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The effective and in-time detection of bolt looseness in the brake disc of high-speed rail is of great significance to
ensure the safe operation of the train. The hammer tapping method is one of the most widely used methods for
bolt looseness detection. Due to the complex structure of the brake disc, the vibration characteristics associated
with bolt looseness are coupled with the transmission path from the head of the bolt through the brake disc to
the sensors, which make it difficult to quantitively identify the bolt looseness. In this work, a method based
on wavelet packet decomposition and a one-dimensional convolutional neural network (1D CNN) is proposed to
quantitively detect the bolt looseness of brake disc. Firstly, the vibration signals collected from the two sensors
mounted on the nut side are fused by autocorrelation summation to reduce the influence of transmission path.
Secondly, the fused signal is decomposed to sub signals in low frequency and high frequency components by
wavelet packet decomposition. The relative difference of wavelet packet energy among sub signals is extracted
as the features to enhance the difference among different degrees of looseness. Finally, the 1D CNN model is
established and trained by the features of energy relative difference to quantitively identify the bolt looseness. To
validate the effectiveness of the proposed method, an experimental platform for bolt looseness detection in brake
disc is constructed. Compared with the single-channel 1D CNN and fused signal-1D CNN models, the accuracy
of the proposed method is approximately 97%, which confirms the superiority of the proposed method.

1. INTRODUCTION

The different components of a brake disc in high-speed rail
are connected and mounted together through bolts. During
the long-term operation, bolts are prone to looseness due to
the variable speeds and loads in the periodic speeding-braking
working conditions as well as the dramatic variation of tem-
perature.1, 2 When bolt looseness occurs, the brake disc may
run out of the effective braking load and be unable to stop the
high-speed train within the effective brake distance, which may
cause severe accidents. Therefore, it is of great importance to
effectively detect the bolt looseness for the safe operation of
high-speed rail.

In recent years, different detection methods for bolt loose-
ness in different industrial applications are developed. The
hammer tapping method is one of the most widely used meth-
ods for bolt looseness detection in flange connection and steel
pillar connection.3, 4 A hammer is used to tap the head of the
bolt to generate an excitation signal. Different types of re-
sponse signals at different locations of the bolts or the con-
nected components can be acquired using different transduc-
ers, including the acoustic signal through acoustic sensors,5–9

the stress wave signal through piezoelectric transducer10–14 and
vibration signal through accelerometers.15–17 The hammer tap-
ping5–9, 14 or exciter10–13, 17 are usually used to excite the flat
plate bolted connections to produce acoustic signals and stress

wave signals. Then, the signal processing methods, such as
empirical mode decomposition (EMD),8 variational mode de-
composition (VMD),15 and wavelet package decomposition
(WPD)13, 17 are often combined with energy entropy6, 13, 17 and
multi-scale entropy14 damage indicators for quantitative analy-
sis. The machine learning methods, such as, back-propagation
neural network (BP NN),8 gradient boosting decision tree
(GBDT),9 and support vector machine (SVM),7, 14, 15 are in-
troduced to identify the different degree of bolts looseness.
For the non-tapping method, the image methods that use vi-
sion cameras to capture bolt loosening images are also widely
used in the structural steel connections of high bridges and ca-
ble towers. The captured images are usually combined with the
deep learning method to identify bolt looseness taking the ad-
vantage of deep learning adaptive feature extraction and high
recognition accuracy in image recognition.19–21 In summary,
the piezoelectric sensors are susceptible to temperature and the
collected signals lose some high-frequency information, which
are not suitable for complex structures of the brake disc. For
bolt looseness monitoring based on acoustic signal and image
signal, the data collection is susceptible to the influence of ex-
ternal environment and not easy to obtain. The bolt looseness
detection methods based on signal processing is dependent on
a great deal of professional knowledge and experience, and the
qualitative analysis is prone to omissions and misjudgments.
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The monitoring methods based on vibration signal can ef-
fectively reflect the time-frequency characteristics of the com-
plex structure of the brake disc. The acceleration sensors have
the advantage of small size, high sensitivity, and convenience,
which are easily arranged on the brake disk. For example, Sun
et al.15 proposed a method by combining the variational modal
decomposition and singular value decomposition to process
the vibration signal of bolt looseness. The permutation en-
tropy of decomposed signals is extracted as the input feature to
the support vector machine to detect the bolt loosening detec-
tion. Champati et al.16 used the impact hammer technique to
obtain the acceleration response of bolted steel structures. The
frequency response data obtained by input response and output
response are used to extract the modal strain energy to identify
the bolt damage. Zhang et al.17 proposed a quantitative in-
dex based on the wavelet packet energy entropy to identify the
different degree of bolt looseness. The vibration responses of
bolts under different states obtained from tightening and loos-
ening are used to verify the effectiveness of index. Therefore,
the vibration signal can be taken as the response for the loose-
ness states of bolt connections.

In these previous studies, the structures for bolt looseness
detection are mostly two flat plates connected by the bolts, as
shown in Fig. 1(a). The hammer tapping method is applied
by tapping and measuring on the same side of the bolt and the
obtained signals are single-shock waves attenuated in a short
period. The responses collected on the plates are weakly cou-
pled due to the simple structure of two flat plates. However,
the structure of the brake disc in high-speed rail is much more
complicated, which comprised of two discs with gap structure
and these components are generally circumferential connected
using twelve high-strength bolts, as shown in Fig. 1(b). Due to
the complex structure of the brake disc, the signal will transmit
to the nut side through different components of the brake disc
when the head of bolt is tapped by a force hammer. The vi-
bration characteristics associated with bolt looseness are cou-
pled with the transmission path. It is difficult to quantitively
identify the bolt looseness with a single sensor and the fea-
ture indicator methods for the brake disc. Therefore, the effect
of transmission path on the collected vibration signals should
be eliminated for the quantitively bolt looseness detection. In
addition, the vibration signals associated with bolt looseness
is nonlinearity and non-stationarity and is composed of wide-
range frequency components, which are resulted from the cou-
pling interaction between different components of the brake
disc with complex structure. The wavelet packet decompo-
sition has the advantages of obtaining sub-signals with low
and high frequency at multiple levels by decomposing the fre-
quency band, which is applicable to the coupled signal of bolt
looseness. The one-dimensional convolutional neural network
(1D CNN) has the advantages of selecting the effective feature
for classification adaptively, which avoids the shortcomings of
feature omission through manual selection and improves the
classification accuracy.

In this work, a method based on wavelet packet decom-
position and a one-dimensional convolutional neural network
(WPD-1D CNN) is proposed to detect the bolt looseness of

(a)

(b)

Figure 1. Structure of the bolt connection for (a) simple two
flat plates and (b) brake disc.

brake disc. To eliminate the effect of transmission path on the
vibration signals, two sensors are mounted on the nut side to
collect the vibration responses with the excitation generated by
tapping the bolt head on the other side of the disc. The vibra-
tion signals collected from the two sensors are further fused by
autocorrelation summation to reduce the influence of transmis-
sion path from head of bolt through the brake disc to the sen-
sor positions. Then, the fused signal is decomposed by wavelet
packet decomposition to sub signals of low frequency and high
frequency components. The relative differences of the wavelet
packet energy of sub signals are extracted as the features of
bolt looseness to enhance the difference among different de-
grees of looseness. Finally, the 1D CNN model is constructed.
The samples based on relative energy difference of bolt under
different torques are used to train the 1D CNN model to quan-
titively identify the bolt looseness.

The paper is organized as follows. The detailed steps for
detecting the bolt looseness of the brake disc by the proposed
method are introduced in Section 2, including signal autocorre-
lation summation, wavelet packet decomposition, relative dif-
ference of wavelet packet energy, and 1D CNN model. In Sec-
tion 3, a test rig of bolt looseness of brake disc is established,
and the proposed method is applied and validated to bolt loose-
ness identification. The paper is concluded in Section 4.

2. METHODOLOGY

2.1. Structure of Brake Disc in High-speed
Rail

High speed railway brake discs mainly consist of discs with
gap structure, wheels, and bolts. The brake disc is mounted
and connected using the twelve high-strength bolts. Bolts are
susceptible to looseness during long-term operation due to the
varying speeds and loads in periodic working conditions, as
well as the significant temperature fluctuations. To detect the
bolt looseness, as shown in Fig. 2(a), from the front side of
the brake disc, the head of the bolt is impacted by an impact
hammer to apply excitation. At the back side of the brake disc,
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(a)

(b)

Figure 2. Structure of wheel-type brake disc and bolt (a) Bolt
position and measuring point arrangement (b) Sketch of the
brake disc bolt joint interface.

the two measurement points are arranged near the nut to col-
lect signals. When the bolt is loosened, as shown in Fig. 2(b),
the interface between head of bolt and brake disc is not fully
contact, which generates a separation zone, and the interface
between nut and brake disc also presents the separation zone.
This separation zone causes energy loss in signal transmission
as well as complexity in the transmission path from head of
bolt through the brake disc to sensors. However, when the bolt
is tightened, there is no separation zone in the contact interface
of head of bolt and brake discand the interface of nut and brake
disc. Therefore, different vibration responses will be generated
when the excitation passes through bolts with different degrees
of looseness.

2.2. Proposed Method
According to the characteristics of the bolt connection of

the brake disc in a high-speed rail, a bolt loosening detection
method base on WPD-1D CNN is proposed. The flow block
diagram of the proposed method is shown in Fig. 3. The de-
tailed steps are as listed below.

Step 1: Excitation is generated by tapping the head of the
bolt with a force hammer. The acceleration sensors are ar-
ranged at two points near the bolt nut and used to collect the vi-
bration signals. To simulate the different degrees of bolt loose-
ness, torque wrenches are used to control the bolt looseness.

Step 2: The signals collected from the sensors at the two
positions are fused by autocorrelation summation and the fused
signals are normalized.

Step 3: The fused signals of the bolt are decomposed to
obtain the frequency sub signals by wavelet packet decompo-
sition (WPD). Then, the energy values of sub signals are cal-
culated. The relative difference of energy for sub signals are
selected as the feature indicator to divide the loosening and
tightening state of the bolt.

Step 4: The 1D CNN model is established to quantitively
detect the bolt looseness. The input samples are constructed
based on energy relative difference, which are divided into
training test and testing set. The training datasets are used to
train the 1D CNN and the testing datasets are used to validate
the effectiveness of the model. The validated model can be fur-
ther used to quantitatively identify the looseness state of brake
disc bolts.

2.2.1. Autocorrelation summation

The autocorrelation function describes the degree of corre-
lation between the values of the signals at any two different
times, linking the cross-spectrum of the signals between the
two sensor points to their respective auto-spectra.22, 23 It can be
used to determine how much of the output signal comes from
the input signal and can correct the error caused by the noise
source being connected to the measurement. The characteris-
tics of the vibration signal after noise reduction are not obvi-
ous, so it is not suitable for feature extraction directly. There-
fore, autocorrelation is used to process the vibration models
collected by the two sensors mounted on the brake disc nut,
and the autocorrelation signals are added together. The sum of
discretized autocorrelation functions can be expressed as:24

ψ1(m) =

+∞∑
n=−∞

f1(n)f1(n−m); (1)

ψ2(m) =

+∞∑
n=−∞

f2(n)f2(n−m); (1a)

ψ(m) = ψ1(m) + ψ2(m); (1b)

where m is the delay time, f1(n) and f2(n) are the vibra-
tion signals of sensor 1 and sensor 2, respectively. ψ1(m) and
ψ2(m) is the autocorrelation signals of sensor 1 and sensor 2,
respectively. ψ(m) is the autocorrelation summation signal.

After processing by autocorrelation summation, the ampli-
tude of fused signals is diffused. To increase the comparability
between the loosen and tighten vibration signals, the ampli-
tudes of the signals are normalized between [−1, 1]. The con-
version formula can be expressed as:

P (m) =
2 (ψ(m)− ψmin)

ψmax − ψmin
− 1; (2)

where P (m) is the normalized vibration signal, and ψmax,
ψmin represent the maximum and minimum values of time se-
ries signal, respectively.

2.2.2. Wavelet packet decomposition

Due to the complex structure of the brake disc, the bolt loos-
ening vibration signal is complex and nonlinear.25 Wavelet
packet decomposition (WPD) has great advantages in dealing
with non-stationary signals, which can divide the frequency
bands of a signal in detail by the low-pass filter and high-
pass filter.17, 26, 27 It can decompose both the low-frequency and
high-frequency components of the original signal into multiple
subsequences. The WPD decomposes the entire signal band by
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Figure 3. Flowchart of bolt looseness detection.

Figure 4. Schematic diagram of the wavelet packet
decomposition (WPD).

a tree diagram with one node into two nodes, resulting in sev-
eral different sub signals, as shown in Fig. 4.

And the wavelet packet decomposition equation is:{
P 2i−1
j (t) = HP i

j−1(t), i = 1, 2, · · · 2j
P 2i
j (t) = GP i

j−1(t), j = 1, 2, · · · 10 ; (3)

whereH is a low-pass filter andG is a high pass filter, P i
j is the

i-th node obtained by the j-th wavelet packet decomposition.
To effectively remove the noise and retain the useful infor-

mation in the decomposed sub signals, the energy values in
each sub signal are calculated. A higher energy means a larger
component of the useful signal in the corresponding frequency
band. The energy value corresponding to the ith frequency sub
signal is expressed as:11, 17, 28

Ei =

N∑
k=1

[
pij,k

]2
; (4)

where P i
j,k is the the k-th wavelet packet coefficient cor-

responding to P i
j and N is the length of the sub signal.

The wavelet packet energy vectors are constated as E =

[E1, E2, . . . , E2j ].
In this work, the fused signal of bolt P (m) is decomposed

into 210 sub signals by WPD.29 If the number of decomposi-
tions is small, the differences in the sub-signals are not signif-
icant. For the subsequent process of extracting the energy of
the sub signals, the number of features is sufficient. The en-
ergy features in different frequency sub signals are obtained as
the index of the bolt loosening fault. The relative difference
between the wavelet packet energy of the loosen sample and
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that of the tighten sample is defined to strengthen the feature
difference between different degrees of bolt looseness, which
is expressed as:13, 28

ea =
|Era − Efa|

Era
× 100%, a = 1, 2, · · · 2N ; (5)

where ea is the relative difference between wavelet packet en-
ergy of the loosened bolt and tightened bolt, Era is the root-
mean-square value of wavelet packet energy for loosened sam-
ples, Efa is the root-mean-square value of wavelet packet en-
ergy for tightened samples, and are expressed as:

Era =

√∑K
k=1E

2
a,k

K
, Efa =

√∑Z
z=1E

2
a,z

Z
; (6)

where Ea,k is the a-th frequency sub signals energy of k-th
loose sample, K is the number of loosened samples, Ea,z is
the a-th frequency sub signals energy of z-th loose sample, Z
is the number of tightened samples.

2.2.3. One-dimensional convolutional neural
network model

The convolutional Neural Network (CNN) is perhaps the
most implemented deep learning algorithm applicable to var-
ious applications.29–31 The vibration signal of bolts is one-
dimensional; therefore, a one-dimensional deep convolutional
neural network (1D CNN) is established. The 1D CNN mainly
consists of an input layer, convolutional layer, pooling layer,
flatten layer, fully connected layer, and output layer. The con-
volutional and pooling layers are stacked several times to ex-
tract the hidden feature of input and reduce the dimensionality.
The main role of the convolution layer is to compute the con-
volution operation between the input and convolution kernels.
The high-dimensional tensor features are obtained by sliding
the convolution kernel over the input. The pooling layer is
mainly used to reduce the parameters of the network by down-
sampling the high-dimensional feature tensor after the convo-
lution layer. The Max Pooling is used in this work. The flatten
layer is used to expand the high-dimensional tensor into a vec-
tor to connect the fully connected layers. The output layer is
used by SoftMax functions for classification.

For the convolutional layer, the l-th layer output xlc is ex-
pressed as:

xlc = f
(
wl

c ∗ xl−1
in + bl

)
; (7)

where xl−1
in is the input, * is the convolution operation, f() is

the nonlinear activate function, wl
c is the weight of the convo-

lutional layer, and blc is the bias.
The l-th pooling layer is obtained as:

xpdown =Maxpooling
(
xlc
)
; (8)

where Maxpooling( ) is the Maximum pooling calculation.
The output of the last pooling layer xpdown is flattened as:

xfl = flatten(xpdown). (9)

The output of the fully connected layer xfc is obtained as:

xfc = f (xfl ∗ wfc + bfc) . (10)

And the output ŷ of output layer can be obtained as:

ŷ = softmax (xfc) . (11)

Then, in the back propagation, the weight w and bias b of
each layer is updated by minimizing the loss function J(w, b)
as:

min J(w, b) =
∑

(y log (ŷ) + (1− y) log (1− ŷ)) ; (12)

where y is true label, ŷ is the predicted label. According to the
predicted label, the degree of bolt looseness can be obtained.

To evaluate the performance of the proposed method, the
accuracy can be calculated as:31

accuracy =
TP + FP

TP + TN + FP + FN
; (13)

where TP , FN , TN and FP are the number of true positives,
false negatives, true negatives and false positives, respectively.
The loss in Eq. (12) and the accuracy in Eq. (13) are used as
the evaluation index of 1D CNN model.

3. EXPERIMENTAL TESTS

3.1. Data Acquisition
To verify the effectiveness of the proposed method for de-

tecting bolt looseness, a set of experiments were established.
The experimental system is shown in Fig. 5, which included
the brake disk with twelve bolts, two accelerators, a D-type
impact device, a data acquisition, and a computer. The accel-
erators were B&K 4394 type, the range of the sampling fre-
quency was 1–25000 Hz. The D-type impact device was pro-
duced in Junda Instrument company, the diameter was 20 mm,
the length was 75 mm, and the sensitivity was 2.25 mV/N. In
the experiment, the sampling frequency was set as 6.4 kHz.
The brake disc was assembled using twelve circumferential
distributed bolts. The brake disc was suspended in a free state
and all the bolts were screwed into fully tighten state. In each
experiment, only one bolt was loosened. The torques of the
bolt to be tested was adjusted by torque wrench to generate
the loosened and tightened working conditions, as listed in Ta-
ble 1. The torques of 0 N·m, 10 N·m, 20 N·m, 30 N·m, 40 N·m
corresponded to the loosen state and the torques of 140 N·m
and 160 N·m corresponded to the tighten state. The excitation
was applied using a D-type impact device on the head of bolt.
The acceleration sensors were mounted at the measuring po-
sitions near the nut, as shown in Fig. 2(a), and the measured
signals are input to the corresponding channels of the data col-
lector for further analysis.

3.2. Signal Analysis
The time-domain signal and the frequency spectrum of the

vibration signals from the sensors are shown in Fig. 6, and the
shaded portion in the figure represents the high-frequency re-
gion, ranging from 1000–3000 Hz. The time-domain signals
had secondary shock peaks for different torques. As shown
in 6(i)(a), when the bolt was completely loosened, the peak
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Figure 5. Experimental system.

Table 1. Detailed experimental scheme of single-bolt
looseness.

Case Torque (N·m)
1 0
2 10
3 20
4 30
5 40
6 140
7 160

amplitude of the secondary shock was higher. The separation
zone between the contact interfaces can attribute to the sec-
ondary shock phenomenon. As the torque increased, the tight-
ened bolt was aggravated and the peak amplitude of the sec-
ondary shock decreased, which means that the separation zone
decreases. Figure 6(ii)(a) show the time domain signal of bolt
looseness under 20 Nm torque. Compared with the completely
loosened bolt signal in Fig. 6(i)(a), the peak amplitude of the
secondary peak of bolt looseness under 20 Nm torque was
weakened. The amplitude of the secondary shock was almost
negligible when the bolt was completely tightened, as shown
in Fig. 6(iii)(a). From the perspective in frequency domain,
for bolt in complete loosen state, as shown in Fig. 6(i)(b), the
separation zone was large and the signal coupling was strong,
which resulted in severe side band modulation in the high fre-
quency region. As the torque increased, the side bands of
signal of bolt decrease in the high-frequency range, which is
shown in Fig. 6(ii)(b). For bolt in completely tighten state, as
shown in Fig. 6(iii)(b), the side band modulation is negligible.
The vibration responses generated for different degrees of bolt
looseness was variable. However, the time-frequency analy-
sis was not sufficient to quantitively determine the looseness
pattern of bolt. The original signal was nonlinear and strongly
coupled under the influence of transmission path from head of
bolt in front of brake disc through the disc and wheel to sensors
at the back of brake disc.

The signals collected by the two different sensors were fur-
ther fused through autocorrelation summation to eliminate the
effect of transmission path. The fused signals were normalized
to the range of −1 to 1 to avoid the influence of data distri-
bution. The time-domain signal and frequency spectrum of
the fused signal were shown in Fig. 7. The time-domain wave

of the fused signal for bolt completely loosened is shown in
Fig. 7(i)(a). The peak amplitude of the second shock gener-
ated due to the bolt looseness was obvious. The fused signal in
Fig. 7(ii)(a) shows the same phenomena. However, the second
shock was negligible in the fused signal for bolt in fully tight-
ened state, as shown in Fig. 7(iii)(a). This means that the fused
signal obtained by autocorrelation summation eliminates the
influence of the transmission path and clearly expressed the
shocks associated with bolt loosenes. Figure 7(b) shows the
frequency spectrum of the fused signal. In the high-frequency
band, the sidebands of the fusion signal became less and the
main frequency was more pronounced, which means that the
fused signal was less coupled than the original signal. The au-
tocorrelation summation algorithm eliminates the influence of
transmission path.

3.3. Analysis of Relative Difference of WPD
Energy

Through the above analysis, the original signal of bolt under
different torques in the high frequency domain shows obvious
difference. The fused signals obtained by autocorrelation sum-
mation fusion of the original signals were further decomposed
by 10 layers of wavelet packet decomposition (WPD) to obtain
the low frequency sub signals and high frequency sub signals.
The WPD energy of sub signals were further extracted to repre-
sent the feature of signal in low frequency and high frequency,
as shown in Fig. 8(a) for the first 20 nodes. The WPD energy
of bolt under different torques are different. The WPD energy
values of the sub signal for 0 Nm and 10 Nm were similar in
the first node, which also occurred in the fourth and seventh
node. To enhance the difference of WPD energy under dif-
ferent torques, the relative difference of WPD energy ea were
calculated according to Eq. (5), as shown in Fig. 8(b). The rel-
ative difference of WPD energy ea for different torques can be
clearly distinguished at different nodes, which is beneficial to
recognize the different degrees of bolt looseness.

3.4. Analysis of 1D CNN Model
The 1D CNN model was used to classify bolt looseness

states. The samples to the model were energy relative differ-
ence of bolts under different torques. There were 120 samples
for each torque, which were divided into 100 training samples
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(i) (a) (b)

(ii) (a) (b)

(iii) (a) (b)

Figure 6. Example of the (a) time-domain signal and (b) frequency spectrum of #1 bolt with different torques (i) 0 N·m (ii)
20 N·m (iii) 160 N·m.

and 20 testing samples. The parameters of 1D CNN were ob-
tained through many experiments, as shown in Table 2. The pa-
rameters of convolution layer and pool layer in a CNN was de-
signed according to reference.32, 33 The other parameters used
in calculation were iteration N = 500, batch size B = 16,
learning rate η = 0.001, dropout rate p = 0.4.

The sample data based on energy relative difference are in-
put into 1D CNN to train and test. The loss and accuracy
curves of the proposed method are shown in Fig. 9. The loss
curves of the training set and testing set almost overlapped
and showed a convergence trend with small fluctuations, and
the model does not fall into overfitting and underfitting. The
accuracy curves of the training set and testing set both con-
verged at around the accuracy 98.57%. The 1D-CNN model
worked well. The confusion matrix of WPD-1D CNN model
is shown in Fig. 10. The testing set of bolt looseness under
0 Nm, 10 Nm, 20 Nm, 140 Nm and 160 Nm torques were

identified accurately. The misclassification of bolts looseness
can be seen that two samples of bolt looseness under 30 Nm
was misjudged the looseness degree of 40 Nm and 140 Nm.
The proposed method was effective in bolt loosening detection
of brake disc.

3.5. Model Comparison and Analysis

A lambda wave signal of different degree of bolt looseness
are collected to combine the 1D CNN model to identify the
bolt looseness.30 Based on this, the vibration signals combined
with 1D CNN is used as a comparison model. To verify the ad-
vantages of the proposed method for blot looseness detection,
three different models were compared and anayzed, which in-
clude the original signal from sensor1 combined with 1D CNN
model (Sensor1-1D CNN), the fused signal obtained by auto-
correlation summation combined with 1D CNN model (Fused
signal-1D CNN) and the proposed method.
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(i) (a) (b)

(ii) (a) (b)

(iii) (a) (b)

Figure 7. Example of the (a) time-domain and (b) frequency spectrum of fused signal for #1 bolt with different torques (i)
0 N·m (ii) 20 N·m (iii) 160 N·m.

The loss and accuracy were used as the indicator to evalu-
ate the accuracy of the 1D CNN model. The original signal
collected from sensor 1 was applied as the input of 1D CNN.
The loss and accuracy curves of Sensor 1-1D CNN model are
shown in Fig. 11(i). The loss curves of the training set and
testing set almost overlapped and showed a convergence trend.
Although the loss curve converges, the loss value fluctuates
significantly, and the error between the predicted value and the
real value of the Sensor 1-1D CNN model was large at train-
ing iterations. The accuracy curves of training set and testing
set also fluctuated widely and eventually converged at around
65%. The confusion matrix of Sensor1-1D CNN model was
as shown in Fig. 12(a). When the original data was used for
classification, the bolts under complete looseness (0 Nm) and
tightened states (140 Nm and 160 Nm) were completely identi-
fied. However, the other torques show severe misclassification
of bolt looseness.

The fused signal of bolt calculated by autocorrelation sum-
mation were applied as the input of 1D CNN. The loss and
accuracy curves of Fused signal-1D CNN model for bolt loose-
ness detection are shown in Fig. 11(ii). The loss curves of the
training set and testing set almost overlap and show a conver-
gence trend, which means the training process of model was
steady. There are small fluctuations in loss values. The accu-
racy curves of training set and testing set also fluctuate widely
and eventually converge at around 92.14%. The confusion ma-
trix of Fused signal-1D CNN model is shown in Fig. 12(b).
Misclassification of bolts in different states of loosening can
be seen. Most of the bolt looseness under different torques are
identified accurately, and only the torque 20 Nm and 140 Nm
exhibit few misclassifications.

The original signal was directly input into the 1D CNN
model to train. Due to the large influence of the transmis-
sion path, the result is not satisfactory with only 70% accuracy.
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(a)

(b)

Figure 8. (a) WPD energy and (b) relative difference ea of
fused signal of bolt under different torques.

Table 2. Parameters of 1D CNN.

Layers Size Stride Output Activation
Function

Input 1× 1024 – – –
Convolution 32× 1× 3 1× 2 32× 1× 511 ReLU

layer 1
Convolution 32× 1× 3 1× 2 32× 1× 255 ReLU

layer 2
Pooling 1×2 1× 2 32× 1× 127 Maxpooling
layer 1

Convolution 16× 1× 2 1× 2 16× 1× 31 ReLU
layer 3

Convolution 16× 1× 2 1× 2 16× 1× 15 ReLU
layer 4
Pooling 1× 2 1× 2 16× 1× 15 Maxpooling
layer 2
Flatten 240 – – –
Fully

connection 120 – – ReLU
layer 1
Fully

connection 50 – – ReLU
layer 2
Output 7 – – Softmax

The fused signal processed by the autocorrelation summation
was input into the 1D CNN model, the accuracy was 90%,
which means the influence of transmission path was elimi-
nated. Comparing the sensor 1-1D CNN model and sate signal-
1D CNN model, the proposed method combined the advantage
of autocorrelation summation that can fuse the signal to effec-
tively eliminate the influence of the transmission path and to
improve the accuracy of model in quantitively identification of
bot looseness. The proposed method enhanced the difference
between the loosening bolt and tightening bolt by using WPD

(a)

(b)

Figure 9. (a) Loss and (b) Accuracy of the WPD-1D CNN.

and the feature of relative difference of energy can further im-
prove the recognition accuracy.

The generalization ability of the above model was veri-
fied using a 5-fold cross validation, and the results are shown
in Fig. 13. The mean accuracy values of the three mod-
els including the proposed method, Sate signal-1D CNN and
Sensor1-1D CNN in detecting bolt looseness are 96.7± 0.6%,
91.3± 0.7%, 69.6± 6.3%, respectively. The proposed WPD-
1D CNN model is more effective in detecting bolt loosening.

4. CONCLUSIONS

A method based on WPD-1D CNN is proposed to detect the
bolt looseness in brake disc of high-speed rail. The proposed
method solves the problem that the bolt looseness detection in
brake disc of high-speed railway is influenced by the transmis-
sion path due to the complex structures of brake disc. Mean-
while, the shortcomings that both wavelet packet decomposi-
tion methods and wavelet packet energy indicators are difficult
to quantitatively diagnose the bolt looseness are avoided in the
proposed method. Comparing with single channel 1D CNN
and fused signal CNN, the proposed method effectively takes
advantage of the vibration characteristics of bolt looseness and
the efficient identification capability of 1D CNN, with an ac-
curacy rate of 97%. The most obvious changes in the brake
disk after bolt looseness are structural vibration, temperature,
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Figure 10. Confusion matrix of the WPD-1D CNN for bolt
looseness detection.

and noise, etc. In the future, a method based on multimodal
learning for bolt looseness detection should be studied by fus-
ing the multi-sensors including sound signals, vibration signals
and temperature signals.
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