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