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Measurement noise is always part of the vibration data in vibration-based structural health monitoring (SHM).
However, it might be challenging to regulate the state in which civil constructions are tested in the field. More-
over, strong noise from a variety of sources, make damage detection inaccurate. Additionally, the precision of the
current studies will eventually begin to saturate and possibly deteriorate. To overcome the mentioned limitations,
this research proposed a deep learning framework for monitoring the structural health. First, Filter Net is sug-
gested, which integrates neural network techniques for de-noising observed vibration signals with skip connection,
dropout and shuffling. The next step was to propose a smooth sparse deep boltzmann network to detect structural
degradation. A sparse penalty component built on the inverse function norm was added to improve performance. In
addition, a greedy algorithm is used to perform unsupervised learning, which trains the first Restricted Boltzmann
Machines (RBM) using the sampling data before using the first RBM’s parameters to initialize the Deep belief
networks (DBNs) first layer’s parameters. Then, a BP network is used in a fine-tuning method to get the final
systematic parameters. As a result, the RBM provides the Smooth Sparse Deep Boltzmann Network (SSDBN)
with a decent starting value and therefore ensures higher performance.

NOMENCLATURE

E energy function
visi the binary state of the visible unit i
ci the bias weight of visi
hidj the binary state of the hidden unit j
bj the bias weight of hidj
wij the collection weight of the hidden

layer hidj and the visionary layer
visi

m,n total number of the visible
and hidden units

λ model parameter of the RBM
z partition function
η step size
⟨⟩data probability distribution of

prob(vis, hid;λ)

⟨⟩recon probability in relation to the model
distribution

xo observed data
prob(hidL−1 ∨ hidL) conditional probability of hidL−1

ŷ dependent variable’s anticipated or
forecast value

Uo value of ŷ when every independent
variable

X1 through Xm separate predictor or independent
variables

U1 through Um regression coefficients
ε random error

1. INTRODUCTION

The recent civil engineering structure disasters that resulted
in tragic deaths and significant property damage have brought
attention to the need for preventative measures to lessen the
effects of structural failures. Damage to civil structures can
decrease their stiffness and stability, which lowers the perfor-
mance over their lifetime.1 Utilizing a number of structural
damage detection methods, an automated structural health
monitoring (SHM) system that might provide advance notice
of such structural deterioration has been developed.2 There-
fore, the evaluation of potential damage to structures in dif-
ferent permanent and/or accidental load scenarios is an impor-
tant issue to be considered in rehabilitation decisions and emer-
gency measure planning.3 Potential damages can be found by
employing processes for assessing the structural health, struc-
tural monitoring, and the use of methods for determining the
dynamic characteristics of structures in the time or frequency
domain. Any modification of a structure’s dynamic character-
istics noted by a monitoring procedure can be a sign that its

International Journal of Acoustics and Vibration, Vol. 28, No. 3, 2023 (pp. 323–331) https://doi.org/10.20855/ijav.2023.28.31978 323



P. Kumar. S, et al.: DYNAMIC STRUCTURAL HEALTH MONITORING WITH FILTER NET DE-NOISING AND SSDBN. . .

capacity to support loads has shrunk.4

The choice of extracted features and classifiers is crucial for
the effectiveness of machine learning-based structural damage
detection systems. A suitable classifier is essential for accu-
rately classifying retrieved features based on their nature. Trial
and error efforts have been made to identify the ideal combina-
tion of recovered characteristics and classifiers. The effective-
ness of damage detection is affected by poor hand-crafted fea-
tures and inadequate classifiers. Additionally, feature extrac-
tion and classification methods often require human labor and
processing time, preventing the application of machine learn-
ing techniques in vibration-based structural damage detection
for real-time SHM operations.

Deep belief networks (DBNs) are generative models trained
utilising a sequence of stacked Restricted Boltzmann Machines
(RBMs), or occasionally Auto encoders, along with one or
more extra layers to create a Bayesian Network. There are
no intra-layer connections due to the usage of RBMs (thus the
“restricted” in Restricted Boltzmann Machines).9 Addition-
ally, the layers employ unsupervised pre-training utilising an
RBM stacking process combining contrastive divergence be-
cause the initialization of the nodes has a significant impact
on how well DBNs function. DBNs are frequently utilised
for various categorization purposes as well.10 The processing
of vibration signals for various types of data in the time, fre-
quency, and time-frequency domains has been the subject of
recent research. For periodic signals, traditional time domain
averaging techniques are better suited. since the variable vi-
bration frequency or amplitude of signals, denoising’s impact
on other types of signals may be limited.11 The removal of
noise beyond the user-defined frequency range of attention in-
volves using typical frequency domain filtering methods. Ex-
amples include low-pass filtering and band-pass filtering. The
implementation of these approaches is restricted by the need
for prior understanding of formations with modal frequencies
and the fluctuation ranges that go along with them as a result
of changes in operational and environmental variables.12 The
main contribution of this proposed deep learning framework
for monitoring the structural health is as follows:

• This framework introduced FilterNet, to remove strong
noise from a variety of sources, including ambient
noise, measurement noise, and instrumental noise. The
proposed FilterNet is integrated with skip connection,
dropout, and shuffling approaches for denoising observed
vibration signals by employing neural network.

• Following that, to identify structural damage, the Smooth
Sparse Deep Boltzmann The suggested network incorpo-
rates a sparse penalty term based on the inverse function
norm to enhance performance, and it also use BP network
as a method for fine-tuning to obtain the final systematic
parameters.

As a result, the suggested framework provides a higher per-
formance when compared to the random initialization of the
existing neural network.

The following describes the structure of this research study:
Monitoring of the operational and structural health and dy-
namic assessments of building structures are covered in Sec-
tion 2. The innovative method for determining structural dam-
age using vibrational data was explained in Section 3. More-
over, Finally, Section 5 brings this research article to a close
by discussing the outcomes of the recommended strategy that
were mentioned in Section 4.

2. LITERATURE SURVEY

Hubbard et al.13 compared and contrasted two distributed
fibre optic sensing systems, based on Rayleigh in this research
focused on how well they track the dynamic structural be-
haviour of a model wind turbine tower subject to both free and
forced vibration. To examine if they can detect structural is-
sues like loose bolts and material degradation inside the tower,
they are also put through extra testing. Phase-based optical
time domain reflectometry (Φ-OTDR), a technique utilised in
distributed acoustic sensing, and optical frequency domain re-
flectometry (OFDR) are the two techniques under investiga-
tion (DAS). Although OFDR is a tried-and-true strain measur-
ing method, it can only detect strain over very small distances,
which limits its applicability for structural health monitoring
(10 s of meters). Utilizing the OFDR, the readings obtained
with the Φ-OTDR, which has a significantly larger measur-
ing range, were confirmed (several kilometres). Because of
its sensing distance capability, Φ-OTDR is a viable approach
for observing several wind turbines networked together with a
single fibre optic cable.

Sivasuriyan et al.14 looked at damage assessments for
building structures as well as operational and structural health
monitoring (SHM). The study addressed scenarios of evalu-
ation and self-monitoring, involving damage detection, and
assessed structures by installing sensors and assuming weak
spots. From this aspect, a building may be continuously mon-
itored in real time using cutting-edge sensor technology and
data collecting methods. In order to forecast the damage, the
response and behaviour of the structure were also monitored
and noted. However, the models’ data gathering and accuracy
must be enhanced in future.

Maes et al.15 looked at the viability of using natural frequen-
cies to assess the structural health of a steel bowstring railroad
bridge in Belgium. In particular, environmental influences that
change the modal features of the structure, such as tempera-
ture, are removed. Two black-box modelling strategies that are
used to eliminate natural frequency fluctuations brought on by
changes in the environment are compared to one another. A
receiver operating characteristic (ROC) curve analysis, which
considers the actual refit as well as several other small struc-
tural adjustments that are depicted by a thorough finite element
model of the structure, is used to evaluate the effectiveness of
these procedures. Both the real refit and lesser structural alter-
ations that cause only slight natural frequency changes show
the state transition.

Liu et al.16 focused on how a high-speed railway’s ballasted
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track construction continually carries the weight of moving ve-
hicles, and the ballasted bed gradually dilutes and dissipates
the vibration energy. A ballast sensor was created by integrat-
ing sensors within the ballast. It was placed on the ballasted
rail in order to investigate structural health monitoring (SHM)
during an impact excitation and to verify the co-simulation
model using the Discrete Element Method (DEM) and Multi
Body Dynamics (MBD). The findings shown that dispersed
ballast sensors are capable of realising the SHM state of the
ballasted track. The major vibration frequency of the ballast
peaked at 153 Hz at the sleeper box, sleeper end, and ballast
shoulder in response to an impact stimulation. Despite the re-
duction of the vibration amplitudes at the sleeper end and bal-
last shoulder, a secondary peak in the vibration amplitude of
the ballast emerged at the sleeper box at double the frequency.
The ballasted bed construction performed better at dampening
vibrations in the low-frequency region than it did in the high-
frequency regime. When high-frequency vibrations caused the
surface layer of the ballast at the sleeper box to splash, the bal-
lasted track structure’s structural integrity was compromised.
The ballasted bed’s two sides take on the appearance of a “cy-
clone” under the rolling wheel load.

Jahan et al.17 used an innovative hybrid Fuzzy Krill Herd
technique to evaluate the general structural integrity of an op-
erational bridge. Despite prior research on the algorithms, it
is still unknown how well they might monitor the structural
health of an actual bridge structure. Two different types of
concrete and steel girder bridges are constructed in this article
using the method. Finite element (FE) modelling was used to
provide an extra numerical study on the dynamic characteris-
tics and structural behaviour of the bridges. To determine if
the suggested line of action is effective, basic two-dimensional
girder simulation models and a three-dimensional FE model
were utilised. The findings show that even with noisy input
data or data that lacks values, the fuzzy logic technique may
still gather reliable information. According to the findings,
utilising torsional modes and increasing the number of mea-
suring modes may accurately diagnose damage in symmetric
structures.

Bedon et al.18 persented unique homemade MEMS sen-
sor prototypes in this work and validated them by first labora-
tory tests (shaking table experiments and noise level measure-
ments). Following a discussion of their use for the dynamic
identification of existing, full-scale structural assemblies based
on the highly promising preliminary results, comparison cal-
culations with earlier literature results are used to demonstrate
their potential. These calculations include both on-site Exper-
imental Modal Analysis (EMA) and Finite Element Analyt-
ical estimations (FEA). The case study for the full-scale ex-
perimental validation of MEMS accelerometers is the cable-
stayed bridge at Pietratagliata (Italy). The study’s dynamic
findings, which are summarised below, show the MEMS ac-
celerometers’ extraordinary skill and suggest its applicability
and promise in SHM applications. They also show evidence of
relatively consistent and dependable predictions.

3. NOVEL DEEP LEARNING FRAMEWORK
FOR MONITORING THE STRUCTURAL
HEALTH

For an efficient and reliable condition assessment of struc-
tures, high-quality data with substantial dynamic vibration in-
formation of the structures and low-level noises in capacities
are frequently needed. However, it might be challenging to
regulate the state in which civil constructions are tested in the
field. Strong noise from a variety of sources, including am-
bient noise, measurement noise, and instrumental noise, can
readily corrupt measured dynamic responses. One major prob-
lem with deep learning-based approaches is that accuracy may
eventually start to saturate and even worsen if the depth of net-
works keeps growing. Additionally, the precise distribution of
damage must be known beforehand to calculate the joint prob-
ability. This is difficult since it requires a lot of answer infor-
mation, yet only a tiny fraction of that data is related to several
permutations of shaky connections that render the programme
useless. To overcome the mentioned limitations this study fo-
cuses on developing a deep learning framework for monitor-
ing the structural health by improving corrupted data, exploit-
ing useful data, and forecasting various structural defects. To
filter noise, this study produced FilterNet which is integrated
with skip connection, dropout, and shuffling approaches for
denoising observed vibration signals by employing neural net-
work. In addition, to identify structural damage, the Smooth
Sparse Deep Boltzmann Network was proposed. Here, a sparse
penalty term based on the inverse function norm was added to
improve performance, a greedy algorithm was used to perform
unsupervised learning, BP network was then used in a fine-
tuning method to get the final systematic parameters, and to
further anticipate the structure’s health, the last layer used lin-
ear regression. The architecture of the suggested approach is
shown in Fig. 1.

3.1. Data Denoising by Proposed FilterNet
Approach

To filter noise, obliterate extraneous data, and maintain the
dominant frequency, trained convolutional layers were used in
this study. The produced FilterNet was built by a convolution
layer with a bottleneck structure integrated with skip connec-
tion, dropout, and shuffling approaches for denoising observed
vibration signals by employing neural network.

As shown in Fig. 2, the proposed Filter Net had an input
layer, convolutional layers, and an output layer as part of its
design. For input signals that will be denoised, there were
as many neurons in the input and output layers as there were
sample points. There were three compression layers, one bot-
tleneck layer, three reconstruction layers, and a final resizing
layer among the convolutional layers. Convolution of the in-
put and nonlinear activation of the output using a leaky recti-
fier were the two operations involved in the compression lay-
ers and bottleneck layer, respectively. Convolution of the in-
put features, nonlinear activation of the output using a leaky
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Figure 1. Architecture of the proposed approach.

Figure 2. Architecture of FilterNet with a bottleneck structure.

rectifier, resizing of the active output by sup-pixel shuffling,
and resizing of the output were the four operations that make
up the reconstruction layers. The activated output was finally
concatenated with the features of the compression layer in the
reversed position (skip connection). The convolution and re-
sizing processes are also included in the final layer.

By continuously deleting the higher-level representation of
input signals and utilising convolution kernels with a stride
of two, the compression and bottleneck layers lower the di-
mension of feature maps. To accommodate the higher-level
features, the number of feature maps was gradually being in-
creased. The output feature maps from the Bottleneck layer
have the smallest dimensionality yet match the highest level of
input data features.

One major problem with deep learning-based methods is
that, as network depths increase, accuracy may eventually start
to saturate and even degrade. Henceforth, a dropout layer
(p=0.5) was proposed in this research to address the overfit-
ting concerns. Dropout is the term used when neurons separate
from the nearby input and output layers and eventually stop
functioning. During training with a certain batch of samples,

neurons in networks were randomly killed to distinguish the
co-adapted groups of neurons. The network’s generalisation
ability was improved because of the more robust training of the
remaining neurons. Following that, FilterNet reconstructs out-
put denoised signals by using reconstruction layers only to take
account representative information from input signals. The di-
mension steadily increases and the number of feature maps de-
creases as a result of the reconstruction layers.

To implement the skip connection, the lengths of feature
maps in bottom layers to higher layers should be consistent.
The output feature maps from the matched compression layer
were twice as large even though they were just a fraction of the
length of those from the reconstruction layer. The sub-pixel
shuffling operation was involved to resize the output feature
maps from the reconstruction layers. Two feature maps from
each of the two sets of feature maps were then combined by
interpolation to create a single map. It is an instance of a sub-
pixel convolution layer in one dimension. Compared to de-
convolution, this was a more efficient procedure for shuffling.

Moreover, Skip connections were implemented by concate-
nating output features from the compression and reconstruc-
tion layers in mirrored locations. The paired original and noisy
signals were quite similar especially when only a low level of
noise exists in the noisy signal. Due to the symmetric archi-
tecture of FilterNet, the layers in the mirrored position were
sharing many features such as the waveform and structural fre-
quencies information. In order to replace the additional in-
formation lost during convolution, the characteristics retrieved
from lower layers are effectively shuttled to top layers via the
skip links between each pair of layers. This prevented gradi-
ent disappearing and made it possible to train deeper networks
effectively since it enables gradients to be directly returned to
lower layers.

Consequently, the shuffling method upscale feature maps,
the suggested FilterNet approach dropout strategy lessened
model overfitting, and it also effectively achieved the goal of
de-convolution. The model’s training effectiveness was greatly
improved by skip connection. Then, the denoised data’s were
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fed into the proposed SSDBN model which is described in the
following section.

3.2. Structural Damage Identification Based
on SSDBN Model

A deep neural network (DBN) is a class of multiple-hidden-
layer probabilistic generative graphical models. The hidden
layer of each sub-network is separated as the visible layer for
the succeeding, making the DBN resemble a stack of RBM
networks. A DBN has l layers that RBMs trained. In order to
control its probability distribution, an energy function E with
the parameter set as λ = {W, b, c}.

E(vis, hid;λ) = −
m∑
i=1

civisi −
n∑

j=1

bjhidj

−
m∑
i=1

n∑
j=1

visihidjwij ; (1)

where visi denotes the binary state of the visible unit i; hidj
represents the binary state of the hidden unit j; ci represents the
bias weight of visi; bj denotes the corresponding bias weight
of hidj ; wij is the collection weight of the hidden layer hidj
and the visionary layer visi; m and n denote the total number
of the visible and hidden units, respectively; and λ represents
the model parameter of the RBM.

The joint probability of the state prob(vis, hid) can be de-
termined using Eq. (1) energy function, stated the following.

prob(vis, hid;λ) =
e−E(vis,hid;λ)

z(λ
; (2)

z(λ) =
∑
(v,h)

e−E(vis,hid;λ); (3)

Here, z is a partition function specified in Eq. (3) that enables
Eq. (3) sum of the probability distribution to equal 1. Training
the RBM entails changing the model parameter based on the
training examples. It can be shown from Eq. (3) that altering
the model parameter λ would result in a drop or rise in the
likelihood of the data v.

Contrastive divergence (CD) is a new approach that has been
developed to obtain the joint probability. A training method to
approximate the graphical slope showing the correlation be-
tween a network’s weights and error is contrastive divergence.
This technique is crucial to demonstrate RBM’s how to activate
their “hidden” nodes appropriately, then to adjust their trigger
parameters based upon input feedback and continually repeat
this dimension reduction process. A few Gibbs sampling steps
are all that are necessary to estimate the gradient information
when employing the CD approach. As a result, the compli-
cated derivation procedure has been shown in equation using
the CD approach.

wt
ij = wt−1

ij + η (⟨visihidj⟩data − ⟨visihidj⟩recon)
cti = ct−1

i + η (⟨visi⟩data − ⟨visi⟩recon)
btj = bt−1

j + η (⟨hidj⟩data − ⟨hidj⟩recon)
;

(4)

where η represents the step size; ⟨⟩data represents that the
probability distribution of prob(vis, hid;λ) and ⟨⟩recon refers
to the probability in relation to the model distribution. As a
result, the RBM has the flexibility to select the hidden layers.

The whole training process contained two stages. The first
stage, namely, “pretraining,” was based on the greedy algo-
rithm to obtain the initial value. The second stage was called
“fine tuning,” which generally utilized the supervised algo-
rithm to obtain the final network parameters.

For the following layers, the greedy learning algorithm was
employed to train the network, with the corresponding input
defined as the activation of the hidden layer in the previous
subnetwork. A composite model was developed by using the
stacked RBMs. The top two layers were defined as the RBM,
and the lower one a direct belief net. This hybrid model was
named after DBN, with the probability function calculated as:

prob(x0, hid1, hid2, . . . , hidL) = prob(hidL−1, hidL)·

·prob(vis|hid1)
L−1∏
L=2

prob(hidL−1 ∨ hidL). (5)

The first RBM’s parameters, x0 and h1, were developed us-
ing the observed data x0, where x0 denotes the observed data
and prob(hidL−1 ∨ hidL) denotes the conditional probability
of hidL−1 given hidL · prob(hidL−1 ∨ hidL is the joint prob-
abilistic distribution, which can also be viewed as a RBM’s
probability distribution with the visible unit hidL−1 and the
hidden unit hidL.

There were two parts to the entire training procedure. The
greedy algorithm was used in the first stage, known as “pre-
training,” to determine the starting value. The final network
parameters were often obtained during the second step, which
was referred to as “fine tuning,” which used the supervised
technique.

An example of an unsupervised method was the greedy al-
gorithm, which trains the first RBM (which is made up of the
data x and h1) using sampling data. The parameters of the first
RBM are then used to initialise the parameters of the DBN’s
first layer. The DBN’s input for the first RBM is determined
using Eq. (4). When L layers have been added, the recently
computed output will be used as the first layer’s input. The
Back Propagation network was then used to derive the ultimate
systematic parameters in a fine-tuning procedure that was then
added. The characteristics from the compression layer’s final
concatenation are activated in the output visible layer in the
reversed position.

Finally, the linear regression layer was used to identify the
structural damage from vibrational data. In this instance, 30%
of the data was being used for testing and 70% for training.
The equation of the linear regression is as follows:

ŷ = U0 + U1X1 + U2X2 + U3X3 + . . . UmXm + ε; (6)

where ŷ is the dependent variable’s anticipated or forecast
value; X1 through Xm are m separate predictor or indepen-
dent variables; U0 is the value of ŷ when every independent

International Journal of Acoustics and Vibration, Vol. 28, No. 3, 2023 327



P. Kumar. S, et al.: DYNAMIC STRUCTURAL HEALTH MONITORING WITH FILTER NET DE-NOISING AND SSDBN. . .

Table 1. Parameters of the proposed FilterNet.

Layer Kernel Kernel Stride Padding Input Output Shuffling
number size shape shape

Input — — — — (1,944) (1,944) —

Comp 1 128 64 2 Same (1,944) (128,512) N

Comp 2 256 32 2 Same (128,512) (256,256) N

Comp 3 512 16 2 Same (256,256) (512,128) N

Bottleneck 944 8 2 Same (512,128) (944,64) N

Recon 3 944 16 1 Same (944,64) (944,128) Y

Recon 2 512 32 1 Same (944,128) (512,256) Y

Recon 1 256 64 1 Same (512,256) (256,256) Y

Final 2 8 1 Same (256,512) (1,944) Y

Output — — — — (1,944) (1,944) —

Figure 3. Structural Damage Identification based on SSDBN Model.

variable (X1 through Xm) equals zero; U1 through Um are
calculated regression coefficients, ε — random error. Figure 3
depicts the structural damage identification based on SSDBN
Model.

As a result, our research offers a greater performance in
terms of accuracy by utilising the suggested SSDBN model.
In addition, the findings obtained by utilising our technique
are presented in the following part.

4. ACQUIRED RESULTS

This section details the performance and comparative find-
ings of the suggested strategy, as well as the implementation
outcomes

Tool: PYTHON 3

OS: Windows 7 (64 bit)

Processor: Intel Premium

RAM: 8GB RAM

4.1. Dataset Description
The dataset used in this study was compiled using sensor

readings taken from the Vibration Database.20 Here, PCB

Figure 4. Various signals from the vibrational data.

353B33 High Sensitivity Quartz ICP accelerometers were in-
stalled on the housing of each bearing. For each bearing two
accelerometers were installed in radial directions, orthogonal
to each other; in this study, sensor measurements were ac-
quired on four signals that were continuously loaded over a
period of days until they failed. Each file in our dataset is a
snapshot of a 1-second vibration signal that was recorded at
10-minute intervals. Each file has 20,480 sensor data points
since the sensors are read at a 20 kHz sampling rate. Figure 4
illustrates the 4 signals that make up this dataset at various
times.

4.2. Performance Measures
The various performance metrics of the suggested deep

learning system for tracking structural health are described in
this section.

Using our proposed FilterNet with integrated skip connec-
tion, dropout, and shuffle techniques for de-noising observed
vibration signals, which is shown in Fig. 5, the training loss of
the recommended method is 0.012 at epoch 5.

Using our proposed FilterNet with integrated skip connec-
tion, dropout, and shuffling algorithms for denoising observed
vibration signals, as shown in Fig. 6, the testing loss of the
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Figure 5. Training loss of the proposed approach.

Figure 6. Testing loss of the proposed approach.

recommended strategy is 0.0122 at epoch 5.
Structural damage identification results of the proposed

Smooth Sparse Deep Boltzmann Network is depicted in Fig. 7.
Figure 7 identifies the structural damage in the signal dataset.
A confusion matrix displays the appropriately recognised
structural damage on the primary diagonal (top left to bottom
right). In the additional cells, known as true negatives or false
negatives, the erroneous labels are visible. The suggested hy-
brid model therefore produces superior outcomes. From that
confusion matrix, we obtain the following performance values.

A number of measures, including recall, accuracy, F1 Score,
and precision are used to evaluate the efficacy of our proposed
method as well as the presentation of the method. The for-
mulae described below are used to compute the performance
metrics Accuracy, Precision, Recall, and F1 Score.

Accuracy =
TP + TN

TP + TN + FP + FN
; (7)

Precision =
TP

TP + FP
; (8)

Recall =
TP

TP + FN
; (9)

Figure 7. Results of structural damage identification.

Figure 8. Proposed approach performance results.

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall
; (10)

where TP is ture positive, TN is true negative, FP is false 2
positive and FN is false negative.

The suggested method’s performance evaluation measures
are shown in Figure 8. The results were 97% accuracy, 97.73%
F1 score, 100% precision, and 95.56% recall. By implement-
ing a unique Smooth Sparse Deep Boltzmann Network, Accu-
racy, F1 score, precision, and recall are all improved by our
proposed approach.

4.3. Comparison Results

The suggested strategy is compared to standard methods
like K-Nearest Neighbour (KNN), C-Support Vector Classifier

Table 2. Accuracy Comparison.

Methods Data Accuracy (%)
KNN Crack 94.6
SVC Crack 89.3

SVMH Crack 85.5
KNN Corrosion 82.8

SVMH Corrosion 84.0
Proposed Crack 97
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Figure 9. Comparison methods on structural damage detection accuracy.

Table 3. F1-Score Comparison.

Methods Data Accuracy (%)
KNN Crack 92.6
SVC Crack 84.3

SVMH Crack 83.5
KNN Corrosion 82.2

SVMH Corrosion 88.8
Proposed Crack 97.73

(SVC), and Linear Support Vector Classifier (SVMH) in this
part that deals with the comparison of the current techniques.19

Figure 9 displays the total accuracy comparison. Using
Smooth Sparse Deep Boltzmann Network enhances the sug-
gested method’s accuracy. Our proposed method outperforms
the baseline K-Nearest Neighbour (KNN), C-Support Vector
Classifier (SVC), Linear Support Vector Classifier (SVMH),
K-Nearest Neighbour (KNN), and Linear Support Vector Clas-
sifier (SVMH) for crack, corrosion, and corrosion, respec-
tively, with accuracy rates of 94.6%, 89.3%, 85.5%, and 82%.
Our unique, revolutionary approach has a 97% accuracy rate,
which is higher than conventional approaches.

Figure 10 displays a comparison of all F1 scores. By in-

Figure 10. Comparison methods on structural damage detection F1-Score.

cluding a linear regression layer into a smooth sparse deep
Boltzmann network, the F1-score of the suggested method
is increased. Comparing our proposed strategy to the base-
line, we find that higher F1-scores for crack data, corrosion
data, and crack data using K-Nearest Neighbour (KNN), C-
Support Vector Classifier (SVC), Linear Support Vector Clas-
sifier (SVMH), and K-Nearest Neighbour (KNN), respectively,
with 92.6%, 84.3%, 83.5%, 82.2%, and 88.8%. As a conclu-
sion, our novel, original strategy performed better than base-
line procedures with an F1-score of 97.73%.

5. CONCLUSION

This study develops a novel deep learning framework to
overcome the problems such as strong noise in the vibrational
data, accuracy saturation, and a need of large amount of data.
To filter the noise, obliterate extraneous data, and maintain the
dominant frequency this research proposes a FilterNet which
is integrated with skip connection, dropout and shuffling layer.
As a result, the FilterNet provides reconstructed signals by ef-
fectively denoising of input signals. Moreover, to identify the
structural damage from the denoised data, this research pro-
poses a Smooth Sparse Deep Boltzmann Network. The pro-
posed network identifies the structural defects by the enormous
accuracy. Moreover, our research compares the proposed ap-
proach to the baseline approach since the proposed approach
provides the best representation and enhances the system’s per-
formance. The suggested findings of this study are significant,
with an accuracy of 97% by using the signal dataset which is
extremely effective in detecting structural damage.
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