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Due to slender truss structures, the tower and jib of tower cranes can easily produce vibrations during the accel-
eration and deceleration of the motion. The alternating load generated by this vibration reduces the payload’s
positioning accuracy and is also one of the main factors to cause fatigue damage to the crane structure. Based on
the Euler-Bernoulli beam theory, this paper derives the differential equations of tower vibration, jib vibration, and
payload swing under the radial motion by the Lagrangian equation. The vibration modes of the tower are ana-
lyzed, and the effect of trolley speed, payload mass, and rope length on the vibration characteristics of the tower
and the payload swing characteristics subjected to elastic jib is studied through simulation. The expression of the
maximum swing angle is derived, and the experiment verifies the validity of the simulation results.

1. INTRODUCTION

The structure of a tower crane includes the tower, jib,
counter jib, and tower cap, which are welded or bolted to-
gether using standard sections. The lifting, radial and slew-
ing motions are used to describe the process of transporting
payloads. The frequent starting and braking of the three mo-
tions cause structural vibration and payload swing.1 The tower
overturning caused by alternating low-cycle loads can result in
significant economic losses.2

There is a large body of literature investigating structural vi-
bration and payload swing. Oliveira et al.3–5 modeled a tower
crane using finite element software, and Chen6 simulated the
finite element model of a tower crane using computational fluid
dynamics (CFD) to obtain the maximum displacement, bend-
ing stress, and axial stress under a pulsating wind load. Al-
though the finite element model is effective for investigating
the wind load characteristics of a tower crane, it cannot obtain
dynamic responses in traveling motions.

Thus, some papers have studied structural vibrations by con-
structing mathematical models of cranes. The linear partial
differential equations for the vibration of the main beam can
be obtained by considering the bridge crane as a simply sup-
ported beam with a moving mass.7–9 Azam10 created differen-
tial equations for the vibrations of a Timoshenko beam with the
moving mass based on the Hamiltonian principle and obtained
solutions by the numerical method. The model proposed above
will cause a significant error in the analysis of the tower vibra-
tion because the coupling of the flexible jib should be taken
into account.

Considering the effect of other equipment ensembles on the
vibration of the structure along the elastic cable, Debeleac11

presented a novel computational model that helps to study the
dynamics of a dragline bucket. The results showed the cou-

pling terms between drag and hoist dynamics with the influ-
ence of the bucket. In the following work,12 the model of
the dragline bucket system was improved, and the differential
equations governing the drag cable oscillations were analyzed
using the tensile force within the hoist cable. It provides the
basis for investigating structural damage to the wire rope.13

Given the more significant interaction between flexible-link el-
ements and payload swing, the above approaches may not ap-
ply to tower cranes.

Rauscher and Sawodny14 presented that the tower crane jib
was modeled as a distributed-mass beam considering the Cori-
olis force in a slewing motion. Nevertheless, it does not focus
on the dynamic effects of some indicators on the structural vi-
bration characteristics during the working cycle. Based on the
Euler-Bernoulli beam theory, Feng15 assumed that the tower
is a rigid body and obtained the differential equations of the
jib-trolley-load system using Lagrange’s equation. However,
the jib is a cantilever beam with simple boundary conditions,
while the tower needs to consider the effect of the translational
and rotational inertia of the slewing structure.

This paper proposes an analytical approach for simulating
the tower vibration, payload swing, and jib vibration of a tower
crane in radial motion.Considering dynamic couplings with
structural inertia, vibration, and the payload swing in the nu-
merical model, qualitative indicators of the vibration character-
istics of the element components are analyzed. The tower and
jib are discretized by the Ritz method of modal shapes, which
leads to a significant increase in coupling effects. Therefore, it
is a challenge to solve complex multi-body dynamic equations.

In Section 2, the numerical model of a tower crane is es-
tablished. Then, the differential equations are derived from
Lagrange’s equation. Section 3 performs the modal analysis
of the tower. Section 4 uses Matlab software to simulate the
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effect of dynamic responses of tower vibration and payload
swing. Section 5 designs experiments to verify the simulation
results.

2. DIFFERENTIAL EQUATIONS OF THE
SYSTEM

The research object is a QTZ5613 flat-head tower crane.
Only the tower vibration and the payload swing subjected to an
elastic jib are investigated in the radial motion. Therefore, the
payload swing excites the tower and the jib, producing vibra-
tions only in the vertical plane of the jib. The jib is equivalent
to a horizontal cantilever with a moving mass, and the tower is
equivalent to a plumb beam.16

2.1. Coordinate System
According to the characteristics of the slewing motion and

the radial motion, an inertial coordinate system {x0, y0, z0} is
established. The coordinate origin is chosen at the intersection
of the tower’s centerline and the jib’s slewing plane. A non-
inertial coordinate system {x, y, z} is established to describe
the displacement of the tower and jib. The origin coincides
with the origin of the inertial coordinate system. Since the
payload moves with the suspension point in the swing motion,
a non-inertial spherical coordinate system {el, eθ, eϕ} is estab-
lished with the suspension point on the trolley as the coordinate
origin. The displacement of the structures and payload swing
angles at xoz-plane and in y-direction are shown in Fig. 1 and
Fig. 2, respectively.

In Fig. 1, γ(t) is the pitch angle of the jib due to the displace-
ment of the tower. Vx(z, t) and Wz(x, t) represent the dis-
placement of the tower in x-direction and the jib in z-direction
at time t, respectively.

In Fig. 2, the swing angle of the jib is ψ(t). Vy(z, t) and
Wy(x, t) represent the displacement of the tower and jib at
time t in y-direction respectively. The position of the suspen-
sion point in {x, y, z} is (xc, yc, 0), and xc is the vertical dis-
tance from the trolley to the centerline of the tower. The posi-
tion of the payload in {el, eθ, eϕ} is defined as (l, θ, ϕ), where
l is the length of the rope, θ is the angle between the projection
of the rope at the xoz-plane and the plumb line of the suspen-
sion point, and ϕ represents the angle between the rope and the
xoz-plane.

2.2. Energy Expressions
This paper assumes that the tower and jib have no longitu-

dinal deformation and that the counter jib is rigid. There is no
relative sliding between the trolley and the jib,15 and the rope is
rigid with the length constant.17 Using the Ritz method,16 the
deformation of the tower and jib can be expressed as follows:

Vx(z, t) =

n∑
i=1

φt,i(z)qt,i(t)

Wz(x, t) =

n∑
i=1

φb,i(x)qb,i(t);

(1)

where φt,i and φb,i are the ith mode shape of the tower and
jib, respectively. qt,i and qb,i are the generalized coordinates
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Figure 1. Displacement of structures and paylaod swing in xoz-plane.
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Figure 2. Displacement of structures paylaod swing in y-direction.

which are time-dependent functions and n is the number of
coordinates.

(1) Tower
The position vector of the tower unit in the inertial coordi-

nate system is:

rt = [Vx(z, t) Vy(z, t) z]T⊤
z ro; (2)

where z is the position of the tower unit, z ∈ [−lt, 0], lt is the
height of the tower. ro = [i j k]

⊤ is the basis vector in the
inertial coordinate.
Tz, seen in Appendix Eq. (A1), is the transformation matrix

which denotes the coordinate system {x, y, z} rotated around
the z-axis into {x0, y0, z0}.
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The kinetic energy of the tower is:

Kt =
1

2

∫ 0

−lt
mt |ṙt(z, t)|2 dz; (3)

where mt is the mass of the tower unit. In the radial motion,
Vy(z, t) = 0 and Tz is third-order identity matrix. Substituting
the Eq. (2) into Eq. (3), yields:

Kt =
1

2

n∑
i=1

n∑
j=1

q̇t,iq̇t,j

∫ 0

−lt
mtφt,i (z)φt,j (z) dz; (4)

(2) Jib and counter jib
Both the jib and the counter jib are defined as the same form

of position vector in the inertial coordinate

rb(x, t) = rt(0, t) + [xb Wy(x, t) Wz(x, t)]T
⊤
z T

⊤
y ro

rcb(x, t) = rb(xcb, t);
(5)

where Ty , seen in Appendix Eq. (A1), is the transforma-
tion matrix of the jib and counter jib position vector around
the y-axis into the coordinate system {x, y, z}. xb and xcb
are the position of the jib and counter jib unit, respectively.
xb ∈ [0, lb], xcb ∈ [−lcb, 0], lb and lcb are the length of the
jib and the counter jib, respectively. Wy(z, t) = 0 and Tz is
third-order identity matrix. The position vectors of the jib and
counter jib are defined as:

rb(x, t) =

 cos γxb + sin γWz + Vx(0, t)
Wy + Vy(0, t)

− sin γxb + cos γWz

 ro;

rcb(x, t) =

 cos γxcb + Vx(0, t)
Vy(0, t)

− sin γxcb

 ro;
(6)

the kinetic energy of jib and counter jib are defined as:

Kb =
1

2

∫ lb

0

mb(x) |ṙb(x, t)|2 dx;

Kcb =
1

2

∫ 0

−lcb
mcb(x) |ṙcb(x, t)|2 dx;

(7)

where mb and mcb are the mass of jib and counter jib unit,
respectively. Substituting Eq. (6) into Eq. (7), yields:

Kb =

n∑
i=1

n∑
j=1

q̇b,iq̇b,j

∫ lb

0

mbφb,i(x)φb,j(x)dx

+
1

2
mblb

[
V̇x(0, t) + V ′

x(0, t)Ẇz(xb)
]2

+
1

2

∫ lb

0

mbWz(xb)
2dx

[
V̇ ′
x(0, t)

]2
+

1

2
Jb

[
V̇ ′
x(0, t)

]2
;

Kcb =
1

2
mcblcb

[
V̇x(0, t)

]2
+

1

2
Jcb

[
V̇ ′
x(0, t)

]2
;

(8)

where dVx/dt = V̇x is the derivative with respect to time, and
dVx/dx = V ′

x is the derivative with respect to x.

Jb = 1
2

∫ lb
0
mbx

2
bdx and Jcb = 1

2

∫ 0

−lcb mcbx
2
cbdx are the

rotational inertia of jib and counter jib due to the pitch motion,
respectively.

(3) Counter weight
The counter weight is equivalent to a mass mcw at the

counter jib end, with a position vector of:

rcw(x, t) = rcb (−lcb, t) ; (9)

the kinetic energy of the counter weight is defined as:

Kcw =
1

2
mcw

[
V̇ 2
x (0, t)

]2
+

1

2
Jcb

[
V̇ ′
x(0, t)

]2
; (10)

where mcw is the mass of the counter weight, Jcw = 1
2mcwl

2
cb

is the rotational inertia of the counter weight. The kinetic en-
ergy of the tower crane structures can be defined as:

Ks = Kt +Kb +Kcb +Kcw; (11)

(4) Trolley and payload
The trolley is equivalent to the moving mass on the jib, and

its position vector and energy expressions are defined as:

rc = rb (xc, t) ;

rc = Tz

 cos γxc + sin γWz + Vx(0, t)
Wy + Vy(0, t)

− sin γxc + cos γWz

 ro;
Kc =

1

2
mc |ṙc|2 ;

Uc = mc

[
0 0 g

]⊤
rc;

(12)

where mc is the trolley mass, Kc and Uc are the kinetic energy
and potential energy of the trolley respectively. The pendulum
angle of the payload ϕ = 0. The expressions of the payload
position vector and energy are defined as:

rp = rc +
[
0 0 −l

]
T⊤
G T

⊤
z ro;

rp = Tz

 cos γxc + sin γWz + Vx(0, t)− l sin θ
Wy + Vy(0, t)

− sin γxc + cos γWz − l cos θ

 ro;
Kp =

1

2
mp |ṙp|2 ;

Up = mp

[
0 0 g

]⊤
rp;

(13)
where mp is the payload mass, Kp and Up are the kinetic en-
ergy and potential energy of the payload respectively. TG, seen
in Appendix Eq. (A1), is the coordinate transformation ma-
trix of the spherical coordinate {el, eθ, eϕ} into the coordinate
{x, y, z}.

2.3. Differential Equations for Structural
Vibration and Payload Swing

The total kinetic energy of the system includes the kinetic
energy of the structures, trolley, and payload,so it is defined
as:

Ktol = Ks +Kc +Kp; (14)
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more details are shown in Appendix Eq. (A2). The total poten-
tial energy of the system is defined as:16

Utol = Us + Uc + Up

=
1

2

n∑
i

[ωt,iqt,i(t)]
2
+

n∑
i

[ωb,iqb,i(t)]
2

+mcg

[
−xc

n∑
i

φ′
t,i(0)qt,i(t) +Wz(xc)

]

+mpg

[
−xc

n∑
i

φ′
t,i(0)qt,i(t) +Wz(xc)− l cos θ

]
; (15)

where Us is the elastic strain energy of tower and jib. ωt,i

and ωb,i are the ith intrinsic frequency of the tower and jib,
respectively.

The generalized damping force of the rope-loading mass en-
semble can be characterized asQd = −Dl(δ)l̇,18 where Dl(δ)
is the damping matrix with respect to the damping ratio δ cal-
culated from the experimental data.19 Thus, the Lagrangian
equation for the tower crane system is defined as:

d

dt

(
∂L

∂η̇∗i

)
− ∂L

∂η∗i
= Qi +Qd, (i = 1, 2, 3 . . .); (16)

where, L = Ktol − Utol is the Lagrangian function, η∗i =
[qt,i, qb,i, θ] is the generalized coordinates in the radial mo-
tion, η̇i∗ is the generalized velocity and Qi is the generalized
excitation force of external action.

Substituting Eq. (14) and Eq. (15) into Eq. (16) to find the
differential equations with respect to the generalized coordi-
nate qt,i, qb,i and θ, respectively, yields:

q̈t,i(t) + ωt,iqt,i(t) + (mc +mp)φ
′
t,i(0)xc(

ẍc

n∑
i=1

φ
′
t,i(0)qt,i(t) + 2ẋc

n∑
i=1

φ
′
t,i(0)q̇t,i(t) + xc

n∑
i=1

φ
′
t,i(0)q̈t,i(t)

)

+ (mc +mp)φt,i(0)

(
n∑

i=1

φt,i(0)q̈t,i(t) + ẍc

)

−mpφt,i(0)lxc

(
cos θθ̈ − sin θθ̇

2
)
− (mc +mp) gxcφ

′
t,i(0)

−mpφ
′
t,i(0)lxc(cos θθ̇ + sin θθ̈)

+

[
2 (mc +mp)Wz (xc)

2
+

n∑
i=1

qb,i(t)
2

]
φ

′
t,i(0)

n∑
i=1

φ
′
t,i(0)q̇t,i(t) = 0;

(17)

q̈b,i(t) + ωb,iqb,i(t) + (mc +mp)φb,i (xc)(
ẍc

n∑
i=1

φ
′
t,i(0)qt,i(t) + 2ẋc

n∑
i=1

φt,i(0)q̇t,i(t) + xc

n∑
i=1

φt,i(0)q̈t,i(t)

+
n∑

i=1

φb,i (xc) q̈b,i(t)

)
+ (mc +mp) g · φb,i (xc) + (mc +mp)

(
φ

′
t,i(0)q̇t,i(t)φb,i (xc)

)[ n∑
i=1

φt,i(0)q̈t,i(t) + ẍc

+

n∑
i=1

φt,i(0)q̈t,i(t)Wz (xc) +

n∑
i=1

φt,i(0)qt,i(t)Ẇz (xc)

]

−mpl
[
θ̈ sin θφb,i (xc) + θ

2
cos θφb,i (xc)

]
= 0; (18)

θ̈+

(
ẍc +

n∑
i=1

φb,i (xc) qb,i(t)

)
cos θ+g sin θ+l cos θ

n∑
i=1

φt,i(0)qt,i(t)

−sin θ

[
xc

n∑
i=1

φ
′
t,i(0)q̈t,i(t)+2ẋc

n∑
i=1

φ
′
t,i(0)q̇t,i(t)+ ẍc

n∑
i=1

φ
′
t,i(0)qt,i(t)

+

n∑
i=1

φ
′
t,i(0)q̇t,i(t)φb,i (xc) q̇t,i(t)

]
= 0. (19)

z-z

z-a

lace bar angle-iron

b

Iz-a  A

Figure 3. Cross-section of the tower.

The Eq. (17), (18) and (19) are defined as matrix equations
about the generalized acceleration η̈∗, η̇∗, and η∗

M η̈∗ +Cη̇∗ +Kη∗ = Fu; (20)

where the mass matrix is M , the damping matrix is C,
and the stiffness matrix is K. The control force20 matrix is
F = −∂L/∂u , and more details are shown in the Appendix
Eq. (A4), (A5) and (A6). The control quantity u = [ẍc]. xc, ẋc
andWz are included in the matrix C and K to affect the struc-
tures vibration and payload swing. In addition, the payload
mass and rope length are also influencing factors.

3. MODAL ANALYSIS

3.1. Equivalent of the Tower
Due to the non-uniform distribution of stiffness in the lattice

structure, the transverse shear on the lace bars and the effect
of the lattice columns on the bending stiffness must be con-
sidered. According to the formula of Euler’s critical force, the
second moment of area of the tower and jib is calculated. The
tower of the QTZ5613 flat-head tower crane is composed of
the co-directional lace bar and four-limb lattice column. The
cross-section of the tower is shown in Fig. 3.

The second moment of area for the cross-section to the z-z
axis generated by the lattice column without the lace bars is:

Ia = Iz−a +A(
b

2
)2; (21)

where b is the vertical distance from the z-a axis of the angle-
iron to the z-z axis, A is the sum of the cross-sectional areas
of the four angle-iron, and Iz−a is the sum of the second mo-
ment of the angle-iron to their own z-a axis. The equivalent
slenderness ratio of the lattice column is defined as:

λa =
l0x
ia

=

√
IaAl0x
Ia

; (22)

where l0x is the sum of the projection lengths of the adjacent
lace bar in the axis of the tower, the radius of gyration of tower
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is ia, and the slenderness ratio of the tower with the lace bar
is:21

λh =

√
λ2a + 40

A

A1
; (23)

whereA1 is the sum of the cross-sectional areas of the lace bar.
The equivalent second moment of the area for tower is defined
as:16

It,x =
(2l)2A

λh
= Ia

(2l)2

(l0x)2 + 40 Ia
A1

; (24)

the moment of the cross-section of jib Ib,z can also be calcu-
lated by the above formula.

3.2. Mode Shape of the Tower
After obtaining the moment of area for the cross-section, the

ith shape function of the tower is obtained by:

φt,i(z) = c1sin (βiz) + c2 cos (βiz)

+ c3 sinh (βiz) + c4 cosh (βiz) ; (25)

where c1, c2, c3 and c4 are the coefficients to be determined in
the shape function, and c3 is obtained by bringing the Eq. (25)
into the regularization equation, which is shown in Appendix
Eq. (A3). Similarly, the shape function of the jib φb,i(x) can
be obtained.

The bending moment and shear force disappear at the free
end of the jib. However, the boundary conditions of the tower
should consider the inertia of the slewing part as the end mass
mr, and the rotational inertia Jr of the slewing part. The
boundary conditions of the tower end and the jib end are as
follows:{

EIt,xV
′′
x (z, t)|z=0 = −JrV̈ ′

x(z, t)|z=0

EIt,xV
′′′
x (z, t)|z=0 = mrV̈x(z, t)|z=0

;{
EIb,zW

′′
z (x, t)|x=lb = 0

EIb,zW
′′′
z (x, t)|x=lb = 0

; (26)

substituting Eq.(26) into Eq. (25), yields

ξi = −
shs (βilt) +

mr

mt
βilt [cosh (βilt)− cos (βilt)]

cosh (βilt) + cos (βilt) +
mr

mt
βilt [shs (βilt)]

; (27)

where ξi = c2
c3

, shs represents sinh− sin. The characteristic
root can be solved by the frequency equation,22 which is de-
fined as:

A [c1, c2, c3]
⊤
= Dc4; (28)

where A and D are the coefficient and constant matrix of the
frequency equation, respectively. More details are shown in
Appendix Eq. (A4). The first four Characteristic roots of the
tower are β1lt = 0.765, β2lt = 1.508,β3lt = 4.780, β4lt =
7.896 .

4. SIMULATION

With the four dominant eigenmodes used and hoisting speed
l̇ = 0 in Eq. 20, differential equations with respect to η∗

are built in the subroutine in Matlab software, which also in-
cludes the simulation of the trolley motion. The ode45 is a
general-purpose solver for solving non-rigid differential equa-
tions. Thus,the main procedure uses the variable-step ode45

Table 1. Working condition.

Working
condition

Trolley
speed vmax

Variable in trolley motion Rope length
lMass of payload mp

1 0.4 1800 18
2 0.8 1800 18
3 0.8 800 18
4 0.8 800 10

Table 2. QTZ5613 flat-head tower crane parameters.

Parameter Value Parameter Value Parameter Value
mt 350 kg/m mcb 159.3 kg/m E 206 GPa
mb 123.8 kg/m lcb 12.3 m A 198.8 cm2

lt 23.8 m mcw 15130 kg b 1680 mm
lb 55.6 m mc 350 kg It,x 0.014 m4
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Figure 4. Motion patterns of the trolley.

solver to solve the states in the subroutine with an initial value
of zero. The time span is 0 s to 120 s.

The relative tolerance (rtol) value is set to 1e−3, limiting
the error to 0.1 %. The absolute tolerance (atol) value, 1e−6,
is an acceptable error when the states are approaching zero. We
obtain almost the same satisfactory results by reducing the atol
value to 1e−7 in the second calculation to verify the accuracy
of the simulation.

4.1. Working Condition
The simulation conditions are shown in Tab. 1. QTZ5613

flat-head tower crane parameters are shown in Tab. 2. In
Tab. 1, in condition 1 and condition 2, the trolley moves from
5 m to 41 m from the tower centerline with an acceleration
of 0.1 m/s2. The motion patterns of the trolley are shown in
Fig. 4.

4.2. Effect of Trolley Speed
The radial swing angle and tower displacement under con-

dition 1 and condition 2 are shown in Fig. 5 and Fig. 7, respec-
tively. In order to illustrate the influence of radial motion on
the payload swing, the phase trajectory of the payload swing is
shown in Fig. 6.

In Fig. 5, in the acceleration phase, the swing angle has a
consistent trend under condition 1 and condition 2. When the
trolley reaches the rated speed, the payload enters the free-
swinging state with aninitial velocity and swing angle at 4 s
and 8 s, respectively.During most of the deceleration phase,
the direction of trolley deceleration is opposite to the payload
swing, which leads to an increase in the swing angle.After
braking, the payload enters the free swing state, and the swing
period is 8.52 s.
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Figure 6. Phase trajectory of the payload swing.

In Fig. 6, the trolleys accelerate at point A, travel at a uni-
form speed at point B, decelerate at point C, and stop at point
D. In Fig. 4.2, in the deceleration phase, the direction of the
payload acceleration is in the opposite direction of the trolley
movement, which intensifies the payload swing compared to
the acceleration phase. The opposite is true in Fig. 4.2.The mu-
tual cancellation of inertial forces makes the angle of the pay-
load swing smaller than that of the acceleration phase. There-
fore, in the deceleration phase, the direction of the payload
acceleration is the main factor affecting the swing angle.

In Fig. 7, the tower displacement and period increase with
the trolley speed. It is because, in the acceleration of the trol-
ley, the swing angle relative to the equilibrium position is less
than zero due to the inertia force. Thus, the direction of ten-
sion force exerted by the payload is always opposite to the di-
rection of the trolley motion. The longer the acceleration time,
the larger is the bending moment of the tower.

In addition, by the discrete Fourier transform (DFT), seen in
Eq. (29), the sampled signal Vx[n∗] of the tower displacement
is expressed as a sum of different frequency components with
Vx[k

∗] as coefficients and the spectrum of the tower vibrations
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Figure 7. Tower displacement under condition 1 and condition 2.
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Figure 9. Radial swing angle under condition 3 and condition 4.

is shown in Fig. 8.

Vx[k
∗] =

N∗−1∑
k=0

Vx[n
∗]ej(2π/N

∗)k∗n∗
; (29)

where, j is the imaginary unit, n∗ is the number of sampling
points, and N∗ is the number of points of the DFT transform
whose points are the dimension of Vx[n∗].

In Fig. 8, The first wave peaks of condition 1 and condition
2 appear at 0.45 Hz, which verifies the intrinsic frequencies
corresponding to the first mode of the tower. The second wave
peak appears at 0.49 Hz, and its amplitude is mainly influenced
by the trolley speed.

4.3. Effect of Rope Length
The radial swing angle and tower displacement under work-

ing condition 3 and working condition 4 is shown in Fig.9 and
Fig.10, respectively.

In Fig. 10, the length of the rope has almost no effect on the
vibration characteristics of the tower. In Fig. 9, the maximum
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Figure 10. Displacement under condition 3 and condition 4.

swing angle of the payload is slightly different due to the dif-
ferent periods caused by the rope length. If the trolley starts
and brakes quickly, there is the maximum input in the system,
from which the maximum swing angle of the payload is quan-
tified. Thus, the Eq. (19) is simplified to a linearized model of
the payload swing:

θ̈ +
g

l
θ = − ẍc

l
; (30)

assuming that the initial states of the system is zero initial state,
and the solution of Eq. (30) is obtained:

θ(t) = − ẍcω
2
nt

2g
; (31)

where ωn is the intrinsic frequency of load swing, the pay-
load swing angle is limt→0 θ(t) = 0, and the angular ve-
locity is limt→0 θ̇(t) = −vmax/l, the maximum speed is
θ̇max = −vmax/l. According to the law of energy conser-
vation, the estimated maximum angle is:

θmax =
vmax

g
√
l
; (32)

where the maximum angles are 0.020 rad and 0.026 rad under
condition 3 and condition 4, respectively. The calculation re-
sults are consistent with the simulation results of Fig. 9. If the
rope length and trolley speed satisfy l < (18vmax)

2
/
(
π2g

)
, θ

is greater than 10◦, at which time the assumptions of the lin-
earized model are not satisfied, that is, the linearized model has
a large error.

4.4. Effect of Mass
In Eq. (19), the payload mass is independent of both the

swing angle and period, which is consistent with the findings
of Jerman.23 So the swing characteristics of condition 3 are
the same as condition 2. The tower displacement in condition
2 and condition 3 is shown in Fig. 11.

The displacement and period of the tower increase coincide
with the increase in payload mass, which indicates that the pay-
load mass is the main factor affecting the vibration character-
istics of the tower.

5. EXPERIMENTAL VERIFICATION

5.1. Experiment Design
The experiment system is implemented on the full-scale

QTZ5613 flat-head tower crane. The experiment system in-
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Figure 11. Displacement under condition 2 and condition 3.

Black box.

Wi-Fi module.

Figure 12. Installation of working condition experiment subsystem.

cludes three parts: the working condition experiment sub-
system, the vibration experiment subsystem, and the payload
swing experiment subsystem.

A monitoring black box, i.e., the working condition exper-
iment subsystem, is installed on the crane cabin to obtain the
operational status of the tower crane. Measurement data from
each subsystem is transmitted directly to the terminal via the
Wi-Fi module. The installation of working condition experi-
ment subsystem is shown in Fig. 12.

For the tower vibration experiment, the tower tilt angle mon-
itoring adopts the MSH-517 static inclinometer sensor (shown
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in Fig. 5.1). It selects the turning angle at the top of the tower
as the observation object. The accuracy of the sensor is 0.005◦,
and the average value of the sensor measurement angle (three
times) is taken as the final result to ensure reliability. The static
inclinometer sensors 1 and 2 are installed on the rotating plat-
form and the fixed platform, respectively, to measure the tilt
angle of the tower around x-axis and y-axis, shown in Fig. 5.1.

For the jib vibration experiment, two laser rangefinders are
installed and positioned at the end of the jib to measure the ver-
tical distance from the jib to the ground, as shown in Fig. 5.1.
The laser rangefinders have to point vertically downward to the
ground, and a white reflector is laid flat on the ground to ensure
the accuracy of the measurement, as shown in Fig. 5.1.

The installation of the payload swing experiment subsystem
is shown in Fig. 14.

The dynamic inclinometer is fixed on the hook to measure
the swing angle. The dynamic inclinometer is assembled with
an accelerometer and gyroscope, which can accurately output
the swing angle of the payload. The final measured data are
the average of three experimental results. The sensor selection
and installation reference the work of Feng.15

5.2. Experimental Verification of Dynamic

The comparison of the simulation results and experimental
data is shown in Fig.15.

5.2.1. Effect of the Speed

Experimental comparisons of the tower displacement un-
der condition 1 and condition 2 are shown in Fig. 5.2.1 and
Fig. 5.2.1, respectively. The vibration characteristics of the
tower in the experimentare basically the same as the simula-
tion results. Otherwise, the tower vibration belongs to a high-
frequency response.The static inclinometer sensor has low sen-
sitivity to this high-frequency input signal, leading to a specific
difference in the value of the experiment data.

Experimental comparisons of the payload swing angle un-
der condition 1 and condition 2 are shown in Fig. 5.2.1 and
Figure. 5.2.1, respectively.

The swing characteristics of the payload in the experiment
are basically consistent with the simulation results. Due to the
high payload above the ground, the experimental data show
some fluctuations influenced by the wind.

5.2.2. Effect of the Mass

Experimental comparisons of vibration characteristics of the
tower under ondition 3 are shown in Fig.5.2.1. The vibration
characteristics of the tower are basically the same as the simu-
lation results in Fig.11.

5.2.3. Effect of the Rope Length

Experimental comparisons of the payload swing angle un-
der condition 4 areshown in Fig. 5.2.1. The comparison shows
that the payload swing characteristics and simulation results in
Fig. 9 are basically the same. However, the rope in the exper-
iment is flexible,which means that the length of the rope will
change periodically, resulting in some differences between the
experimental data and the simulation results.

The static inclinometers 

sensors 1

The static inclinometers 

sensors 2

Installation of the static inclinometer sensors.

MSH-517 static inclinometer sensor.

laser rangefinders

Installation of the laser rangefinders.

 white reflector

The white reflector.

Figure 13. Installation of the vibration experiment subsystem.
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Figure 14. Installation of payload swing experiment subsystem.

6. CONCLUSIONS

This paper presents an analytical method for simulating the
tower vibration, jib vibration, and payload swing in radial mo-
tion. The effects of the dynamic parameters on the tower vibra-
tion and the payload swing characteristics were investigated by
simulation and experiment.

The results of this research showed that the displacement
and period of the tower are directly proportional to the payload
mass, trolley speed, and jib vibration, while the rope length
does not have a significant effect on the tower vibration. The
acceleration direction of the payload and the rope length are the
main factors affecting the payload swing angle. The effective-
ness of the tower crane model subjected to an elastic jib and the
tower equivalence method was indirectly verified. The work
helps improve the operational reliability in the design stage of
tower cranes. Vibration suppression will be conducted in our
future research.
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n∑

i=1

φ
′
t,i(0)q̇t,i(t)Wz (xc)

]2

+

[
xc

n∑
i=1

φ
′
t,i(0)q̇t,i(t)

+ẋc
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1

2

n∑
i=1

n∑
j=1

q̇b,iq̇b,j

[∫ lb

0

mbφb,i(x)φb,j(x)dx+mblbφb,i(x)φb,j(x)V
′
x(0)

2

]
=

1

2

n∑
i=1

n∑
j=1

q̇b,iq̇b,j

(A3)

where, φt,i(0)φt,j(0) = µij , φt,i(0)
′φt,j(0)

′ = µ′′
ij .

A =

 0 1 0
1 0 1

− sin(τi) − I1 cos(τi) − cos(τi) + I1 sin(τi) sinh(τi) − I1 cosh(τi)
− cos(τi) + I2 sin(τi) sin(τi) + I2 cos(τi) cosh(τi) + I2 sinh(τi)

D =

 −1
0

I1 sinh(τi) − cosh(τi)
−I2 cosh(τi) + sinh(τi)

 (A4)

where, (Jr
β3
i

mt
) = I1, (mr

βi
mt

) = I2, βilt = τi.

M =



1 + k
(
µ11 + x2

cµ
′′
11

)
· · · 1 + k

(
µ1j + x2

cµ
′′
1j

)
· · · 1 + k

(
µ1n + x2

cµ
′′
1n

)
mplxc

(
cos θφt,1 − sin θφ′

t,1

)
...

. . .
...

...
...

1 + k
(
µi1 + x2

iµ
′′
i1

)
· · · 1 + k

(
µii + x2

iµ
′′
ii

)
· · · 1 + k

(
µin+ + x2

iµ
′′
in

)
mplxc

(
cos θφt,i − sin θφ′

t,i

)
...

...
. . .

...
...

1 + k
(
µn1 + x2

cµ
′′
n1

)
· · · 1 + k

(
µnj + x2

cµ
′′
nj

)
· · · 1 + k

(
µnn + x2

iµ
′′
nn

)
mplxc

(
cos θφt,n − sin θφ′

t,n

)
0 · · · 0 · · · 0 l


(A5)

C =



(
c∗ + q2b,1

)
µ′′
11 · · ·

(
c∗ + q2b,1

)
µ′′
ij · · ·

(
c∗ + q2b,1

)
µ′′
in −mpφ

′
t,1lxb cos θ

...
. . .

...
...

...(
c∗ + q2b,i

)
µ′′
i1 · · ·

(
c∗ + q2b,i

)
µ′′
ii · · ·

(
c∗ + q2b,i

)
µ′′
in −mpφ

′
t,ilxb cos θ

...
...

. . .
...

...(
c∗ + q2b,n

)
µ′′
n,1 · · ·

(
c∗ + q2b,n

)
µ′′
ni · · ·

(
c∗ + q2b,n

)
µ′′
nn −mpφ

′
t,nlxb cos θ

0 · · · 0 · · · 0 0


(A6)

K =



ω2
1 + kµ′′

11ẍcxc . . . kµ′′
1nẍcxc 0

. . .
... ω2

i + kµ′′
iiẍcxc

...
...

. . .
kµ′′

n1ẍcxc . . . ω2
n + kµ′′

nnẍcxc 0
0 · · · 0 0


F =



−kφt,1(0)

...
−kφt,i(0)

...
−kφt,n(0)

sin θ
(∑n

i=1 φ
′
t,i(0)qt,i(t)

)


(A7)

where, c∗ = 2k
(
ẋc +Wz (xc)

2
)

, mc +mp = k.

210 International Journal of Acoustics and Vibration, Vol. 28, No. 2, 2023


	Introduction
	Differential Equations of the System
	Coordinate System
	Energy Expressions
	Differential Equations for Structural Vibration and Payload Swing

	Modal analysis
	Equivalent of the Tower
	Mode Shape of the Tower

	Simulation
	Working Condition
	Effect of Trolley Speed
	Effect of Rope Length
	Effect of Mass

	Experimental Verification
	Experiment Design
	Experimental Verification of Dynamic
	Effect of the Speed
	Effect of the Mass
	Effect of the Rope Length


	Conclusions
	REFERENCES

