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An air flow-driven micro-turbine, widely used in air-condition control systems in aircraft cabins, train coaches, etc.,
exhibits complex vibration behaviors under stable or unstable inlet flow conditions, and especially has a certain
correlation with speeds. In this paper, the vibration responses of the micro-turbine undergoing stable and unstable
inlet flows measured on a test rig are analyzed and compared by using different signal processing methods, which
include time and frequency domain methods, and statistical and nonlinear methods. First, the test rig system of
the airflow-driven micro-turbine, the instrument system and four typical experimental cases are introduced. Then
the measured vibration signals are analyzed and compared by time domain characteristic parameters (peak-to-peak
value, RMS value and kurtosis value), statistical parameters (auto-correlation and BDS), and amplitude spectra
in the frequency domain, statistic spectrum indicators (SSI) based on Welch’s periodogram of power spectra, and
the spectra of selected IMF components based on Hilbert-Huang Transform (HHT). In particular, some nonlinear
feature analyzing methods, including Pseudo-Poincare mapping diagrams and Lempel-Ziv(LZ) complexity, are
also used for analyzing measured vibration responses. The obtained results using the above multiple methods are
compared and show that, when the inlet flow of the turbine fluctuates significantly, the nonlinear characteristics
of the turbine bearings are significantly higher than those of the relatively stable inlet flow and speed conditions.
Under these circumstances, commonly used time-frequency analysis methods cannot characterize the different
speed operating state of the turbine, and LZ-Complexity and other nonlinear characterization methods should be
used to better understand the characteristics of different speeds under unstable conditions.This study provides
references for the aerodynamic stability monitoring of the micro-turbine and its design improvement.

1. INTRODUCTION

Many airflow-driven micro-turbines are widely used in en-
vironmental control systems for cabins and inboard tempera-
ture control of civilian aircraft and passenger coaches of trains.
As an example of micro-turbines with environmental control
systems, a part of high-pressure air is induced from the com-
pressor of an aeroengine for driving and heat exchange, in a
practical operation process, under the given pressure ratio and
rotor structure, the high-pressure airflow will lead to abnormal
vibration of the micro-turbine, especially in the case of unsta-
ble inlet flow. The abnormal vibration behavior of the micro-
turbine caused by unstable inlet flow will affect the impeller,
bearing, connecting pipelines and other surrounding structures
greatly, even causing rapid failure of the machine and other
serious consequences.1

At present, it is recognized that the abnormal vibration of
micro-turbines is directly harmful to air supply, temperature
regulation, structural life, and reliability. Meanwhile, there are
relatively few studies on the vibration of micro-turbines under

different bleeding air conditions and rotational speeds, so it is
necessary to conduct in-depth research. The research on aero-
dynamic performance and vibration of the micro-turbines can
refer to the achievements in the field of compressors, and the
representative research achievements are shown as follows.

Tian2 analyzed dynamic characteristics of a floating offshore
wind turbine under different wind speed and wave height.
Chun3 discovered the size of the vena and acceleration in the
axial direction has an obvious relation with the discharge co-
efficient of gas turbines. Wei4 proposed a numerical simula-
tion of flow characteristic of aero engines under different ro-
tating conditions. Liu5 proposed a rolling bearing fault evo-
lution state indicator based on deep convolutional neural net-
work (CNN) and wavelet analysis of vibration signals. Fu6

found the formation and development mechanism of the un-
steady vortex flow in the vaneless space of pump-turbine and
is associated with the distribution characteristic of the veloc-
ity field. Yoon7 studied combustion instability based on the
flame structure measurement technique under vibrational inlet
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air temperature.
A rotating stall and surging of the compressor are an unsta-

ble phenomenon under the condition of small flow rate, which
limits the working performance. Inoue M et al.8 found that
the dynamic pressure signal fluctuates regularly at stabiliza-
tion, and the regularity is destroyed near instability. Hendricks
G J, et al.9 found that the modal wave in the high-speed com-
pressor has more high-frequency components than that in the
low-speed compressor. Meng F X et al.10 established the sim-
ulation model of a micro-turbine fan air circulator in an aircraft
environmental control system. Song J X et al.11 analyzed the
dynamic performance of the air-entraining part of the environ-
mental control system of a certain type of aircraft and con-
ducted an experimental study. Zhao et al.12 studied the pres-
sure transient responses and temperature transient responses of
the bleed system of an aircraft environmental control system
when the inlet flow pressure and temperature was varied. Gu
et al.13 studied the stall and surge characteristics of flow in-
stability in high rotating speeds centrifugal compressor by the
experimental method.

The existing micro-turbine operating status analysis meth-
ods are limited by the acquisition location and method, making
it difficult to accurately analyze the vibration characteristics of
internal rotating shafts, bearings, and other components when
the speed changes frequently. For micro-turbines that often
operate in high-speed ranges, whether from the perspective of
operating status monitoring or vibration noise control, it is nec-
essary to obtain the internal vibration characteristics of micro
turbines. Based on the analysis of bearing vibration signals,
the operation status of the micro turbine can be directly ob-
tained from the actual operating parameters inside the micro
turbine. At the same time, there is no significant interference
to the internal airflow field of the turbine.

Furthermore, the research on the abnormal vibration behav-
ior of mechanical equipment is generally drawn on signal anal-
ysis and characterization methods. The representative achieve-
ments are reviewed as follows. The root mean square (RMS)
can reflect the overall trend of bearing fault.14 The kurtosis val-
ues are sensitive to aperiodic interference.15 Jin et al.16 pro-
posed a novel fault diagnosis method that is based on radial
basis function neural network with a power spectrum of the
Welch method. Pei et al.17 proposed a method for a rolling
bearing fault feature extraction based on auto-correlation and
energy operator enhancement. In addition, some distribution
test methods of statistical analysis of data or signals can also
be used to compare the unstable or nonlinear characteristics
of mechanical vibration signals. For example, the BDS test
which is exploited by Brock and Dechert is a non-parametric
test for serial independence based on the correlation integral
of the scalar series which asymptotically converges to a unit
normal.18 However, a few works of statistical analysis of the
spectral content deal with the abnormal vibration characteris-
tics of machines.19 They developed an original method based
on the statistical process of Welch’s periodogram of the mea-
sured vibration signals to distinguish the machine’s vibration
states.20 Modern signal analysis representation methods have
been proposed such as Wigner Distribution,21 Wavelet Trans-
form,22 Singular Value Decomposition,23 Empirical Mode De-
composition,24 Variational Mode Decomposition,25 Hilbert-
Huang Transform,26 etc. Hilbert-Huang Transform (HHT) is
an excellent time-frequency signal analysis method, especially

suitable for nonlinear and non-stationary signal sequence pro-
cessing.27 Sun28 analyses deformation and vibration of com-
pressor rotor blades based on fluid-structure coupling.

In addition to multi-harmonics and stationary random sig-
nals, many stationary or non-stationary signals sometime ex-
hibit nonlinear characteristics, which are difficult to distin-
guish from each other. Therefore, it is also very important
to analyze the nonlinear characteristics of mechanical vibra-
tion signals. The main methods of signal nonlinear analysis
include the Pseudo-Poincare mapping diagrams that are based
on phase space reconstruction theory,29 fractal,30 Lempel-Ziv
complexity31, 32 and other methods to describe the characteris-
tics of sophisticated system behavior. Complexity reflects ve-
locity of emergence of new patterns as the length of the series
increases, which can quantitatively describe the state changes
of the system.

This paper focuses on a comparison study of the vibration
behavior of an airflow-driven micro-turbine with multiple char-
acterization methods. In addition, it is based on the measured
radial vibration responses of the micro-turbine exposed to sta-
ble or unstable inlet flows at different rotating speeds. Several
signal processing methods are adopted, including time domain
analysis, frequency domain analysis, time-frequency domain
analysis, and nonlinear analysis. The main contributions are
generalized as follows.

1. The time domain analyses; statistical analyses and fre-
quency domain analyses are utilized. Time domain character-
istic parameters (peak-to-peak value, RMS value and kurtosis
value), statistical parameters (auto-correlation and BDS), and
amplitude spectra in frequency domain, statistic spectrum in-
dicators (SSI) are illustrated to compare with each other.

2. The spectra of selected IMF components based on HHT
are adopted to analyze the vibration signals. The Phase analy-
sis method is also used to compare the vibration signals under
different cases. There are also obvious differences under four
cases based on the above methods.

3. The vibration signals of the micro-turbine are calculated
and compared quantitatively by nonlinear methods including
the Pseudo-Poincare mapping diagrams based on the phase
space reconstruction theory, and the LZ complexity values.
These results are then compared and discussed.

2. EXPERIMENTAL DEVICE AND SCHEME
SECTION

2.1. Experiment System
The airflow-driven micro-turbine consists of a compressor

and turbine, which is connected by a rotating shaft with 2 bear-
ings. The structure of the micro-turbine is shown in Fig. 1.
Figure 1(a) is a cross-sectional view of the micro-turbine, and
Fig. 1(b) is the principle of operation of the micro-turbine.

The experiment system is constituted of a turbine body,
compressor, air tank, pipeline, inlet and outlet regulating
valves, and mounting brackets, as shown in Fig. 2.

The operation of the micro-turbine system is as follows:
first, start the compressor and run it for a period of time to
deliver a certain amount of air to the storage aiming to reach
certain pressure, and then open the valve of the micro-turbine’s
pipeline for bleeding air to drive the turbine. The general run-
ning time is about 2–10 minutes. With the reduction of air sup-
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(a) Internal structure

(b) Principle of operation

Figure 1. Structure of the micro-turbine.

Figure 2. Airflow-driven micro-turbine experiment system.

Figure 3. Measurement system for micro-turbine.

Figure 4. Acceleration sensor arrangement.

ply until stop, the approximate working time is no more than
30 seconds. In the experiment, several stable and unstable inlet
flow cases were discovered by adjusting the valve openings of
the inlet flow pressure repeatedly.

2.2. Measurement System
The measurement system is composed of an acceleration

sensor, speed sensor, pressure sensor, flow sensor, thermocou-
ple, NI data acquisition system and a computer as shown in
Fig. 3.

The acceleration sensors arranged on the micro-turbine was
shown in Fig. 4. The rotational speed sensor as shown in Fig. 5.
The sampling frequency of speed signal and acceleration signal
is 10240 Hz.

When the storage pressure is from 0.11 MPa–0.07 MPa, the
micro-turbine outlet is opened only, and the time domain volt-
age signal plot is obtained as shown in Fig. 6(a). From the volt-
age time domain signal graph of the measured speed sensor in
Fig. 6(a), it can be seen that when the probe of the speed sensor
is relative to the flat part of the structural member, the voltage
value is close to 0 V due to the far contact distance, when the
circular arc part is relative to the front end of the probe, there
is a voltage signal output with a voltage value of about 6 V,
every two rectangular waves represent the impeller has rotated
one revolution. After the calculation and signal extraction, it is
transformed into the time domain curve of rotational speed as
shown in Fig. 6(b).
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(a) (b)

Figure 5. Operation of speed sensors for measuring rotational speed. (a) No
output of voltage signal. (b) The output of a voltage signal.

(a)

(b)

Figure 6. Measured speed data of Micro-turbine. (a) Voltage signal of the
speed sensor. (b) Rotationgal speed in time domain.

2.3. Operating Cases in Experiment and
Vibration Signal Analysis Methods

In this paper, by adjusting the opening and closing of in-
let and outlet valves, unstable airflow is produced artificially,
and the four groups of typical micro-turbine rotate speed con-
ditions under different in-flows cases as shown in the Fig. 7.

According to the Fig. 7, it can be seen that each working
condition has a relatively stable rotate speed fluctuation oper-
ating range. Therefore, the maximum and minimum values of
the speed in each operating range are extracted, and the speed
fluctuation rate is calculated. The calculation results are shown

Figure 7. Measured speed data of Micro-turbine under 4 cases.
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Table 1. Operating cases of stable and unstable inlet flows.

Case Coefficient of Rotational speed
speed fluctuation (r/min)

A 33.33% 8000–16000
B 11.11% 6000–7500
C 10.34% 13000–16000
D 16.56% 6800–9500

in Table 1 and combined with the acceleration signal in this
range for comprehensive analysis.

δω =
ωmax − ωmin

ωmax + ωmin
× 100%; (1)

where, δω is coefficient of speed fluctuation, ωmax is max
value of rotate speed in the process of working, ωmin is min
value of rotate speed in the process of working.

The four selected speed conditions can cover the maximum
speed measured in the experiment of about 30,000 r/min (con-
dition A) and the minimum speed of about 10,000 r/min (con-
dition D). And, for local fluctuation characteristics, there are
also higher frequency repeated fluctuation conditions (con-
dition B) and less fluctuation conditions (condition C). Four
working conditions can be used to analyze the changes quali-
tatively and quantitatively in the speed values and bearing vi-
bration signals caused by speed fluctuations of micro- turbine.

3. TIME AND FREQUENCY DOMAIN
ANALYSIS

Time and frequency domain analysis includes time domain
characteristic parameters (peak-to-peak value, RMS value and
kurtosis value), statistical parameters (auto-correlation and
BDS), and an amplitude spectra in frequency domains, as well
as statistic spectrum indicators (SSI) based on Welch’s peri-
odogram of power spectra.

3.1. Time Domain Analysis
The measured vibration data were analyzed in time domains

to obtain the waveform characteristics under different inlet
flow conditions. Of the vibration signals, 0.05 seconds was
extracted for analysis. The waveform of measured vibration
signals on the micro-turbine under 4 cases is shown in Fig. 8.

The measured vibration signals are analyzed based on time
domain methods. The formula of peak-to-peak, RMS, kurtosis
values of vibration signals are as follows, and the waveform of
these characteristic parameters are shown in Fig. 9.

XTpp
= XTmax

−XTmin
; (2)

XRMS =

√√√√ 1

n
·

n∑
i=1

x2
i ; (3)

XKurtosis =
E(X − µ)4

σ4
; (4)

where, µ is the mean of x, σ is the standard deviation of x, and
E(t) represents the expected value of the quantity t.

As shown in Fig. 9(a), there are significant differences in
peak-to-peak values of vibration signals of the micro-turbines
in the four cases. The peak-to-peak values of vibration signals
in Case A are the highest, which are 2–4 times as high as those
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Figure 8. Waveform of measured acceleration signals on the micro-turbine
under 4 cases.

in the other three cases. Meanwhile, the distinction between
the other three cases is obvious, and the peak-to-peak values
of Case B is the lowest. As shown in Fig. 9(b), there are also
significant differences in the RMS values of vibration signals
of micro-turbines in the 4 cases, among which the RMS values
of Case A in the stable case are the highest, which are 4–6
multiple the RMS values of the other three cases. Meanwhile,
the RMS values of the other three cases have little difference.

As shown in Fig. 9(c), there are certain differences in the
kurtosis values of micro-turbine vibration signals under the 4
cases, among which the kurtosis values of Case D under the
stable case are the highest, which is 2–3 times that of the kur-
tosis values in the other three cases. In addition, the kurtosis
value is the lowest in Case A, and the curve of the kurtosis
values that change with time are stable.

3.2. Statistical Analysis
3.2.1. Auto-correlation

Through the auto-correlation analysis of turbine vibration
data, the periodic characteristics are found under four cases.

The auto-correlation of a signal is the dependency relation-
ship between the instantaneous value of a signal at one mo-
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Figure 9. Numerical comparison of time domain characteristic parameters of
micro-turbine vibration signals.(a) Comparison diagram of peak-to-peak val-
ues under 4 cases. (b) Comparison diagram of RMS values under 4 cases. (c)
Comparison diagram of kurtosis values under 4 working cases.
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Figure 10. Auto-correlation values of measured vibration responses on the
micro-turbine under 4 cases.

ment and the instantaneous value at another moment. Serial
correlation, also called auto-correlation, refers to a time series
[Xt] = [· · · , X−2, X−1, X0, X1, X2, X3, · · · ] these values are
related to themselves before and after.

R(k) =
E[(Xi − µi)(Xi+k)]

σ2
. (5)

Comparing these two formulas, it can be seen that auto-
correlation is the change in the correlation coefficient between
[Xt] and [Xt+k], which changes from two random variables to
one random variable. The auto-correlation values of measured
vibration responses on the micro-turbine under four cases are
shown in Fig. 10.

As shown in Fig. 10, where the noise in Case A has a wide
and uniform spectrum of random signals. Regular and periodic
pulses appear in the vibration signal in the case of unstable
inlet flow.

3.2.2. BDS test

BDS test is used to analyze non-linearity in the time series
measured micro-turbine vibration signals.

The BDS test is a non-parametric test for serial indepen-
dence based on the correlation integral of the scalar series, [xt].
For embedding dimension m, let [xm

t ] denote the sequence of
m-histories generated by [xt]:

[xm
t ] = [xt, xt+1, · · · , xt+m−1]. (6)

Then the correlation integral Cm,T (ε) for a realization of T
is given by:

Cm,T (ε) =
∑
t<s

Iε(x
m
t , xm

s )

{
2

Tm(Tm − 1)

}
; (7)

where, Tm = T − (m − 1) and Iε(x
m
t , xm

s ) is an indicator
function which equals one if the sup norm ∥xm

t − xm
s ∥ < ε

and equals 0 otherwise. The asymptotic normality Cm,T (ε)
under the null hypothesis that [xt] is known as an indepen-
dent identical distribution process to obtain a test statistic that
asymptotically converges to a unit normal.

The BDS test values of the vibration signals of Case A, B,
C, and D of measured vibration responses on the micro-turbine
casing under 4 cases as shown in Fig. 11.
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Figure 11. BDS values of measured vibration responses on the micro-turbine
under 4 cases.

As shown in Fig. 11, it can be found that the BDS values of
Case A are much larger than the three others. But there is no
great difference between Case C and Case D.

3.3. Amplitude Spectra
The distribution of signal amplitude with frequency is ana-

lyzed by Fourier amplitude spectrum analysis of measured vi-
bration data.

S(f) is FFT result of signal s(t):

S(f) =

∫ ∞

−∞
s(t)e−j2πftdt. (8)

The amplitude spectra based on vibration signals FFT of
a micro-turbine in stable and unstable cases at different rota-
tional speeds are calculated. In the frequency domain descrip-
tion of a signal, the frequency is used as the independent vari-
able, and the amplitude of each frequency component of the
signal is used as the dependent variable. This is called the am-
plitude spectrum. The amplitude spectra of measured vibration
responses on the micro-turbine casing under 4 cases are shown
in Fig. 12.

As shown in Fig. 12, the amplitude spectrum was performed
for all 4 cases. There are still great differences as it has been
found that the vibration signal of Case B, C, and D has mean-
ingless peaks in the high-frequency region and the vibration
amplitude is not large.

4. POWER SPECTRA AND STATISTIC
SPECTRUM ANALYSIS

4.1. Waterfall of Power Spectra
The waterfall diagram is used to analyze these dispropor-

tionate instantaneous spectra. It is very beneficial to high-
light the characteristics that change with speed. It uses the
method of short-time FFT transform to calculate the instanta-
neous power spectrum and display the analysis results. The
power spectrum method is to analyze the signal with limited
power vibration signals, which shows the change of signal
power with frequency.

P (f)is power spectral density (PSD) of signal s(t):

P (f) = lim
T→∞

1

T
|S(f)|2; (9)
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Figure 12. Amplitude spectra of measured vibration responses on the micro-
turbine casing under 4 cases.
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Figure 13. Waterfall diagram of measured vibration responses on the micro-
turbine casing under 4 cases.

where S(f) is FFT result of signal s(t) referring to Eq. (8).

The waterfall diagram of measured vibration responses on
the micro-turbine casing under 4 cases as shown in Fig. 13.

As shown in Fig. 13, the diversity of the micro-turbine vi-
bration signal amplitude under stable and unstable case is obvi-
ous, and the rotational speeds factually affect the micro-turbine
vibration signal.

4.2. Statistic Spectrum Analysis
The statistic spectrum indicator (SSI) method is introduced

to statistically analyze the power spectrum of the signal.
The SSI method is based on Welch’s periodogram of power

spectra. The processing technique is as follows, the average of
the power spectra is computed on subsegments of the vibration
responses, where Welch’s method adds overlapping between
the different subsegments and windowing of the subsegments
in order to reduce the side effect. Then, let x(n) be a sig-
nal of length N and w(n) be a window function. Consider-
ing subsegments of length L with 50% overlap, Welch peri-
odogram Pw is the average of the periodogram Pi computed
on the K = N/(2L+ 1) sub-segments and expressed as:

PW =
1

K

K−1∑
i=0

Pi; (10)

with Pi being the periodogram computed on the i-th subseg-
ment as:

Pi =
|
∑L−1

n=0 w(n)x(n+ iL2 )e
−jnω|2∑L−1

n=0 |w(n)|2
. (11)

The advantage of this method is to reduce power spectrum
variance. The next step is the statistical processing of the pe-
riodogram Pw in order to center and to reduce it. The spectral
power in dB at the frequency fi, is considered to be a random
variable following a normal distribution over the recordings
and noted Pw(fi) = 20 log(Pw(fi)). The statistic-based indi-
cator S is computed in the following way, for each recording r,
the Welch’s periodogram Pw(f) of the stator current is com-
puted. The first nref periodogram are stored to compute the
reference averages and standard deviations for each frequency.
Once the reference has been built, the next periodogram are
centered and reduced.

When comparing the SSI of measured micro-turbine’s vibra-
tion responses under stable cases, the unstable case in lower
and higher rotating speeds results in the SSI values of the 4
cases as shown in Fig. 14.

As shown in Fig. 14, the shapes of the curves differ for sev-
eral cases, and the SSI values for the different cases can be
clearly separated. The SSI values for Case A with stable in-
flow under 9000 r/min, are significantly higher than the other
three cases with unstable inlet flow.

5. TIME-FREQUENCY DOMAIN ANALYSIS

5.1. Hilbert-Huang Transform
The HHT method is a time-frequency adaptive signal pro-

cessing method after the Fourier transform and wavelet trans-
form. The HHT mainly includes two main parts: empirical
mode decomposition (EMD) and Hilbert spectral analysis. The
signal x(t) can be divided into the number of n intrinsic mode
functions (IMF) by EMD.

x(t) =

n∑
j=1

cj(t) + rn(t); (12)

then apply the Hilbert transform to all IMFs.

H[cj(t)] =
1

π

∫ ∞

−∞

cj(τ)

t− τ
dτ. (13)
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Figure 14. SSI values of measured vibration responses on the micro-turbine
under 4 cases.

Therefore, the Hilbert spectrum H(ω, t), shown in the fol-
lowing equation, is a time-frequency energy spectrum, which
both the frequency variation at different time periods and the
energy variation with time and frequency can be seen.

H(ω, t) = Re

(
n∑

i=1

ai(t)e
j
∫
ω(t)dt

)
. (14)

The marginal spectrum h(ω) as follows:

h(ω) =

∫ T

0

H(ω, t)dt; (15)

The 1st seconds data of the four groups of measured micro-
turbine’s vibration responses are decomposed by the EMD, and
the spectrum of IMF components with different orders is calcu-
lated, as shown in Fig. 15–18. By comparison, it can be found
that these IMF components are different and have a certain pat-
tern of variation. The calculated HHT marginal spectra of the
above four cases of vibration signals are shown in Fig. 19.

As shown in Fig. 15, broadband random characteristics of
order 1–6th, energy is not uniform along the frequency band,
or symmetrical distribution with a frequency as the midpoint.

As shown in Fig. 16, the orders 1–4th are narrow-band ran-
dom distributions with 2909, 1681, 905, and 581 Hz as the
center frequency and relatively concentrated energy distribu-
tion. The 11th order above, which mainly belong to VLF and
DC components, can be omitted. The orders 5-6th order are
2-fold,1-fold, half-fold, 1/3-fold and their combinations with
certain random components and the 6th order has a unique and
prominent trans-conversion component.

As shown in Fig. 17, the order 1–4th is a narrow-band ran-
dom distribution with 3863, 2637, 1055, 807 Hz as the center
frequency and relatively concentrated energy. The 5th order is
the rotational frequency, which is very prominent; the 6th order
is 1 time and 2 times the rotational frequency and it combines
with a certain random component.

As shown in Fig. 18, the 1st–4th order is a narrow-band ran-
dom distribution with 4210, 2890, 1009, 807, 500 Hz as the

center frequency and relatively concentrated energy. The 5th-
6th orders are the eigenfrequencies of 1 and 1/2 times the trans-
conversion frequency with some random components.

As shown in Fig. 19, the comparison of the marginal spec-
trums of Case A and B can clearly show the components close
to the rotational frequency, but the marginal spectrum of Case
B has two components of 784 Hz and 3024 Hz with the am-
plitude about 1/3 of the amplitude of the rotational frequency
component, which means that Case A is a relatively stable vi-
bration.

The marginal spectrum of Case C clearly shows the compo-
nents close to the transient frequency, in addition to the com-
ponent of 4144 Hz, the amplitude is about 3/5 of the transient
frequency component amplitude. The marginal spectrum of
Case D clearly shows the components close to the transient fre-
quency, in addition to the components at 3000 Hz and 4500 Hz,
which are about 1/6 of the transient frequency component am-
plitude.

5.2. Phase Spectra

The phase spectra based on the Hilbert transform (HT) of
the micro-turbine vibration signals is to compare different inlet
flow cases.

The analytic signal is obtained by a HT of the line current
spectrum modulus. When considering signal s(t), the analytic
signal s̃(t) can be expressed as:

s̃(t) = s(t) + jρ(t). (16)

The ρ(t) represents the HT of the signal s(t) is given by the
following equation:

ρ(t)
HT−−→ −jsgn(ω)S(f); (17)

where S(f) is the Fourier Transform of S(t), and sgn(ω) =
[1, 0,−1], when ω > 0, = 0 < 0.

Consequently, the analytic signal phase ΨHT (ω) can be cal-
culated with the expression:

ΨHT (ω) = arctan
Im(Ỹ (ω))

Re(Ỹ (ω))
= arctan

YHT (ω)

|Y (ω)|
. (18)

The phase spectra of measured vibration responses on the
micro-turbine casing under 4 cases as shown in Fig. 20.

As shown in Fig. 20, with the same speed of 9000 r/min, the
vibration signal phase of the micro-turbine with the stable and
unstable inlet flow case changed greatly. The phase diagram
for the unstable inlet flow case under different rotational speeds
have similar graphs, but all of them are significantly different
from the stable case.

6. NONLINEAR FEATURE ANALYSIS

The vibration signals of unsteady inlet flow are character-
istics for nonlinear, and the vibration responses of four work-
ing conditions are compared and analyzed by several nonlinear
feature analysis methods.
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Figure 15. The spectrums of the IMF of Case A by EMD.

6.1. Phase Space Reconstruction

The phase space reconstruction is an effective method to ex-
cavate the deep level information of the nonlinear time series,
such as micro-turbine vibration signals.

The phase space reconstruction is the recovery of the orig-
inal system from a time series based on the Takens delay em-
bedding theorem. It reconstructs an equivalent state space as
a common method. Only one component is examined and its
measurement at some fixed point of time delay is used as the
new dimension, which preserves many properties of the origi-
nal system. Therefore, the comparison of micro-turbine vibra-
tions under stable and unstable inlet flow cases based on phase

space reconstruction can distinguish the different behaviors of
the vibrations, as shown in Fig. 21.

As shown in Fig. 21. It can be observed that the Pseudo-
Poincare mapping diagrams under different cases can be val-
ued separability and are consistent within themselves. The
Pseudo-Poincare mapping diagrams of the Case A is obviously
different from the other cases of unstable inlet flow, with a
large difference and distinction, and has obvious attractor char-
acteristics. The distribution range of the Pseudo-Poincare map-
ping diagrams under high rotating speeds is relatively concen-
trated, with the characteristics of random signal.
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Figure 16. The spectrums of the IMF of Case B by EMD.

6.2. Lempel-Ziv Complexity
The LZ complexity values, reflect the rate of generating new

patterns as the length of the measured micro-turbine vibration
signals sequence grows.

It can describe the process of sequence changes, and a char-
acteristic parameter for the state of the system represented by
the signal. The complexity has been widely used as an impor-
tant nonlinear indicator in time series analysis. The algorithm
for the LZ complexity is as follows:

1) Reconfiguration sequence, {x1, x2, . . . , xn} if:

Si =

{
1, xi ≥ x̄

0, xi < x̄
; (19)

what, x̄ = ()x1, x2, . . . , xn)/n.
2) S = (s1, s2, . . . , sr), r < n, Q = sr+1.
3) Repeat the above steps for all characters before ”O”.
4) The number of C(n) segments into which the string

is ”O” divided is the complexity of the sequence, obviously
C(4) = 3.
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Figure 17. The spectrums of the IMF of Case C by EMD.

5) The complexity of almost all 0, 1 random sequence
tends to B(n) = n/ log n. The relative complexity R(n) =
C(n)/B(n), which reflects how close a sequence is to a ran-
dom sequence, is obtained.

The LZ complexity values of the micro-turbine measured
vibration signals are shown in Fig. 22.

From the Fig. 22, the following conclusions can be drawn:
The LZ complexity values under different cases have separa-
bility and consistency. Therefore, there are comparable con-
ditions when discussing the complexity. The complexity val-
ues for Case A with 9000 r/min stable airflow are signifi-
cantly lower than the other three cases with unstable inlet flow.
The value of complexity under high rotational speed cases is
slightly higher than the value of low rotational speed with a
regular process.

7. CONCLUSION

In this article, the vibration behavior of the micro-turbine
under stable and unstable inlet flows under different rotational

speeds is quantitatively characterized in time domain, statis-
tical parameters frequency domain, SSI, time-frequency do-
main, and nonlinear feature analyzing methods, which pro-
vides a theoretical reference for the aerodynamic stability
monitoring of the environmentally controlled micro-turbine
system and the improvement of the environment controlled
micro-turbine design. The main conclusions are as follows:

(1) The paper provided a detailed comparative analysis
of the vibration behavior characteristics of the airflow-driven
micro-turbine system. This provided a theoretical support and
data analysis based on bearing vibration signals can effectively
characterize the operation status of micro-turbine under severe
conditions such as rapid and frequent speed changes. The char-
acteristic parameters of time-domain analysis, such as peak to
peak and RMS can clearly characterize the difference between
relatively stable and relatively unstable intake, while the kur-
tosis value is not obvious. Autocorrelation analysis has a poor
performance in characterizing working conditions with similar
rotational speeds.

(2) From the perspective of spectrum analysis methods, the
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Figure 18. The spectrums of the IMF of Case D by EMD.

higher frequency component energy was weaker under micro-
turbine high speed unstable conditions, while the lower fre-
quency component energy was weaker under low speed stable
conditions. SSI analysis effectively characterized the frequent
changes in intake and relatively stable intake conditions of mi-
cro turbines. BDS values were ideal for characterizing condi-
tions with large speed differences, such as operating conditions
A and D with amplitudes that differ by up to 4 times. However,
both of BDS values and HHT spectrum analysis have weaker
effects under operating conditions with similar speeds.

(3) The nonlinear analysis methods had good performances
in characterizing both rapid and frequent variable speed oper-
ating conditions of the micro-turbine, especially when the LZ
complexity was used to quantitatively evaluate the operating
status of micro- turbine. The amplitude difference between
operating conditions A and D was up to 2 times.

(4) First, efforts should be made to avoid the large amplitude
and rapid speed operating conditions of micro-turbines, which
can cause a sharp increase in the acceleration of bearings and
rotating shafts. If it is accompanied by poor lubrication and

other conditions, it is highly likely to lead to premature failure
and serious accidents. For micro turbines that often operate
under large amplitude and small amplitude frequent variable
speed conditions, the nonlinear analysis method based on vi-
bration signals can be applied to different characteristic oper-
ating conditions, resulting in advantages of strong adaptability
and good characterization effect.
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