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Deep learning is gradually being widely used in fault diagnosis now, because deep learning networks are more
advantageous in processing data, especially image data. However, research using frequency spectra image of fault
signals as inputs to deep learning networks are extremely rare in the field of fault diagnosis. Therefore, a brand-
new intelligent fault diagnosis method is proposed in this paper which combines discrete random separate (DRS)
frequency spectrum images with deep learning networks (DRSFSI-DL). To investigate the fault diagnosis effects
of the method mentioned above, several deep learning networks are utilized for comparisons, such as GoogLeNet,
residual network, and Inception ResNet v2. The vibration fault frequency spectrum images processed by the
DRS method are input to train several deep learning networks. Under the same circumstance of deep learning
networks, the fault diagnosis using the DRS frequency spectrum image (DRSFSI), is also compared to the fault
diagnosis using traditional frequency spectrum, including the power spectrum density (PSD) and cepstrum. The
fault diagnosis results show that the proposed method has a better classification accuracy than the PSD image and
cepstrum image, with the same deep learning networks. The fault diagnosis accuracy can reach up to 100.00%
for some deep learning networks with better generalization performance than the PSD image and cepstrum image.
Lastly, the proposed method is further verified using the brand-new bearing fault dataset, and excellent accuracy
and generalization ability are achieved.

1. INTRODUCTION

Fault diagnosis of operating machinery and equipment is an
essential part of safe industrial manufacturing, and the ability
to accurately diagnose faults directly affects the safety of mod-
ern machinery and even life safety. However, the time domain
signals collected from industrial equipment with faults are usu-
ally uneven, containing a large amount of noise and various
frequency signals, making it challenging to analyze and diag-
nose the faults directly.

Frequency spectrum analysis is one of the most commonly
used traditional fault diagnosis methods. The typical frequency
spectrum analysis methods currently include PSD and cep-
strum,1 which are very critical to traditional fault diagnosis.
The power spectrum represents signal power variation with
frequency. To realize fault diagnosis during rotor vibration,
Cheng-Wei Fei et al.2 proposed a PPSE-SVM fault diagnosis
model based on Process Power Spectrum Entropy(PPSE), us-
ing PPSE to extract the PPSE values of the fault data as fault
feature vectors, and verified experimentally that the method
had a good generalization capability. Cepstrum analysis is a
secondary analysis technique resulting from Fourier inversion
of the logarithmic values of the power spectrum. Xining Zhang
et al.3 proposed an improved local cepstrum based on the cep-
strum and local cepstrum, the noise in the vibration signal and
the influence of non-harmonic components on the main signal
are reduced, and accurate detection of early faults was effec-
tively made in gearboxes and rolling bearings.

Using vibration images as network input for a fault diag-
nosis is also a common method in engineering as follows:
1) the vibration image includes a time-domain image; 2)
frequency-domain images; and 3) a time-frequency-domain
image. Among these three images, the time domain and
time-frequency-domain images of vibration signals are more
common,4 especially for the time-frequency domain images.
Traditional machine learning methods have significant draw-
backs in fault diagnoses, such as the need for a large num-
ber of professionals to participate in the feature extraction
work and the inability of the classifier to extract features of
higher dimensionality.5–7 In this context, deep learning meth-
ods have emerged with the ability to overcome the prob-
lems encountered in the machine learning process.7 Deep
learning networks have powerful feature-learning capabilities
and can automatically learn multidimensional features from
the original data allowing more useful information to be ex-
tracted. Through model training, deep learning can automat-
ically select more typical feature types based on the train-
ing data, which helps to make accurate predictions in the
subsequent pattern recognition steps.8 Although many deep
learning-based fault diagnosis methods already exist and have
achieved good results, most of these diagnosis methods use
time-frequency-domain images as network training inputs.9–11

Zhang R et al.12 selected some fault data of the Case West-
ern Reserve University (CWRU) bearing dataset and used the
time-domain image of these data as the training input to the
neural network. Zhang A et al.13 converted the collected
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time-domain data into two-dimensional images by regularizing
them as input to a deep recurrent network. Cao P et al.14 con-
verted the one-dimensional time series into two-dimensional
grayscale images and then input to the deep convolutional neu-
ral network (DCNN) for training. In addition, there are also
many methods using time-frequency domain images as neural
network inputs.15 Shao S et al.5 used the continuous wavelet
transform of the fault signals as the input of the convolutional
neural network (CNN) and achieved good results. Du Y et
al.16 used the time-frequency domain image obtained from the
short-time Fourier transform (STFT) as the training input of
the deep residual network and verified the effectiveness of the
method. Yu H et al.17 proposed a fault diagnosis model based
on the deep belief network (DBN) used to predict the residual
useful life of a hydraulic pump.

Existing research using the frequency domain image or the
frequency spectrum image is based on traditional frequency
domain transform methods, such as the Fourier Transform
(FT), Hilbert Huang Transform (HHT), etc. A deep transfer
learning online diagnosis method was proposed by Mao W. et
al.,18 aiming to achieve real-time detection of bearing incipient
faults. This diagnosis model is constructed based on the HHT
as the input to the vgg16 network, and finally, the effectiveness
of the method was verified by the PHM dataset. To achieve the
remaining useful life prediction of rolling bearings, Mao W. et
al.19 proposed a new RUL prediction method based on deep
learning and transfer learning, using HHT as input data, and
got good results on the PHM dataset. However, deep learn-
ing fault diagnosis methods that use other frequency spectrum
images as the input of deep learning networks are very rare.
The discrete random separate (DRS) method20 is a frequency
domain transform method. Its core idea is to decompose the
fault signal into many small segments and obtain the transfer
function to separate the deterministic and random components
of the fault signal.

To improve the fault diagnosis efficiency of frequency do-
main image combined with deep learning, based on CWRU
bearing datasets, the DRS frequency spectrum image will be
used as the input of several common deep learning networks.
As comparisons, the PSD image and cepstrum image of the
fault signals will be applied as the inputs of deep learning net-
works as well.

The paper is arranged as follows: the theoretical basis, the
frame of the DRSFSI-DL method, the fault diagnosis dataset,
the fault diagnosis based on the DRSFSI-DL, the generaliza-
tion of the DRSFSI-DL fault diagnosis method, the validation
of the DRSFSI-DL method and conclusions at the end.

2. THE THEORETICAL BASIS

2.1. DRS Method

The DRS method can be used to separate the random com-
ponent of the signal from the deterministic components. The
core idea of the DRS method is to find the transfer function
between the original signal and the delayed signal after a cer-
tain time delay. The principle is as follows: an original signal
is separated into many segments, and the time interval of each

Figure 1. The schematic of the DRS transfer function calculation.

piece is the same. If there is a deterministic component in part
and its delayed signal, then these two segments show a high
correlation. On the contrary, they exhibit a low correlation,
and the transfer function reflects the level of correlation. The
averaging transfer function solution process is shown in Fig.
(1), where the input signal is non-delayed, and the output sig-
nal is delayed,21 for example, segment 2 is the delayed signal
and segment 1 is non-delayed.

As shown in Fig. 1, the average value of the sum of the trans-
fer functions between each segment signal and its delayed sig-
nal is finally to be obtained. The equation for solving the trans-
fer function is shown in Eq. (1).

H1(f) =
GXY (f)

GXX(f)
; (1)

where, Gxx(f) denotes the product of the Fourier Transform
between the input signal and its conjugate signal, Gxy(f) de-
notes the Fourier Transformed product between the input to
output signals, and H1(f) is the transfer function.

And Gxy(f) is derived from Eq. (2).

GXY (f) =
1

N

N∑
i=1

F [yi(t)]F
∗[xi(t)]; (2)

Where, N is the number of segments of the signal segmenta-
tion, and F denotes the Fourier Transform, ∗ denotes the con-
jugate complex for complex numbers, xi(t) is the non-delayed
signal, yi(t) is the delayed signal.
Gxx(f) is derived from Eq. (3).

GXX(f) =
1

N

N∑
i=1

F [xi(t)]F
∗[xi(t)]; (3)

Finally, the transfer function is again converted to the time
domain using the Fourier inverse transform, as shown by
Eq. (4).

h(t) = F−1[H1(f)]; (4)

Where, F−1 represents the Fourier inverse transform.
The original signal can be filtered using the transfer function

to remove deterministic or random components from the raw
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Figure 2. Time domain image of 0.014 inches of the outer race fault.

Figure 3. Corresponding DRS frequency spectrum image.

signal. The filtering process is usually performed using time-
domain convolution or frequency-domain multiplication. The
filtering method of time domain convolution is used here, ie.,
(x(t)∗h(t), x(t) is the whole input signal), after the convolu-
tion, the time domain function is converted to the frequency
domain by Fourier transform again, and then output as DRS
frequency spectrum image with a fixed length. As shown in
Fig. 2 and Fig. 3, the time domain diagram of the bearing fault
signal and its corresponding DRS frequency spectrum image
represents the 0.014 inches of the outer race fault.

2.2. Deep Learning Networks

Five kinds of deep learning network structures are consid-
ered to examine the effect of DRSFSI-DL for fault diagno-
sis. These deep learning models are GoogLeNet, ResNet50,
ResNet101v2, ResNet152v2, and Inception ResNet v2. Ac-
cording to the internal structures of these five deep learning
networks, the following results from the Inception structure,
residual module, and Inception Res module are introduced re-
spectively.

2.2.1. GoogLeNet network model

GoogLeNet was proposed by the Google team in 2014 and
won first place in the Classification Task in the ImageNet
competition. The Inception structure was first introduced into
GoogLeNet.22 The Inception structure can fuse feature infor-
mation at different scales to improve the network diagnosis ac-

Figure 4. Inception structure.

Figure 5. Residual module.

curacy. The underlying structure of the Inception structure is
shown in Fig. 4.

As shown in Fig. 4, when the data from the last layer are in-
put to the Inception module, it will be delivered to each of the
four convolutional layers with different convolutional kernel
sizes. In this way, the width and the adaptability of the network
to the scale of the data will be increased. Additionally, the fea-
ture information of different scales will be fused too, and the
multi-scale information of fault signals can be learned because
of the difference of the perceptual fields of all the branches.

2.2.2. Residual Network (ResNet) model

ResNet proposed by Microsoft Labs in 2015, won first
place in the ImageNet competition for classification tasks and
first place for target detection.23 The residual structure is
the most critical component of the residual series networks.
Among the ResNet model family, ResNet50, ResNet101v2,
and ResNet152v224–26 will be used as deep learning networks
in this paper. The residual design can solve the problem of
overfitting caused by too many layers of the network, which
significantly increases the depth of networks and improves the
classification ability of the network model.27 Figure 5 below
shows the schematic diagram of the residual structure.28

When x is the input of the residual module, F (x) is ob-
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Figure 6. Inception Res module.

tained after two convolutional layers. The final output result is
the sum of input x and output result F (x). If the F (x)+x ob-
tained after adding these two layers is worse than the original
input x, it makes F (x) zero. That is to say, after two layers of
convolution pooling, the output F (x) + x remains the same as
x and does not become worse. And if F (x) + x is better than
the original input x, it remains the F (x)+x as the final output
result.

2.2.3. Inception ResNet v2 model

The main component modules of the Inception ResNet v2
network used in this paper are several different types of In-
ception Res modules, a new network component structure ob-
tained by combining the Inception structure and the residual
module mentioned in the previous section, the principle of
which is shown in Fig. 6.29 The performance of the network
model can be improved again to a certain extent based on the
ResNet model.

The hardware choices for this article are as follows: GPU is
RTX3090*1 with 24 GB of video memory. CPU is a 15-core
AMD EPYC 7543 32-Core Processor with 80 GB of memory.

3. THE FRAME OF THE DRSFSI-DL
METHOD

As shown in Fig. 7, the proposed fault diagnosis method
combining DRS frequency spectrum images with deep learn-
ing (DRSFSI-DL) consists of the following three main steps.
The first step is to select data to be trained from the datasets.
The second step is to perform DRS transformation on these
data to obtain two-dimensional frequency spectrum images.
The third step is to use these spectrum images to train standard
deep-learning network models and classify them according to
predefined labels.

Figure 7. The steps of DRSFSI-DL.

Figure 8. The CWRU bearing test rig.

4. THE FAULT DIAGNOSIS DATASET

4.1. Dataset Description

The rolling bearing fault dataset used in this paper is the
well-known CWRU bearing dataset, which can be mainly sam-
pled at 48 kHz and 12 kHz on the test stand shown in Fig. 8,
including nine failure states and one normal state, which are
normal, 0.007-inch inner race fault, 0.007-inch outer race fault,
0.007-inch ball fault, 0.014-inch inner race fault, 0.014-inch
outer race fault, 0.014-inch ball fault, 0.021-inch inner race
fault, 0.021-inch outer race fault, and 0.021-inch ball fault.
Each kind of fault contains sampling data at four different
loads, 0 hp, 1 hp, 2 hp, and 3 hp, whose corresponding mo-
tor speeds are 1792 rpm, 1772 rpm, 1750 rpm, and 1730 rpm,
respectively. In addition, three faults are collected at 6 o’clock,
12 o’clock, and 3 o’clock according to the different outer ring
sensor mounting positions for the same fault data of the outer
ring of the rolling bearing.
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Table 1. Classification of the CWRU dataset.

Datasets A B
Load (hp) 0 1

Rotation speed(rpm) 1792 1772
Numbers of Fault 10 10

Categories of Fault X X

4.2. The Fault Dataset Used in This Paper

The types of faults are classified according to their fault
states. Then the bearings are classified into two operating
datasets, A and B, based on the different loads subjected to the
test rig during operation, and the bearing speeds are 1792 rpm
and 1772 rpm. The loads are 0 hp and 1 hp, as shown in Ta-
ble 1. And dataset A is used to demonstrate the effectiveness
of the proposed method, and dataset B is used to verify the
generalization of the proposed method.

Where, X indicates 10 different kinds of fault, ie. IF (0.007,
0.014, 0.021), BF (0.007, 0.014, 0.021), OF(0.007, 0.014,
0.021) and Normal. IF indicates inner race fault, BF indi-
cates ball fault, OF indicates outer race fault, and the number in
brackets indicates the size of the corresponding fault in inches.

Then, the one-dimensional data of each classification is
transformed into two-dimensional frequency spectrum images
by the corresponding frequency domain transformation. In the
process of frequency domain transformation (including DRS,
PSD and cepstrum), the time domain data is first segmented
in equal length. Then the frequency domain transformation is
performed on the 1D data of each size. Multiple spectrum im-
ages are obtained by this method and divided into a train set
and test set according to the ratio of 3:1. The accuracy rates
discussed later are the averaging accuracy rates obtained on
the test set after the network is trained three times.

5. THE FAULT DIAGNOSIS BASED ON THE
DRSFSI-DL

In this part, the best length of the fault signal segment will
be determined according to the fault diagnosis efficiency of the
DRSFSI-DL method, using the same deep learning networks.
Then the best length of the signal segment can be applied to
verify the effects of fault diagnosis of the DRSFSI-DL method,
compared with the PSD images and cepstrum images.

5.1. Comparison of the Classification
Accuracy of Different Deep Learning
with Different Data Lengths

Five network structures, namely, GoogleNet, ResNet50,
ResNet101v2, ResNet152v2, and Inception ResNet v2, are
used here as the network models for deep learning. In addi-
tion, four different segment lengths are selected for the raw
data based on the use of the CWRU bearing datasets, i.e., data
segment lengths of 8192, 4096, 2048, and 1024, were pro-
cessed by the DRSFSI-DL method. The optimal data segment
length is determined by comparing the training classification
accuracy on the five deep networks with different data segment
length cases. Note that the above datasets are all from dataset
A.

Table 2. Performance of images with different data segment lengths for vari-
ous DL networks.

Data GoogleNet ResNet50 ResNet101v2 ResNet152v2 Inception
Length ResNet v2
1024 95.44% 98.10% 98.45% 98.70% 98.98%
2048 97.56% 94.53% 97.65% 97.65% 98.09%
4096 98.70% 99.11% 99.51% 100.00% 100.00%
8192 96.40% 98.45% 98.19% 98.71% 99.48%

Table 3. Comparison of fault diagnosis of frequency spectrum image with DL
networks using dataset A.

DL Models DRSFSI PSD images Cepstrum images
GoogLeNet 98.70% 87.27% 73.29%
ResNet50 99.11% 95.33% 92.68%

ResNet101v2 99.51% 96.36% 92.68%
ResNet152v2 100.00% 97.61% 93.15%

Inception ResNet v2 100.00% 98.18% 94.84%

When the DRS frequency spectrum images of the differ-
ent data lengths of dataset A is used to train the various deep
learning neural networks, the accuracy of classification of the
five deep learning networks using the four kinds of data seg-
ment length can be seen in Table 2. Among the five deep
learning networks, ie. GoogleNet, ResNet50, ResNet101v2,
ResNet152v2, and Inception ResNet v2, the deep learning
networks at the end always yielded the best classification accu-
racy. The best classification accuracy can be obtained for the
same network model when the DRSFSI with a segment data
length of 4096 is used as training input, and the highest classi-
fication accuracy of 100.00% can be obtained for ResNet152v2
and Inception ResNet v2 deep learning networks for classifi-
cation. Therefore, the segment data length of 4096 will be de-
termined for the following part. Note that the results obtained
by using PSD and cepstrum are consistent with Table 2, which
is not mentioned here.

5.2. Fault Diagnosis Using DRSFSI and Two
Other Frequency Spectrum Images with
DL Networks

To reflect the superiority of DRSFSI-DL for fault classifica-
tion, the proposed DRSFSI method is also compared with PSD
images and cepstrum images. Through the use of dataset A,
the classification effects of three frequency spectrum images
with five different DL networks can be obtained, as shown in
Table 3.

According to Table 3, when the conventional frequency
spectrum images are used for deep learning networks, the
fault diagnosis effect of the PSD images is much better that
that of the cepstrum images. However, the proposed DRSFSI
is far superior to both conventional frequency spectrum im-
ages. And using DRSFSI, the highest accuracy rate will be
achieved for all the deep learning networks. The latter four
models reach more than 99%, while GoogLeNet can also get
98.70%. The DRSFSI combined with ResNet152v2 and In-
ception ResNet v2 networks can achieve the highest fault di-
agnosis accuracy, 100.00%. Fig. 9 and Fig. 10 show the varia-
tion process of the classification accuracy and training loss rate
of the Inception ResNet v2 network over 50 training epochs.
It can be seen from the figures that in the process of network
training, the classification accuracy and loss rate of the model

International Journal of Acoustics and Vibration, Vol. 28, No. 2, 2023 215



Z. Li, et al.: RESEARCH ON ROLLING BEARING FAULT DIAGNOSIS BASED ON DRS FREQUENCY SPECTRUM IMAGE AND DEEP LEARNING

Figure 9. Training accuracy.

Figure 10. Training loss.

has reached a relatively high level around the 10th epoch. Al-
though there are fluctuations in the later training epochs, the
overall results are excellent.

Figure 11 denotes the confusion matrix of PSD images for
dataset A, visualizing the classification results of the PSD with
the Inception ResNet v2 network, and the results of classi-
fication accuracy are not good enough. Fig. (12) denotes
the confusion matrix of DRSFSI-DL for dataset A, visualiz-
ing the classification results of the DRSFSI with the Incep-
tion ResNet v2 network. It can be seen that the highest clas-
sification accuracy, 100.00%, can be achieved with the use of
the Inception ResNet v2 network when the DRSFSI is used as
the classification dataset image, proving the effectiveness of
the proposed DRSFSI-DL method.

6. THE GENERALIZATION OF THE DRSFSI-
DL FAULT DIAGNOSIS METHOD

As mentioned above, the three kinds of frequency spectrum
images have been applied to train the five deep learning net-
works considering dataset A. To verify the generalizability of
the proposed DRSFSI-DL for fault diagnosis, these trained
deep networks are also used directly to diagnose dataset B,
which is different from dataset A. The classification results on
the five trained networks are shown in Table 4.

From Table 4, it can be seen that when using the five types
of deep networks trained using dataset A to diagnose the faults

Figure 11. The confusion matrix of PSD images for dataset A.

Figure 12. The confusion matrix of DRSFSI for dataset A.

Table 4. Comparison of three frequency spectrum images under dataset B.

DL Models DRSFSI PSD images Cepstrum images
GoogLeNet 75.16% 58.22% 56.16%
ResNet50 80.63% 60.36% 61.59%

ResNet101v2 83.10% 62.53% 65.36%
ResNet152v2 85.36% 62.87% 67.33%

Inception ResNet v2 87.56% 65.70% 67.12%

in working dataset B directly, the fault diagnosis accuracy of
all three frequency spectrum images decreases to some extent.
However, the diagnosis effect of the PSD images and cepstrum
images is worse. In contrast, the generalization of DRSFSI-DL
is more robust. The accuracy decreases relatively less, showing
that the DRSFSI-DL method has a reasonably strong general-
ization ability. As can be seen between Table 3 and Table 4, the
average classification accuracy of DRSFSI, PSD images and
cepstrum images in deep learning using dataset A is 99.46%,
94.95% and 87.64% respectively. Under dataset B, the average
classification accuracy is 82.36%, 61.94% and 63.51%, respec-
tively, and the decline rate is 17.10%, 33.10% and 24.13% in
turn. DRSFSI has stronger robustness and generalization abil-
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Figure 13. The confusion matrix of the PSD image for dataset B.

Figure 14. The confusion matrix of DRSFSI for dataset B.

ity.
Figure 13 shows the results of the DRSFSI-trained network

under dataset A for classifying fault data of dataset B. It offers
its better generalization performance and proves the effective-
ness of the proposed DRSFSI-DL method. Figure 14 shows
the network trained by PSD images in dataset A for classify-
ing fault data in dataset B. This illustrates its poor generaliza-
tion performance, with a decrease in classification accuracy of
nearly 30%.

7. THE VALIDATION OF THE DRSFSI-DL
FAULT DIAGNOSIS METHOD

In this section, the validity of the proposed DRSFSI-DL
method is verified by using the bearing fault dataset of the Uni-
versity of Ottawa, which collects the vibration signals of bear-
ings with different health statuses over time. These signals can
be generally classified into two cases: the first case is the bear-
ing health status, which involves health, inner race fault and
outer race fault. The second case is the operating conditions,

Table 5. Classification of the University of Ottawa dataset.

Categories of Fault Health Inner Fault Outer Fault
Numbers of Fault 3

Table 6. Performance of spectrum images with different DL networks.

DL models DRSFSI
ResNet50 98.06%

Inception ResNet v2 98.63%

Figure 15. Training accuracy.

which involves increasing rotation speed, decreasing rotation
speed, decreasing rotation speed after increasing rotation speed
and increasing rotation speed after decreasing rotation speed.
Therefore, a total of 12 different bearing working conditions
are set. The data collection in each case contains two methods,
the vibration signal collected by using the accelerometer and
the speed data collected by using the encoder. The sampling
frequency for all data is 200,000 Hz and the sampling time is
10 seconds.

For the different bearing fault datasets of the University of
Ottawa, this section will mainly classify them according to
their health status, i.e., health, inner race fault and outer race
fault. The acceleration signal measured by the accelerometer is
used as the time domain signal for the fault diagnosis, and the
classification ratio of the training set to the test set is 3:1 dur-
ing the training process. The specific classification is shown in
Table 5.

After classifying the dataset, the fault data under the corre-
sponding operating conditions were converted into DRS fre-
quency spectrum images and classified by deep network mod-
els. The ResNet50 network and Inception ResNet v2 network
are only used to verify for simplicity, with the specific classifi-
cation accuracy shown in Table 6.

As shown in the above table, the proposed DRSFSI-DL
fault diagnosis method was effectively validated on the bear-
ing fault dataset of the University of Ottawa with a maximum
of 98.63%. Fig. 15 and Fig. 16 show the accuracy and loss rate
during the training process, respectively. Overall, the classifi-
cation accuracy achieved on this dataset is slightly lower than
that achieved on the CWRU dataset, but it can still effectively
show that the method has good fault diagnosis capability and
generalization performance, because the new data has not been
used for training the deep networks.
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Figure 16. Training loss.

8. CONCLUSIONS

In this paper, a new fault diagnosis method called DRSFSI-
DL has been proposed, the DRS frequency spectrum images
were used as the input of five existing deep learning networks
and compared with the PSD images and cepstrum images. The
main conclusions are as follows.

1. The DRS frequency spectrum images can be obtained
from fault signal using DRS method. To find the best
data segment length of fault data for DRSFSI used to
train deep learning networks, four different data segment
lengths of 8192, 4096, 2048, and 1024 respectively are
investigated through the use of five deep network models.
It was found that the best data segment length is 4096,
which can give the best diagnosis accuracy.

2. The original fault data were converted into the DRSFSI,
the PSD image and cepstrum image respectively as the
input of deep learning networks, and five kinds of deep
learning network models are trained for the fault diag-
nosis. The fault diagnosis accuracy of the DRSFSI-DL
method proposed was much higher than those of PSD im-
ages and cepstrum images.

3. In order to check the generalization ability of the
DRSFSI-DL method, the deep learning network models
trained by dataset A was directly used to diagnose the
faults dataset B, which has something to do with dataset
A. The results showed that the generalization ability of
the DRSFSI-DL method was much better than those of
PSD images and cepstrum images.

4. To further verify the reliability of the proposed method, a
brand-new fault dataset which has nothing to do with the
CWRU dataset, has been diagnosed using the DRSFSI-
DL method. It also showed the better fault diagnosis ac-
curacy with better generalization ability for the DRSFSI-
DL method. In the future,the authors will strive to
improve the DRSFSI-DL network considering transfer
learning to achieve higher accuracy in the case of insuffi-
cient fault data under cross-working conditions.
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